
A Multistrategy Learning System and Its
Integration into an Interactive Floorplanning Tool

Jtirgen Herrmann, Reiner Ackermann, J/Srg Peters, Detlef Reipa

Universi~t Dortmund, Informatik I
44221 Dortmund, Germany

herrmann @ ls 1 .informatik.uni-dortmund.de

Keywor~: learning and problem solving, applications of machine learning,
multistrategy learning

Abstract. The presented system COSIMA learns floorplanning rules from structural
descriptions incrementally, using a number of cooperating machine learning strategies:
Selective inductive generalization generates most specific, generalizations using predicate
weights to select the best one heuristically. The predicate weights are adjusted statistically.
Inductive specialization eliminates overgeneralizations. Constructive induction improves the
learning process in several ways. The system is organized as a learning apprentice system. It
provides an interactive design tool and can automate single floorplanning steps.

1 . I n t r o d u c t i o n

During the last few years the number of reported machine learning applications to real-
world problems has grown significantly. ML techniques have been used successfully for
tasks from various domains (Morik, 1992), (Kodratoff and Langley, 1993). A main use for
the implemented systems is the acquisition of knowledge and data for knowledge-based
systems and for conventional software systems.
Many successful machine learning systems acquiring knowledge about complex real-world
problems are shaped according to characteristics of the considered domain, i.e. they are
tailored to an application. In this context there are two relevant directions of machine
learning research:

�9 The combination of several different machine learning strategies that cooperatively
acquire knowledge about the domain (multistrategy learning systems, (Michalski, 1993;
Saitta et al, 1993; Morik, 1993))

�9 The integration of a learning system into a problem solving tool for the domain (van
Someren, 1993)

In this paper we present the learning tool COSIMA that combines these two aspects. The
system acquires knowledge about floorplanning, a subtask of IC design. The incrementally
learned rules are used to automate single design steps performed with an interactive
floorplanning tool. For learning the following strategies are used: Selective inductive
generalization, inductive specialization, constructive induction and statistical adjustment of
parameter weights.
The rest of the paper is organized in following way: To motivate the design decisions for
COSIMA, we briefly introduce the floorplanning domain in Section 2. Section 3 gives on
overview on the COSIMA system. The combination of the different learning strategies is
explained. Our multi-staged inductive generalization algorithm is presented in Section 4.
Section 5 deals with the inductive specialization component that is used to eliminate

139

overgeneralizations. The three different uses of constructive induction in COSIMA are
described in Section 6. The mechanism for the tuning of predicate weights (which
influence all other learning strategies) is the topic of Section 7. Some remarks about the
representation of floorplanning knowledge can be found in Section 8. COSIMA's problem
solving component that is organized as a floorplanning assistant is explained in Section 9.
A description of results and conclusions are presented in the last two sections.

2. Characteristics of the Floorplanning Domain

The system COSIMA acquires knowledge about floorplanning for the early phases of IC
design. Floorplanning synthesizes a geometrical hardware description from a structural one
(a netlist of functional blocks and their interconnections on register-transfer level). The
functional blocks are placed on a two-dimensional area and connected to each other.
Typically, the placement is performed by the designer stepwise (see Figure 1).

D D
I 1

sB l hUH

Step 0 Step 2 Step 1

O Q O

Step n

Figure 1: Simplified sequence of steps performed during floorplanning

The objectives of this task are the minimization of the consumed chip-area and the
minimization of the total length for the connections. A machine learning system for the
floorplanning domain has to be shaped according to the following characteristics:

�9 There is only limited and incomplete knowledge about synthesis and analysis of
floorplans. As a consequence machine learning strategies that depend on a strong domain
theory cannot be applied. Besides that, the evaluation of a performed floorplanning step
is difficult: The effect of an operation on the quality of a floorplan can be evaluated
accurately only at the end of a floorplanning process. So a "good-looking" operation can
turn out to have a negative effect later. Because of the incomplete knowledge about
floorplan analysis, overgeneralizations cannot be avoided.

�9 The learning and representation of topological and geometrical properties is crucial. To
represent this information adequately, structural descriptions with typically several
hundred facts are required. Therefore, a learning system for floorplanning must scale up -
it must be capable to with cope with complex example descriptions. For the same
reason, it is not feasible to store old examples - instead incremental learning should be
used.

�9 Depending on the state of the floorplanning process different aspects of an example have
diverging importance. To represent this fact, we use weighted predicates (see Section 4).

140

3. Combination of Different Machine Learning Strategies

The floorplanning characteristics described above have led to the selection and combination
of the different machine learning strategies for COSIMA described in this section.
Selective inductive generalization is the basic learning strategy used to generate
floorplanning rules from examples. An example consists of a floorplanning state (the
floorplanning basic area on which some blocks are placed and the list of unplaced blocks)
and an operator to be applied to a certain part of this state description. COSIMA uses a
fixed set of predefined basic floorplanning operators. A floorplanning rule consists of a
fight-hand side determining the operator to be applied and a left-hand describing the
situations in which the operator can be applied successfully (according to the objectives).
Each time a new example becomes available, the corresponding rule is generalized.
Overgeneralizations are eliminated by use of selective inductive specialization. An
overgenerlization is detected, if a rule matches on a negative example. If an example is
rejected by COSIMA's built-in evaluation function or if it is classified by the user
accordingly, it is marked as a negative example. The evaluation function can reject an
example, if the applied operator leads to an obvious decrease of the floorplan quality.

[S e l e c ~
matches on the exam~

�9 p.le ~ ~ . Examp!e
,s p o s l ~ , , , , , " ~ a u v e

I Modification c f I-.._ -.,r Specialization I ' ~
rule an~examp,e 1 ~ /

I Selection of best match]

T f G e n e r a l ~

[Modified]

Figure 2: Cooperation of different machine learning strategies in the COSIMA system.
Selective inductive generalization and constructive induction cooperatively incorporate a
positive example into an existing rule. Inductive specialization and constructive induction are
used to eliminate overgeneralizations. Parameter adjustment influences all other strategies.

Constructive induction is used for three different purposes:
1) Before each generalization step, the descriptions of the new example and the

corresponding rule are modified to improve generalization.
2) Typically, each generalization step results i~n several alternative most specific

generalizations (MSGs). New predicates are constructed and added to the MSGs to
select the best one heuristically.

3) If the selective inductive specialization fails t o eliminate an overgenerization,
constructive induction is used as an alternative specialization strategy. This situation
occurs, if a correct discrimination of a negative example is not possible with current
hypothesis language.

141

Predefined predicate weights guide COSIMA's three different inductive learning strategies,
On the basis of statistics about sequences of generalization steps adjustment of predicate
weights is performed.
The cooperation of the strategies is depicted in Figure 2. In the next sections the different
strategies are described with more detail.

4 . Selective Inductive Generalization

As COSIMA is learning from examples incrementally, each generalization step matches
two example descriptions (or one rule and one example). Typically each description
consists of several hundred facts. As Haussler (Haussler, 1989) has pointed out many
MSGs (of different quality) may be created from structural descriptions for complex design
tasks. A mechanism is therefore necessary to evaluate (intermediate and final)
generalizations and to select the best one. The quality of a generalization depends on the
corresponding facts in both input descriptions in accordance with a certain list of consistent
object bindings 1. As far as complex design tasks are concerned, each description typically
consists of some important facts and many additional ones describing detail information. A
good MSG must prefer the important ones, i.e. the selection of the object bindings must
be dominated by the important facts.

_Example: Two different lists of object bindings
Many possible combinations of object bindings, called binding lists, exist for the two
floorplanning examples shown in Figure 3.

Figure 3: Two simple floorplans that can be matched against each other in different ways

Two of them are e.g.
LI: (A:I, B:2, C:3, D:4, E'5, F:6, G:7) or
L2: (A:2, B:6, C:3, D:5, E:I, F:7, G:4)

The first one binds objects according to the structure of the floorplans. Corresponding

1 We only use one-to-one bindings of objects for our generalization strategy. Many-to-one
bindings that are used in logic-oriented systems as KBG (Bisson, 1992) are not feasible for the
learning of knowledge about complex design tasks like floorplanning. Floorplanning operators
like the 'placement of BlockA between BlockB and BlockC' require a definite substructure of
related objects to be manipulated. In hypotheses with many-to-one bindings this information is
lacking.

142

blocks have the same relative positions and neighbors in both floorplans. For the second
list (L2), the areas and shapes of the blocks determine the bindings. If the main aim of the
floorplanning process is to minimize the total connection length, the structure of a
floorptan is more relevant than the shape of the blocks. Nevertheless, the areas and shapes
must be considered too. Therefore, predicate weights are a suitable mechanism to express
the importance of each feature and relation.
In COSIMA selective induction is performed by the multi-staged generalization algorithm 2
that uses these numerical weights intensively. They are used to evaluate each (intermediate
or final) generalization. A generalization consists of several facts. Each generalized fact F
corresponds to a pair of facts from the two considered examples. The similarity of these
two facts delivers a weight 3"for F.
Our calculation of the similarity of two facts is somewhat more simple than the formula
used in KBG (Bisson 1992). Let F1 = p(A1, A2, "", An) and F2 = p(B1, B2, ~176 Bn) be
the two facts from the two considered examples E1 and E2 that are generalized into F. F1
and F2 are instances of the same predicate p. The weight of F is defined as the similarity
between F1 and F2:

n

sim(F1, F2) = weight (p) * I-[sim(Ai,Bi) (1)
i=l

The similarity value for any pair of arguments ranges from 0 to 1. The calculation of
sim(Ai,Bi) depends on their type. For two objects it is equal to 1, for two numerical
values it is the quotient of their minimum and maximum 4. If the difference of the values
is above a certain limit, the similarity is too low and the fact is dropped from the
generalization. Typically this can take place after several generalization steps.
The weight of a generalization is the sum of the weights of its facts being calculated with
Formula (1). This method implies that not necessarily the generalizations with the highest
number of facts, but those with many important facts, get the highest ratings. In this way
the best description that is used for further generalization steps can be determined
heuristically.
The multi-staged generalization splits up each example description into two parts: The
important part consisting of instances of predicates with high Weights and the additional
part consisting of the other facts 5. During the first stage only the important example parts
are matched. This leads to initial, preliminary MSGs. The second stage matches the
additional example parts and completes the initial MSGs adding further generalized facts.
Each stage is performed by a SPROUTER-like matching procedure (Hayes-Roth and
McDermott, 1977). It searches for the best (initial or final) MSGs by stepwise
construction of maximal consistent binding lists.

2 This generalization algorithm was first used in the system LEFT (Herrmann and Beckmann,
1992 and t994), a predecessor of COSIMA. LEFT has the same selective inductive
generalization method but no constructive induction or inductive specialization strategies.
3 We are calculating weights only for generalized facts. The weight of a fact in an example
description is identical to the weight of the corresponding predicate.
4 The range of the numerical arguments in our floorplanning domain is relatively small. It is
e.g. [1,20] for the numerical argument of the predicate area. The similarity of two areas is
expressed by their ratio. According to our point of view, two blocks with areas 1 and 2 are as
similar to each other as two blocks with areas 5 and 10. For large numerical domains, a normed
similarity measure could be more appropriate (e.g. dividing the difference of two values by the
maximum possible value).
5 Alternatively, the example descriptions can be split into several parts. In this case, for each
part a separate matching phase must be performed.

143

Example: Binding of objects after the initial matching
Each of the two simple floorplans in figure 4 has 9 blocks. The description language
consists of the three predicates

connected(<block>, <block>) with the weight 40
size(<block>, <integer>) with the weight 15
shape(<block>, <size-descriptor>) with the weight 10

The important part of the example description consists of instances of the first predicate.
The additional parts describes the size and shape features. After the initial matching (first
stage) only the following blocks are bound to each other:
(A:I, B:2, C:3, D:4, E:5, F:6, G:7)
The other blocks are bound during the second matching stage. The initial bindings are not
changes during the second stage.

Figure 4: Two simple floorplans after the initial matching: The hatched blocks are already
bound to each other

The generalized facts are created by use of the closing interval, climbing generalization
tree, turning constants into variables and dropping condition generalization rules
(Michalski, 1983). At last the final MSG with the highest rating is selected. A detailed
description of the multi-staged generalization algorithm can be found in (Herrmann and
Beckmann, 1994). The effects of this algorithm are the following one:
The instance and the hypothesis space are split into 2 disjoint parts. This leads to a
significant reduction of the complexity for generalization. On the other hand, few
important facts (with high weights) cannot be "outvoted" by many additional (less import)
ones. For that reason, our generalization algorithm can find better MSGs for domains like
floorplanning that are represented adequately by descriptors with varying importance.

5. Selective Inductive Specialization

The inductive specialization component is applied, if the application of a learned rule,
matching on the current floorplanning state, is rejected. The rejection of a rule means that
its application would lead to an unfavorable new state according to the floorplanning
objectives. The rejection is either initiated by the user or the built-in evaluation function
for floorplanning states.
As the floorplanning domain requires an incremental learning system (see Section 2),
specialization strategies that systematically analyze the whole set of examples at one time
cannot be used, e.g. MOBAL's rule discovery tool (Kietz and Wrobel, 1992) or the
knowledge refinement component in WHY (Saitta et al, 1993).

144

One simple method for incremental specialization is the inclusion of exceptional examples
into the rule to be specialized, as it is used in the system LEFT (Herrmann and Beckmann,
1994). Using a "without-part" in each rule, negative examples can be excluded easily.
Unfortunately this method does not scale up. It blows up the rule description so that the
advantages of incremental learning are jeopardized.
An alternative incremental specialization strategy is performed in the system LAIR (Elio
and Watanabe, 199 I). It compares each new (positive or negative) example with the current
hypothesis and uses the differences for the construction and update of a list of candidates for
specialization.
LAIR uses a constructive induction method for creation of the fact needed for
specialization. It utilizes a set of horn-clauses as background theory. The background
knowledge is applied to the candidate list to find the best fact to be added to the rule.
Because of the insufficient background knowledge in the floorplanning domain we cannot
use this construction method for our system. (COSIMA's alternative constructive
induction strategy is explained in the next section.)
Nevertheless a list of candidates can be used for specialization in our domain. The list is
constructed and updated in a more distinctive way than in LAIR, which removes a candidate
form the list, if it contradicts the current new single example. In COSIMA all facts are
stored in the so-called specialization part that occurred in at least C % of the examples used
for generalization or used during application of a given rule 6. C is a user selected
parameter. Realistic values for C are e.g. 50 or 30. A smaller value for C leads to a bigger
specialization part. Each fact in the specialization part is marked with two numeric values:

�9 The percentage of example descriptions for generalization that comprise the fact

�9 The percentage of example descriptions the rule has been applied to successfully, i.e.
without rejection, that comprise the fact

If a rule matches on a negative example the rule is too general and has to be specialized.
Adding a literal to the left-hand side of the rule that discriminates the example, this is
achieved. In this way a most general specialization (MGS) of the rule is created. In analogy
to most specific generalizations (Haussler, 1989) there are many alternative most general
specializations, so the selection of the best or at least a good one is crucial. Our
specialization strategy uses two different rules for the creation of a MGS (Dietterich and
Michalski, 1983), both utilizing the information in the specialization part as bias.

a) The introducing exception specialization rule
The negation of a fact is added to the left-hand side of the rule that occurs in the
negative example and in few (at least c %) of the positive ones.

b) The adding condition specialization rule
A fact is added to the left-hand side of the rule that does not occur in the negative
example but in most (close to 100%) of the positive ones.

Both rules can lead to a discrimination of old examples that were classified as positive
ones. This effect is intended, as the classification of examples is fuzzy in our domain.
(There is limited knowledge about the analysis of floorplans, see Section 2.) Therefore,
misclassified examples are a major reason for overgeneralizations. Nevertheless, the
number of discriminated old examples must be kept small, to minimize the effect of the
specialization. The specialization part provides the necessary information to meet this

6 To make the construction of the list less sensitive to the presentation order of the examples,
for the fist examples all possible candidate facts are included. Only after a number of examples
have been used for generalization or application of the rule, the less frequently occuring facts are
discharged.

145

requirement. Other incremental specializations strategies, like e.g. the one in ACT
(Anderson, 1986), have a less elaborated discrimination mechanism. The discrimination is
based only on the analysis of one positive and one negative example. The influence on the
total set of old examples cannot be estimated.
There are several criteria for the evaluation of the alternative specializations created with
rule a) and b). The selection of the "best" literal to be added to the rule is based on the
following information:

�9 Number of positive examples discriminated by the literal
As has been mentioned above this number should be minimized to limit the effect of
specialization

�9 Predicate weight for the instance
In our current implementation predicates with high weights are preferred, as they add
significant information to the hypothesis

�9 Statisticsaboutprioruseofthecorrespondingpredicatefordiscrimination
Statistics represent the success of predicates during previous specialization steps. If a
predicate has lead to a successful specialization several times, it is a good candidate for
the current specialization step according to this heuristic criterion.

�9 Number of objects referenced in the rule before and after specialization
The addition of a single literal to a hypothesis can increase the number of referenced
objects. This is a significant modification of the hypothesis. Therefore, specialization
steps that do not increase the number of objects are preferred in COSIMA.

These four criteria provide basic information about the evaluation of the specializations.
The way how they should be combined to gain a compound evaluation function depends
strongly on the characteristics of the underlying domain.

Besides the rules a) and b) that add a literal to the rule to be specialized COSIMA uses the
following specialization rules that are the inverse operations to standard rules of
generalization: descending-concept-hierarchy-tree, reducing-interval, turning-variable-into-
constant, removing-alternative. A formal description of the corresponding generalization
operators can be found in (Michalski, 1983).
Each of these four rules specializes an argument of a fact already existing in the considered
floorplanning rule. As the influence of these specializations on the total set of old
examples cannot be estimated, the rules a) and b) are the preferred specialization operators
in COSIMA.

6 . Three Dif ferent Ways to Use Constructive Induct ion

COSIMA's constructive induction strategy combines knowledge-based and syntactical
construction of new descriptors. Knowledge-based approaches, e.g. Oxgate (Gunsch, 1991),
use domain-dependent knowledge for the construction process. In contrary, syntactical
approaches (Wirth and O'Rourke, 1991) are based on domain-independent biases limiting
the space of predicates that can be constructed.
In the following the three different uses for constructive induction in COSIMA are
explained sequentially.

Modification of Example and Rule Descriptions Before Matching

One purpose of the modification (and the general intention of constructive induction) is to
make the descriptions more distinctive, i.e. to make information explicit that is only
implicitly represented in the descriptions. For this purpose COSIMA's background

146

knowledge provides several predefined construction operators. They create new predicates,
being possibly useful for our domain, from existing "basic" ones. Examples of operators
are e.g. the following two ones (Michalski 1983):

�9 Counting the instances o f a predicate that all have the same constant value at one
argument position
Example: Consider the following basic predicate:
block_state(<block>, <state-value>). The possible values for <state-value> are
placed and unplaced. The constructed predicate
#placed_blocks(<number>) makes explicit the number of blocks with the state-value
placed.

�9 Selecting that instance o f a predicate with the maximum numerical value at one
argument position
Example: The constructed predicate maximum_size(<block>) makes explicit that the
object <block> is the biggest one.

Each of the construction operators can create a diverse set of different predicates. For
instance the maximum-operator can be applied to any predicate with at least one numerical
argument type. Some of the operators depend on each other. For the creation of a
maximum-predicate a counting-instances-predicate must be used.
The constructed predicates that get a sufficient rating from the predicate evaluation function
(see below) are included into the example and the considered rule description. It would not
be feasible to add the predicate to the description language for all rules. This would blow
the descriptions significantly. Instead, the effect of the construction is limited to the
current rule. For different rules different constructed predicates can be relevant.
The second type of modification for example and rule descriptions is the compaction. For
this purpose intermediate concepts represented as horn-clauses are induced (Bergadano et al,
1988). An intermediate concept represents a compound property occuring repeatedly in the
set of examples.
If the body of a horn-clause (with two ore more literals) matches on an example the unified
titerals in the example description are substituted with the clause head. (In the system
DUCE (Muggleton 1987), this operation, called absorption if the horn-clause is predefined,
was used for transformation of propositional descriptions.) Using intermetiate concepts the
size of the description is decreased and high-level information about the example is
extracted. The left-hand side of Figure 5 shows an example of an intermediate concept used
in COSIMA. The right-hand side depicts a geometrical illustration of the concept "corner".
A corner consists of three connected blocks that form an "L-shaped" structure. Using
intermediate concepts of this kind, several blocks can be combined to substructures of the
floorplan topology.

corner(a,b,c) :- on_same_line(a,b,horizontal),
on_same_line(a,c,vertical),
directneighbour(a,b),
directneighbonr(a,c),
state connection(a,b,existing),
state connection(a,c,existing) t . b I

Figure 5: Intermediate concept representing the structure "comer" left-hand side)
and the geometrical representation of a corner in a floorplan example (right-hand side)

COSIMA uses rule-models (Kietz and Wrobel, 1991; Pazzani and Kibler, 1992) for
syntactical construction of predicates representing intermediate concepts. The head of a
successfully instanciated model forms a new predicate to be included into the considered

147

description. To limit the set of possible new predicates that can be constructed from a rule
model, sorts are used constraining the instanciations of predicate variables and arguments.
In Figure 6 the rule model is depicted that was used to create the intermediate concept for
"comer".

new(X,Y,Z) :- P(X,Y,horizontal) A Type (P) = IndirectNeighbourhood,
P(X,Z,vertical),
Q(X,Y) A Type (Q) = DirectNeighbourhood,
Q(x,z),
R(X,Y,existing) A Type (R) = Connection,
R(X,Z,existing)

Figure 6: Rule model in COSIMA. "new" stands for a predicate identifier to be created
automatically during instanciation of the model. (Meaningful predicate names have to be

inserted by the user.) The italic terms denote the sort restrictions.

COSIMA's two different construction methods can be combined. A new predicate
constructed from a predefined construction operator can be included into the body of an
intermediate concept. Besides that, intermediate concepts can be created hierarchically:
More complex intermediate concepts are defined by use of existing ones.
To make the creation of intermediate concepts less dependent on the existing rule models,
C O S I M A has a method for the creation of new models based on past successful
instanciations of existing ones. If there are several instanciations of the same model, a new
clause is created with a body consisting of the corresponding literals in all instanciations.
A new rule model is abstracted from this clause. For a more detailed description of the
constructive induction mechanisms see (Reipa, 1993).

Evaluat ion of the Constructed Predicates

This is a crucial task for any constructive induction strategy. Typical ly , a f lexible
construction mechanism results in a big number of irrelevant new predicates. COSIMA's
evaluation function is based on the following criteria:

�9 number of literals in the rule model used

�9 number of instances of the new predicate in the two considered descriptions

�9 degree of compaction achieved with the new predicate

�9 past success of the rule model

From these criteria a heuristic numerical value is calculated for each new predicate. Only
the predicates with a high rating are included into example and rule descriptions.

Select ion A m o n g Alternative MSGs

This is the second use for constructive induction in COSIMA. From structural description
many different alternative most specific generalizations (MSGs) can be created. The weight
of each MSG is the sum of the weights for the facts. If there are several MSGs with the
same highest rating, constructive induction is used to select the best one.
If applicable, COSIMA adds instances of constructed predicates to an MSG making it more
specific in that way. A fact is added, if it is valid for the corresponding objects in all
examples 7. This increases the weights for some MSGs and makes a selection possible.

7 This condition already limits the number of accepted constructed predicates significantly. For
this reason the threshold value for the acceptance of new predicates, that reduces this number
further, is now lower than during the modification of descriptions (see above).

148

During this stage of the generalization process new facts are only added to the MSGs, no
compaction takes place,

Specialization of Rules

If the inductive specialization strategy mentioned above fails to select a discriminating fact,
constructive induction is used as an alternative specialization strategy. A new fact is
constructed that discriminates the negative example from the positive ones.

COSIMA's constructive induction strategy is incremental. For the creation of a new
predicate the two current descriptions (rule and example) are analyzed. When a new positive
example becomes available and is generalized with the rule the utility of the new instances
is checked. If they are not valid for the new example, they are dropped.

7. Adjustment of Parameter Weights

Experts know what information is absolutely necessary for a certain operation in the
considered domain. They can therefore divide the set of predicates into the two required
subsets (important predicates and additional ones) and deliver possibly a partial ordering for
each set. From this information initial predicate weights can be determined. A modification
of these weights is performed by a statistical parameter adjustment mechanism. Analyzing
the generalization and specialization steps regularly it evaluates the relevance of the
different predicates for the learning process and adjusts the weights incrementally.

8 . Representation of F l o o r p l a n n i n g K n o w l e d g e in C O S I M A

Floorplanning may be divided into two steps: The topology planning which performs a
rough, relative placement of the blocks, and the geometry planning which determines the
exact floorplan geometry based on this topology.
COSIMA incrementally acquires rules which create a floorplanning topology. 8 The
topology is represented as a grid-graph (Watanabe, 1987), a graph with (square) nodes
which are marked with positions on a two-dimensional grid. The nodes represent the
floorplan blocks; grid-positions stand for the relative placement of the blocks. Two blocks
are connected by an edge if there is a corresponding connection in the circuit description
COSIMA gets as an input. Four rectangles represent the boundary of the floorplan. The
upper left part of Figure 7 show a grid graph with some blocks that have already been
placed.
A logic-based description is not well suited for the representation and manipulation of
structural and geometrical knowledge. For this reason we use a hybrid representation for
COSIMA. The manipulation of the current floorplanning state is performed by a set of
predefined floorplanning operators that operate on an object-oriented representation,
implemented in the CommonLisp Object System CLOS. Each operator is implemented
using quite a complex CommonLisp procedure. After each manipulation, the new state is
translated into the predicate description which the learning component can work on.

8 The geometry planning is more straight-forward and can be calculated by a conventional
algorithm (Watanabe, 1987).

149

9. Integration of the Learning System into a Floorplanning
Tool

The learning strategies described above are embedded in an interactive floorplanning system
that assists the designer. LEFT has a graphical interface that shows the current
floorplanning state and which is used by the designer to initiate the application of an
operator (see Figure 7).

r ~ ' l GRID-~I~PH r i l l IBLO CK$ [LECTIO N

' m

'
STATISTICS

Figure 7: User Interface of COSIMA. The upper right window shows the ordered list of blocks to
be placed. The blocks are placed onto the positions of the grid shown in the upper left window.
In this way the topology of the floorplan is designed. The lower window depicts performance
statistics. The graph on the left-hand side shows the quality of the most recent floorplanning
operations. The user can take back unfavorable operations. The bar on the right hand side
informs about the state of current matching and generalization process.

The system operates as a learning apprentice (Mitchell et al, 1985). The user can select
from the list of possible operations an appropriate floorplanning operator for the next
design step. The performance component executes the operator. This leads to a new
floorplanning state. The old state description and the operator form a positive example. It
is used to construct a new rule or to generalize an existing one. The learned rules are used
in the following way: To make the selection of a well-suited operator easier, each time a
rule matches on the current state the execution of the operator in the right-hand side is
proposed to the user. If the user rejects the proposed operator the current state forms a
negative example for that rule and it is specialized accordingly.

150

10. Experimental Results

We are currently evaluating the quality and capability of COSIMA's different strategies.
This includes for instance the selection of appropriate parameters for the different
evaluation functions.
The effect of the multi-staged generalization algorithm on the speed of matching and
generalization has already been evaluated and is illustrated in Figure 8. The algorithm is
compared to another version that is limited to a single stage, i.e. all predicates are
considered during one single generalization stage. Both versions used the same predicate
weights. The results show that the multi-staged generalization algorithm can significantly
improve the run time for inductive generalization taken from real-world design examples.
(The single-staged generalization is only quicker for very small examples.)
On top of which, the tests show that the multi-staged generalization improves the quality
of the gained learning result. It selects the appropriate MSGs for several test cases, which
could not be generalized correctly by the single-staged generalization algorithm.

CPU TIME

3000
SINGLE-STAGED

2000

1 O00

MULTI-STAGED

, , I . . l _ , I l l , i - .

z lo 1~
COMPLEXITY OF THE EXAMPLES (NUMBER OF OBJECTS)

Figure 8: Comparison of Run-Times for the
Single- and the Multi-Staged Generalization

There are some preliminary results about the effects of the other machine learning
strategies, based on a limited number of tests we have already performed9r Figure 9 depicts
the results of one test series. In each of the floorplan examples used for this series at least
one corner occurred (see Figure 5 for a description of the intermediate concept corner). The
example size varied from 250 to 520 facts.
We have investigated how the description length of a rule created from these examples
changed during multi-staged generalization with and without constructive induction. It is
the typical case for realistic floorplanning examples that only a smaller part of the example
description is significant for the concept to be learned. Therefore, the dropping condition
generalization rule is the most important one.

9 Therefore, at the moment our interpretation of the experimental results is somewhat fuzzy.

151

0
r
b.

q-
0

O;
.13
E

Z

300

280

260

240

2s

200

180

160

140

120

100

80

GO

40

20

0

I I I I

Mul~i-Staged Gene ra l i za t i on
Mul t i -S taged Gen. w i th Cl l l

I I I I

0 1 2 3 4 S
Number or Genera l i za t i ons

Figure 9: Comparison of rule sizes for multi-staged generalization without constructive
induction (upper line) and with constructive induction (lower line)

The combination of constructive induction with multi-staged generalization had several
effects. From the beginning it decreased the rule size, and it lead to an earlier convergence
of the number of facts. This combination of the two machine learning strategies does also
influence the quality oft the learned rules, as has been confirmed by several other series of
tests, too. It decreases the error rate of the rules significantly.

0

h

0

@
.O
E

Z

350

300

250

200

150

100

50

I I I I I I I I

Condit ion Part - -
Specialization Part , ,

/
/

_]
/
/

I I l I I I I I

0 1 2 3 4 S 6 7 8
Number o? Generalizations

Figure 10: Comparison of number of facts for the specialization part and the condition part of
a rule that is generalized several times

Another series of tests analyzed the development of the specialization part during a number

152

of successive generalizations (see Figure 10). In this series the size of the specialization
part was always somewhat larger than the size of the condition part, but the specialization
part did not grow significantly during generalization. There is no combinatorial explosion
of the specialization part. This is an important difference to the simple specialization
strategy of the system LEFT (Herrmann and Beckmann, 1994) that blew up the size of the
specialization part after learning from a few negative examples.
Another aspect that has still to be analyzed and is relevant for all incremental systems is
the influence of the example order on the learning results.

11. Conc lus ion

The implemented system COSIMA combines different machine learning strategies. It
demonstrates how selective inductive generalization, inductive specialization, constructive
induction and statistical adjustment of parameter weights can be integrated into a multi-
strategy machine learning system that acquires knowledge about a real-world problem -
floorplanning for integrated circuits.
Another important aspect of machine learning applications is the integration of a learning
system into the daily work of the user. The organization of the user interaction has a great
impact on the acceptance for the software tool. Considering this aspect, COSIMA has been
organized as a learning apprentice system that is integrated into an interactive floor-
planning tool. COSIMA does not require a teaching mode. It learns from examples that the
user generates during his/her normal work with the floorplanning tool.

Acknowledgements: We would like to thank Siegfried Bell for useful comments on an
earlier version of this paper.

R e f e r e n c e s

Anderson, J.R. (1986). Knowledge Compilation. In Machine Learning: An Artificial
Intelligence Approach Vol II, eds. R. S. Michalski, J. G. Carbonell, T. M. Mitchell, 289-
310. Morgan Kaufmann..

Bergadano, F., Giordana, A. & Saitta, L. (1988). Automated Concept Acquisition in Noisy
Domains. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Bisson, G. (1992). Conceptual Clustering in a First Order Logic Representation. Proc. 10th
ECAI, August 3-7, Vienna.

Dietterich, T.G., & Michalski, R.S. (1983). A Comparative Review of Selected Methods for
Learning from Examples. In Machine Learning: An Artificial Intelligence Approach, eds. R.
S. Michalski, J. G. Carbonell, T. M. Mitchell, pp 41-81. Palo Alto: Tioga Press.

Elio, R., & Watanabe, L. (1991). An Incremental Deductive Strategy for Controlling
Constructive Induction in Learning from Examples. Machine Learning Journal. Vol 7, 7-44,
Boston: Kluver Academic Publishers.

Gunsch, G.H. (199t). Opportunistic Constructive Induction: Using Fragments of Domain
Knowledge to Guide Construction. PhD Thesis, University of Illinois at Urbana-
Champaign.

Haussler, D. (1989). Learning Conjunctive Concepts in Structural Domains. Machine Learning
Journal. Vol 4, 7-40, Boston: Kluver Academic Publishers.

Hayes-Roth, F., & McDermott, J. (1977). Knowledge Acquisition from Structural Descriptions.
Proc. 5th IJCAI, 356-362.

Herrmann, J., & Beckmann, R. (1992). LEFT - A Learning Tool for Early Floorplanning. Proc.
18th Euromicru Conference, pp 587-594, September 14-17, Paris.

Herrmann, J., & Beckmann, R. (1994). LEFT - A System that Learns Rules about VLSI-Design

153

from Structural Descriptions. (to appear) In Y. Kodratoff (Guest Ed.), Applied Artificial
Intelligence, Special Issue on Real-World Applications of Machine Learning Techniques .
London: Taylor and Francis Ltd.

Kietz, J.U., & Wrobel, S. (1992). Controlling the Complexity of Learning in Logic Though
Syntactic and Task-Oriented Models. Arbeitspapiere der GMD Nr. 503, GMD, SchloB
Birlinghoven.

Kodratoff, Y., & Langley, P. (Eds.), (1993). Real-World Applications of Machine Learning.
Workshop Notes on the ECML-93 Workshop. Vienna.

Michalski, R.S. (1983). A Theory and Methodology of Inductive Learning. In R.S. Michalski,
T.M. Mitchell and J.G. Carbonell (eds.), Machine Learning: An Artificial Intelligence
Approach. Palo Alto, CA: Tioga Publishing.

Michalski, R.S. (1993). Inferential Theory of Learning as a Conceptual Basis for Multistrategy
Learning. Machine Learning Journal. Vol 11, 111-152, Boston: Kluver Academic
Publishers.

Mitchell, T.M., Mahadevan, S., & Steinberg, L. (1985). LEAP - A Learning Apprentice for VLSI
Design. Proc. 9th IJCAI, pp 573-580, August 18-23, Los Angeles.

Morik, K. (1992). Applications of Machine Learning. Proceedings of the Sixth European
Knowledge Acquisition Workshop (pp 9-13). Springer.

Morik, K. (1993). Balanced Cooperative Modeling. Machine Learning Journal. Vol 11, 217-
236, Boston: Kluver Academic Publishers.

S. Muggleton (1987). DUCE, an Oracle Based Approach to Constructive Induction, Proc of the
10th Int. Joint Conference on Artificial Intelligence, IJCAI87

Pazzani, M., & Kibler, D. (1992). The Utility of Knowledge in Inductive Learning. Machine
Learning Journal. Vol 9, 57-95, Boston: Kluver Academic Publishers.

Reipa, D. (1993). Konstruktive Induktion ftir eine strukturelle Beschreibungssprache. Diploma
Thesis, University of Dortmund.

Saitta, L., Botta, M., & Neri, F. (1993). Multistrategy Learning and Theory Revision. Machine
Learning Journal. Vol 11, 153-172, Boston: Kluver Academic Publishers.

van Someren, M. (Ed.) (1993). Learning and Problem Solving. Workshop Notes on the MLnet
Workshop. Blanes.

Wirth, R., & O'Rourke, P.O. (1991). Constraints for Predicate Invention. Proc. of the 8th Int.
Machine Learning Conference, Evanston: Morgan Kaufmann.

Watanabe, H. (1987). FLUTE - An Expert Floorplanner for Full-Custom VLSI Design. IEEE
Design & Test, pp 32-41. New York: Computer Society of the IEEE.

