
On the Uti l i ty of Predicate Invention in
Inductive Logic Programming

Irene Stahl

Fakult~t Informatik, Universit~t Stuttgart, Breitwiesenstr. 20-22, D-70565 Stuttgart

Abstract. The task of predicate invention in ILP is to extend the hy-
pothesis language with new predicates in case that the vocabulary given
initially is insufficient for the learning task. However, whether predicate
invention really helps to make learning succeed in the extended language
depends on the bias that is currently employed.
In this paper we investigate for which commonly employed language
biases predicate invention is an appropriate shift operation. We prove
that for some restricted languages predicate invention does not help in
case that the learning task fails, and characterize the languages for which
predicate invention is useful as bias shift operation.

1 Introduction

Inductive logic programming (ILP) [Mug92] aims to learn logic programs from
examples in the presence of background knowledge. As opposed to propositional
frameworks, this setting leads to a generally infinite space of possible target
programs systems have to consider.

Biases are used to search and restrict this hypothesis space. Algorithmic
biases guide the search of a system, whereas absolute biases restrict the space
of potential solutions that is considered at all. The absolute bias determines the
target language of inductive inference by constraining the vocabulary to be used
in hypotheses, that is the available predicate, function and constant symbols,
and the form and complexity of potential target programs. The aim of using a
language bias is to consider fewer, ideally only finitely many well-structured or
understandable hypotheses.

However, the restrictions imposed by the absolute bias might be too strong
such that the hypothesis space does not include a correct target program. In that
case, it needs to be relaxed such that the enlarged hypothesis space contains a so-
lution. Extending the given vocabulary with newly invented predicates, for short
predicate invention (PI), is one possibility to shift the bias. Besides overcoming
the limitations of the insufficient vocabulary, the new predicates might also al-
low for the formulation of simpler hypotheses that conform to the complexity
restrictions of the target language.

However, the appropriatness of PI depends on its prior utility for the current
language bias. In some languages it is the only possibility to make learning
succeed, whereas in others it is useless in case that the learning task fails.

In this paper, we investigate the utility of PI as bias shift operation in ILP.
We give a formal definition of the usefulness of PI with respect to the absolute

273

bias, and recall a general result that motivates the introduction of new predicates
to overcome the limitations of the given language. In the following sections, we
show for which language biases PI is an appropriate shift operation. Finally, we
characterize the languages for which PI is useful, and the contribution of the
new predicates to the resulting target programs.

2 Definit ions

The task of ILP is defined formally as follows. Given ground facts E e and E ~
the positive and negative examples, a logic program B as background knowledge,
and a target language L, the system is to find a logic program P E L such tha t
B U P F- E e (completeness) and B U P ~ E e (consistency). The quadruple
(E r , E e , B, L) is called the learning problem.

It is based on an intended interpretation of the user that satisfies at least B
and E e. In the limit, all ground facts true and false in the intended interpre-
tation are given as positive and negative examples. In this setting, the learning
task means to construct a finite axiomatisation of the intended interpretation.
In more realistic scenarios E e and E e are finite subsets of the facts true and
false in the intended interpretation. In that case there is always a solution to
the learning problem if not explicitly excluded by L, namely P = E e. As these
trivial definitions prevent the investigation of the utility of any bias shift oper-
ation, we assume some mechanism to exclude them from the hypothesis space,
as e.g. cross validation. This technique splits E e and E e in training and test
examples. The target program is constructed from the training examples, and
verified on the test examples. Though cross validation leads to programs the
predictiveness of which exceeds the given training examples, it is not completely
satisfactory for excluding trivial definitions. This issue needs a further, more
thorough investigation.

If a learning task fails in the given language L, L is too restrictive to finitely
axiomatize the intended interpretation. PI is useful if extending L with finitely
many new predicates makes a learning task succeed that fails otherwise. Utility
is defined with respect to the class of target languages, that is the absolute bias 1 .

D e f i n i t i o n 1. Let s be a class of first order languages. PI is useful in 1: if there
exists a learning problem (E e , E e , B, L), L E s such that learning fails in
L, but succeeds in a language L ~ E 1: that extends L with finitely many new
predicates.

Definition 1 is relatively weak in as much as only the existence of a learning
problem that succeeds through PI is required for PI to be useful. A stronger
definition would demand that every learning problem could be solved by means
of PI. Kleene [Kle52] has proved this strong utility of PI in the framework of
identification in the limit with unrestricted first order logic as target language.

1 A separate problem we do not investigate in this paper is the utility of PI with
respect to the shift of algorithmic biases.

274

Th eorem ~. Any recursively enumerable set C of formulas in a first order lan-
guage L is finitely axiomatizable in a first order language L ~ that extends L with
finitely many additional predicate symbols.

If C is set to the set E ~ of facts that are true in the intended interpretation,
this theorem proves that every first order learning problem can be solved by in-
venting appropriate new predicates, provided that E r is recursively enumerable.

However, in the more restricted framework of ILP this strong view of useful-
ness is unsuitable because both the target language L and the extended language
L ~ are subject to the same restrictions. As there are learning tasks that fail not
because of missing predicates in L, but because of the restrictions that also apply
to each extension L I, there is no chance to prove strong usefulness results. For
example, in section 3.7 we show that PI is very useful for regular unary logic
programs [YS91]. It allows to detect recursive substructures in the examples.
However, if learning fails because non-regular predicates are given as examples,
PI does not help. Therefore, we adopt the weak definition 1 of usefulness.

3 U s e f u l n e s s R e s u l t s

To prove usefulness results according to definition 1 it suffices to give exam-
ples of learning problems that succeed through PI and fail otherwise. There are
two different classes of hypothesis languages for which PI is useful. The first
is unrestricted or weakly restricted Horn logic. The second class contains lan-
guages restricted to a fixed size by size bounds, schemes or language parameters.
Here, PI mainly serves to extend the language without violating the specified
parameters or schemes.

In the following, we shortly recall the definition of each language, and present
an example that proves the usefulness of PI.

3.1 U n r e s t r i c t e d a n d Weakly Res t r i c t ed H o r n Logic

In Horn logic, all clauses are restricted to contain at most one positive literal.
Though this restricts full clausal logic, first order Horn logic is still very ex-
pressive. Accordingly, logical implication is undecidable as in case of first order
logic.

PI is useful to recover from the failure of a learning task (E ~, E e , B, L) for
Horn clause languages L. For example, given facts about the multiplication of
natural numbers, there is no solution of the learning problem using only the
predicate multiply~3, the function s/1 and the constant 0 (cf. [Lin91]). Only
introducing a new predicate add will make learning succeed.

The usefulness of PI as bias shift operation is passed on to weak restrictions
of Horn logic, namely connected and generative clauses. The body variables of
connected clauses [Rou91, Rae91] must be related to the head of the clause. Vice
versa, the head variables of generative clauses [MF90] must occur in the body. As
each arbitrary clause can be made connected, respectively generative, by adding

275

body literals, neither of both is a real restriction. Therefore, inducing connected
or generative clauses is as hard as inducing arbitrary clauses. Likewise, PI is
useful as bias shift operation.

3.2 Size and Complexi ty Measures

Heuristic size- or complexity measures place a fixed or application-dependent
size- or complexity bound on the hypotheses. They realize Ockham's razor prin-
ciple that prefers the simplest complete and consistent program. There are differ-
ent approaches to measure the simplicity of a program. Some use only syntactic
properties of the hypotheses as criterion, either independently of the examples
[MB88, Wro] or when compared to them [Qui90]. Others take into account the
complexity of proofs from the theory [Sha83, Mug88, Wir89, SMB92, MSB92].

PI is useful if no solution of the learning problem exists within the specified
bounds. New predicates can be employed to factor out common parts of clauses,
or to express recursive subrelations and exceptions intensionally. The resulting
theory might fit the given size and complexity bounds and make learning succeed.

3.3 Schemes

Schemes describe the structure of the hypothesis clauses at an abstract level.
They allow to express prior knowledge about the expected structure of hypothesis
clauses in certain application domains, for example DCG clauses for grammar
learning. As only finitely many schemes are given, the search space is finite.

SIERES [Wir91a] and CAN [Tau92] use graphs to represent the number of
literals and the argument dependencies between them. RDT [Kie91] and CIA
[Rae92] employ function-free second-order clauses with predicate variables to de-
scribe the allowed structure of hypothesis clauses. The instantiations of the avail-
able schemes with respect to the background knowledge constitute the search
space for learning.

If no solution instantiating the given schemes exists, PI helps to overcome
the limitations imposed by them.

Example 1. Let the available scheme be

SIERES, CAN (graph) RDT, CIA (second order clause)

I I

I I I I
S: P(X) ~- Q(X), R(X)

and let the target definition be

C : p(X) ~-- q(X), r(X), s(X)

276

Then there is no complete and consistent instantiation of S. If a new predicate
is introduced, two clauses instantiating S that are equivalent to C can be found:

p(X) ~-- q(X), newp(X)
.e,,,p(X) ~ ,'(x) , s(x)

Tha t is, PI extends the hypothesis language without requiring more complex
schemes. Additionally it allows to express recursive subrelations.

3.4 Language Series

Language series [Rae92, Rae91] are sets of parametrized languages. For each in-
stantiat ion of the parameters the resulting hypothesis language is finite. CLINT
[Rae92] orders its parametrized languages according to generality. If the system
fails to detect a complete and consistent definition within the current language,
it shifts to a more general one.

As in the case of schemes, PI is useful to replace the shift to a more com-
plex language. For example, CLINT's language series 3 restricts the depth of
existential quantification within the target clauses:

Vii, . . , ik > 0 : Lit,..,ik = { C [head(C) = p (X t , . , X,) , Xj r Xk V j • k
A body(C) C Bit,..,ik(Xl, . . ,X,)
A C linked and range restricted 2 }

where B,(X1, . . ,X ,) = { q(Y1, ..,Yk) [[{Y1, .., Yk} - {X, , . . ,X,}I _< i A
{Y1, .., Yk} N {X1, .., X , } # r }

Bi,,..,i,(X1, . . ,X,) = { q(Y,, ..,Yk) 6 Bi,(Z1, ..,Zl) [
{ z l , . . , z , } = vars(B,t,..,,~_, (Xl , .., X ,)) }

If no solution exists in the given language Lit,..,ik, PI does the same job as
shifting to a more complex language.

Example 2. A target clause

C = p(X) ,--- ,'(X, U), q(U, V), p(U, W), ,'(V, W)

is not in Ll,O, but in Ll,l,o. With a new predicate it can be rewritten to two
clauses in Li.0:

p(x) ~ ,.(x, u), n~p(v)
.~wp(U) ,- q(g, v), p(u, w), ,.(v, w).

However, as in the case of schemes PI is a more powerful operation than the
pure language shift, as recursive subrelations might be detected.

2 Both linked and connected, and range restricted and generative, axe synonymous.
The formers are more usuM in the deductive data base literature.

277

Example 3. Suppose a set of clauses

p(X) ~- s(x, u), r(u)
p(X) ~- ~(x, u), q(U, v), r(v)
p(X) ~- s(x, u), q(U, v), q(V, w), r(w)

is needed to describe the target concept. Without PI, shifts from L1,0 to LI,I,O
and L1j,1,0 are necessary, whereas introducing a recursively defined new predi-
cate allows a definition in L1,0:

p(X) ~- s(X, U), newp(V)
newp(U) ~-- q(U, V), newp(V)
newp(U) ~- r(U)

3.5 D e t e r m i n a t e Clauses

Similar to language series 3 of CLINT, the determinacy restriction [MF90] is
used to constrain the maximum depth of existential quantification. Addition-
ally, a semantic restriction is placed on the the number of instantiations of the
existentially quantified variables with respect to the background knowledge.

D e f i n i t i o n 3. Let B be a logic program and E e a set of ground atoms. Every
unit clause is Oj-determinate. An ordered clause A (-- B1, .., Bin, Bin+l, . . ,B,
is ij-determinate iff A ~ B1, ..,Bin is (i - 1)j-determinate, and every literal
Bk 6 {Bin+l,.., Bn} contains only determinate terms and has degree at most j.
A term t found in Bk is determinate with respect to Bk iff for every substitution
0 such that A0 6 E e and {Bt, .., Bin}8 C_ A4(B) 3 there is a unique ground atom
BkOa 6 ./t4(B). The degree of Bk with respect to t is the number of variables in
Bk which must be instantiated to determine t.

In case that no/j-determinate solution of the learning problem exists, PI is
useful to overcome the limitations of/j-determinacy, at least for the parameter
i.

Example 4. Given functional predicates q(T, -) , r(T, -) and s(+, -) , the clause

c = p(x, Y) ~- q(X, v), r(g, v), s(v, w)

violates the constraint i = 2 as the variable W is found at depth i = 3. With a
new predicate it can be rewritten to two 2j-determinate clauses:

p(X, Y) . - q(X, U), r(U, V), newp(V)
newp(V) *-- s(V, W).

However, in case that the j-parameter is violated, the situation is more com-
plicated. In general, PI is not capable of decreasing the degree of literals from
k > j t o < j .

z ~ 4 (B) is the set of all ground atoms derivable from B.

278

Example 5. Given functional predicates q (+ , -) , r (+ , -) and t(+, + , -) , the
clause

C = p(X, Y) ~-- q(X, NI), r(X, N2),t(NI, N2, Y)

violates the constraint j ---- 1 in the last literal. It cannot be rewritten in ~il-
determinate clauses.

If the determinacy constraint itself is violated, the non-determinate back-
ground knowledge .A4(B) has to be transformed into functional form. As the
functional parts of a non-determinate predicate must be named differently, PI is
involved.

Example 6. The clause

ancestor(Ane, Desc) ~-- parent(Z, Desc), ancestor(Anc, Z)

is not determinate because of the parent-literal. In order to express ancestor with
determinate clauses, the parent-relation i n the background must be transformed
into functional form, e.g. by inventing the determinate mother and father pred-
icates. Then, the clauses

ancestor(Ane, Desc) ~-- father(Z, Dese), aneestor(Ane, Z)
aneestor(Ane, Desc) ~ mother(Z, Desc), ancestor(Ane, Z)

are determinate and equivalent to the target clause.

This kind of PI involves detecting dependencies between the arguments of a
predicate, and restructuring the knowledge base. It is employed in the context
of inductive data engineering [Fla93].

3.6 C o n s t r a i n e d Clauses

Constrained clauses are a special case of determinate clauses with the depth
of existential quantification restricted to zero. That is, constrained clauses C
contain no existential variables, more formally vats(body(C)) C vats(head(C)).
As for determinate clauses, PI is useful to make learning succeed when the initial
vocabulary was insufficient. This can be shown by the following example.

Example 7. Let B -~ r and

E ~ = { rev(D , [~), rev([a], [a]), rev([a,b], [b,a]), }
E e - { rev([a, b], [a, b]), rev([c], [c, el), rev(a, [a]), }

Then there is no constrained solution of the learning problem that uses only
rev/2, [-I-] and D (though there is one with existential variables, cf. [Bun90]).
However, using an additional 3-place predicate newp allows a constrained defi-
nition:

rev(n, LR) +-- newp(n, ~, LR)
newp(~, L, L)
newp([XlR], L, L1) *-- newp(R, [XIL], 51)

279

3.7 RUL-programs

Regular unary logic (RUL) programs [YSgl] are a special case of constrained
programs. They contain only unary predicates, and allow for non-variable argu-
ment terms only in the clause heads. The head arguments of clauses of the same
predicate must differ in their function symbol. Additionally, every variable in a
clause must occur exactly once in the head and once in the body.

The extensions of predicates defined by RUL-programs are regular sets partic-
ularly suited to describe argument types. RUL-programs allow for very efficient
induction methods [STW93]. In case that the example set is regular, PI is useful
to make the learning task succeed.

Example 8. Let B = r

E* = {
t(f(g([a, a]))),
t(f(g([a, a, a])))}

E e -- { t(g([a])), t([a]), I(U)
t(g([a, a])), t([a, a]),
t(g(Ea, a, a])), t(Ea, a, a])}

Then there is no complete and consistent RUL-program P using only t/1. Using
an additional predicate symbol q/1 allows a definition

t(f(g([alY]))) q(Y).

q([alY]) q(Y).

However, if E ~ exemplifies non-regular predicates, e.g.

E r C { t(f(L1, L~)) I L1, L2 lists of the same length },

only the introduction of n-ary new predicates might help. The algorithm de-
scribed in [STW93] allows to decide whether E ~ can be defined by a RUL-
program at all. If yes, the necessary new predicates are introduced, otherwise
the algorithm fails. As the examples for the new predicates are structurally less
complex than the examples in E ~, infinite loops of new predicates cannot occur.

4 Use lessness Resul t s

In spite of the general utility of PI as bias shift operation for fixed size languages,
there are language biases for which even PI fails to extend the range of expressible
concepts. In particular, function-free languages exhibit this kind of weakness.

Proving the uselessness of PI according to definition 1 is more difficult than
proving its usefulness. Instead of simply giving examples for successful applica-
tions of PI, we have to show that no extension of the target language with new
predicates makes the learning task succeed.

280

4.1 Function-Free Constrained Clauses

Function-free constrained clauses are constrained clauses without any functors
except for finitely many constants. In contrast to the general case of constrained
clauses, PI is useless to recover from a failure of the learning task.

Example 9. Let examples about grandparent(X, Y) be given for a set of per-
sons, and let the background knowledge contain all parent-relations between
them. Then there is no non-trivial constrained program that covers the exam-
ples. Furthermore, PI is useless as it cannot help to introduce the necessary
existential variable.

The following theorem proves this assertion.

Theorem 4. If there is no function-free constrained solution P to the learning
problem (E r E e, B, L), then there is also no function-free constrained solution
P' in L' for each extension L' of L with finitely many new predicate symbols.

Proof. We assume that a solution
be eliminated without changing the
are applied to permutat ions of the
many, non-recursive definitions can
new predicates in P ' . This results
contradiction to the precondition of
Construction of P " from P' : Let

P' = C.o~p

c lauses w i t h new
p r e d i c s t e s as

pos i t ive l i ter~ls

P ' in L' exists. New predicates in P ' can
success set, because recursive calls of them
head arguments. As there are only finitely
be determined that allow to eliminate the
in a complete and consistent P " in L, in
the theorem.

U Cde!
clauaes ~hat do no t

con ta in a new
predlcas p o s i t i v e l y

Let A0 = C.,wp
A~+~ = A~ U {C [3C~, C2 e A~ (C = (C~ �9 C2a) 4) ̂

-~BC' 6 Ai (C'8 C C)}

As there are only finitely many clauses in each constrained function-free language
L' , there is an integer n such that A ,+I = A , . Let

A = A , - {C 6 A , I C contains a new predicate negatively}

Then A has the same success set as C,e~p, that is A ~- a iff C , ~ p ~- a:

:=~: Let A ~- a be true. For each clause C 6 A - C , ewp used in the proof, there
is a resolution derivation from C,~wp. Therefore, there is a resolution proof
C..~p t- a .

r Let C, ,wr F- a be true. If a clause C used in the proof is not in A, it contains
new predicate literals in the body. For each possibility to resolve them away,
there is a corresponding clause in A. Therefore, there is a resolution proof
A~-a.

"4 Here, (A �9 Ba) is the result of resolving A and B with substitution a.

281

The set A contains only non-recursively defined new predicates the definitions
of which can be used to unfold the new predicate literals in (;de I. This results
in the desired program P" in L.

That is, in function-free constrained Horn logic PI is useless in case that the
learning task fails. The same is true for the more restricted case of completely
bound clauses C where vats(head(C)) = vats(body(C)).

4.2 Monad ic H o r n Logic

Monadic Horn logic is function-free Horn logic restricted to unary predicates. In
contrast to ttUL-programs, monadic logic programs need not to be constrained,
but might contain existential variables. However, we can show that for each
monadic logic program there is an equivalent one without existential variables.

Theorem 5. Given an arbitrary monadic logic program P~ in a language L,
there exists a program P in L with the same success set without existential vari-
ables.

Proof. Body literMs with an existential variable as argument are always true
or always false, regardless of the current proof. Therefore they can be elimi-
nated from P~ without changing the success set. A detailed description of the
construction of P from pi can be found in [STU1].

That is, only constrained clauses need to be considered when learning in
monadic Horn logic. Therefore, PI is useless if learning fails.

4.3 Func t ion-Free H o r n Logic

Function-free logic programs contain no functors except for finitely many con-
stants. Excluding arbitrary functors leads to the decidability of logical implica-
tion, in contrast to full first order Horn logic.

This decidability accounts for the uselessness of PI. In [Sta93] we prove that,
given (E $, E @, B, L) with a function-free language L, only clauses with at most n
different variables need to be considered for the target program P. The parameter
n depends on the number of constants in B and L, and the arity of the available
predicates. This property accounts on the one hand for the decidability of the
learning problem, but on the other hand for the uselessness of PI. As only clauses
with up to n different variables need to be considered, reeursively defined new
predicates can be eliminated by a method similar to that for constrained clauses.

Theorem 6. I f there is no function-free solution P to the learning problem
(E ~, E e, B, L), then there is also no function-free solution P' in L' for each
extension L' of L with finitely many new predicate symbols.

282

Proof. As in the proof of theorem 4, we assume that a complete and consistent P '
in L' exists, and construct a complete and consistent P" in L, in contradiction to
the precondition of the theorem. The crucial difference from theorem 4 is in the
inductive construction of the set A of non-recursive new predicate definitions:

A0 = Cn~p
Bi+l = As U {C [3C1, C2 E Ai (C = (C1. C2a)) A

 3c' c (C'O c_ C)}
Bi+l might contain clauses with > n variables, where n is the bound on the
number of variables. By the method we describe in [Sta93], an extensionally
equivalent set Ai+l of clauses with at most n variables is constructed from Bi+l.
As there are only finitely many clauses with < n variables, there is an integer k
such that Ak+l = Ak. The set

A = Ak - {C E Ak I C contains a new predicate negatively}

can be proved to be extensionally equivalent to Cne~p. As it contains only non-
recursive definitions of new predicates, it can be used to unfold the new predi-
cates in Cd~l, resulting in the desired program p,i.

That is, if the learning method fails to find a function-free solution, PI is
useless to recover from the failure. However, if the validity and predictiveness of
the induced program is to exceed the given constants, new predicates might be
necessary for the learning task.

Example 10. Let examples about male_ancestor(X, Y) be given for a set of per-
sons, and let the background knowledge contain the parent(X, Y)- and male-
relations for them. Then a correct function-free target program can be found
that uses only parent and male within the clause bodies. However, this program
will fit exactly the family relations between the known people. For arbitrary
persons, it will generally produce no predictions. Therefore, if arbitrary many
persons are to be considered, only the introduction of a new recursively defined
predicate as e.g. ancestor might help.

However, the example refers to a fundamentally stronger success criterion
for learning. The induced program is to cover not only the given examples with
respect to the givenbackground knowledge, but arbitrary examples with respect
to an augmented background knowledge. This violates in fact the restriction
to function-free programs, as potentially infinitely many constants need to be
considered.

5 C h a r a c t e r i z i n g L a n g u a g e s w i t h r e s p e c t t o P r e d i c a t e

I n v e n t i o n

In the previous sections we discussed the usefulness of PI for different language
biases. The results are summarized in figure 1. It shows that the more restricted
the target language is, the less useful is PI.

283

{First Order Logic)

} LsmRr~, c~

PI uselc~ as blm~ shift operation

Fig. 1. Usefulness of PI as bias shift operation

Especially for function-free languages, the introduction of new predicates
does not increase the expressiveness of the the original language. Function-free
languages are quite weak as the inductive inference method can never leave
the space of what is expressible with the given constants and predicates. If the
validity of the induced program is to exceed the given constants, PI might be
useful. However, in that case the learning task is as difficult as in unrestricted
Horn logic.

The languages for which PI is a useful bias shift operation can be distin-
guished in two classes. The first is the class of unrestricted or weakly restricted
Horn clause languages. If learning fails in a language of that kind, PI might help
to overcome the limitations of the given vocabulary. Necessary new predicates
must be defined recursively in these languages, as else the original learning task
would not have failed. That is, PI really has the capability to introduce new pred-
icates missing in the original vocabulary. However, this capability comes at the
price of the undecidability of the problem when to introduce a new predicate. In
[STU1] we prove that it is undecidable whether a learning task (E ~, E e, B, L)
fails in an unrestricted or weakly restricted Horn clause language L, that is
whether L should be extended to make learning succeed.

The second class of languages for which PI is useful contains languages re-
stricted to a fixed size by language parameters, schemes or size bounds. For each
learning problem, these languages result in a finite hypothesis space. In this

284

framework, new predicates mainly serve the task of extending the given fixed-
size language without violating the specified parameters or schemes. They do the
same job as shifts to a more general language as e.g. in CLINT [Rae92], increas-
ing parameters as e.g. for /j-determinacy [MF90], or supplying more complex
schemes. In the strict logical sense, most of these predicates are not necessary
as they can be eliminated by unfold-operations. However, in contrast to the
pure language shifts, new predicates allow additionally for expressing recursive
subrelations as e.g. in example 3. Therefore, PI is a more powerful bias shift
operation.

A special case of PI is the transformation of non-determinate background
literals in functional form. It involves detecting dependencies between arguments
of the literals, and restructuring the knowledge base accordingly. This kind of
PI is employed in the context of inductive data engineering [Fla93], where a
relational data base is restructured according to inductively detected attribute
dependencies.

6 Conclus ions

The central aim of PI in ILP is to extend the given vocabulary in case it is
insufficient for the learning task. The utility of PI as bias shift operation depends
on its prior utility for the current language bias. The theoretical results presented
in this paper mark the boundaries of appropriatness for PI in ILP. Though they
give no practical algorithms for efficiently deciding when PI is actual necessary,
they indicate for which language biases it is useful at all.

Three classes of language biases can be identified with respect to the utility
of PI. For function-free languages, PI can be proved as useless. These languages
are restricted so strongly that PI cannot increase their expressiveness. Only
allowing negation by failure leads to a useful form of PI, the so-called closed
world specialisation [BM92].

For unrestricted or weakly restricted Horn clause languages, PI is useful
and really capable of introducing predicates missing in the original language.
However, inductive inference is unfeasible in these frameworks.

The remaining class of fixed-size languages allows for tractable induction
procedures. Additionally, PI is useful both for shifting the language bias syn-
tactically and extending the vocabulary with necessary new predicates. That
is, for these languages PI integrates two different bias shift operations in one.
The capabilities of PI when compared to changing the language parameters or
supplying more complex schemes need to be explored further.

Furthermore, the utility of PI with respect to algorithmic biases evidenced
in the work on constructive induction in propositional learning has to be studied
separately. This might lead to more practical results that those in this paper.

A c k n o w l e d g e m e n t s

This work has been supported by the European Community ESPRIT BRA 6020
ILP (Inductive Logic Programming).

285

References

[BM92] Bain, M., Muggieton, S. (1992): Non-Monotonic Learingin S. Muggleton (ed):
Inductive Logic Programming, Academic Press

[Bun90] Buntine, W. (1990): Constructive Induction in Definite Clause Logic, draft
[Fla93] Flach, P. A. (1993): Predicate Invention in Inductive Data Engineering, Pro-

ceedings of the European Conference on Machine Learning, Vienna
[Kie91] Kietz, J., Wrobel, S. (1991): Controlling the Complexity of Learning in Logic

through Syntactic and Task-Oriented Models, in S. Muggleton (ed): Inductive
Logic Programming, Academic Press

[Kle52] Kleene, S. C. (1952): Finite Axiomatizability of Theories in the Predicate
Calculus Using Additional Predicate Symbols in S. C. Kleene: Two Papers on
the Predicate Calculus, Memoirs of the American Mathematical Society No.
10

[Lin91] Ling, C. X. (1991): Inventing Necessary Theoretical Terms in Scientific Dis-
covery and Inductive Logic Programming, Report No. 302, Dept. of Computer
Science, University of Western Ontario, London, Ontario

[Mug88] Muggleton, S. (1988): A Strategy for Constructing New Predicates in First Or-
der Logic, in Proceedings of the Third European Working Session on Learning,
Pitman

[MB88] Muggleton, S., Buntine, W. (1988): Machine Invention of First-Order Predi-
cates by Inverting Resolution, Proceedings of the 5th International Conference
on Machine Learning, Morgan Kanfman

[MF90] Muggleton, S., Feng, C. (1990): Efficient Induction of Logic Programs, Pro-
ceedings of the 1st Conference on Algorithmic Learning Theory, Tokyo,
OI-IMSHA

[Mug92] Muggleton, S. (1992): Inductive Logic Programming, in S. Muggleton (ed):
Inductive Logic Programming, Academic Press

[MSB92] Muggleton, S., Srinivasan, A., Bain, M. (1992): Compression, Significance
and Accuracy, in Proceedings of the Ninth International Machine Learning
Conference, Morgan Kaufmann

[Qni90] Qninlan, J. R. (1990): Learning Logical Definitions from Relations, Machine
Learning 5

[Rae91] De Raedt, L. (1992): Interactive Theory Revision: an Inductive Logic Pro-
gramming Approach, Academic Press

[Rae92] De Raedt, L., Bruynooghe, M. (1992): Interactive Concept-Learning and Con-
structive Induction by Analogy, Machine Learning 8(2)

[Rou91] Rouveirol, C. (1991): ITOU: Induction of First Order Theories, in S. Mug-
gleton (ed): Inductive Logic Programming, Academic Press

[Sha83] Shapiro, E. Y. (1983): Algorithmic Program Debugging, MIT Press, Cam-
bridge Mass.

[SMB92] Srinivasan, A., Muggleton, S., Baln, M. (1992): Distinguishing Exceptions
from Noise in Non-Monotonic Learning, in Proceedings of ILP'92, Tokyo

[STW93] Stahl, I., Tausend, B., Wirth, R. (1993): Two Methods for Improving Induc-
tive Logic Programming Systems, Proceedings of the European Conference on
Machine Learning, Vienna

[STU1] Stahl, I. (1993): Predicate Invention in ILP - Decidability, Utility and Deci-
sion Criteria , Deliverable STU1 of the ESPRIT BRA 6020 ILP, September
1993

286

[Sta93]

[Tan92]

[Wir89]

[Wir91a]

[Wro]

[YS91I

Stahl, I. (1993): Properties o] Inductive Logic Programming in Function-Free
Horn Logic, this volume
Tausend, B. (1992): Using and Adapting Schemes]or the Induction o] Horn
Clauses, ECAI-92 Workshop on Logical Approaches to Machine Learning,
Vienna
Wirth, R. (1989): Lernverfahren zur Vervollst&ndigung yon Hornklauselmen-
gen dutch inverse Resolution, Dissertation, Universit~t Stuttgart, Institut fiir
Informatik
Wirth, It., O'Rorke, P. (1991): Constraints on Predicate Invention in Pro-

ceedings of the Eighth International Workshop on Machine Learning, Morgan
Kaufmann
Wrobel, S.: Exploiting a Problem-Solving Context to Focus Concept Forma-
tion, to appear in Machine Learning Journal
Yaxdeni, E., Shapiro, E. (1991): A Type System for Logic Programs, Journal
of Logic Programming 10.

