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Abstract. The presented system COSIMA learns floorplanning rules from structural 
descriptions incrementally, using a number of cooperating machine learning strategies: 
Selective inductive generalization generates most specific, generalizations using predicate 
weights to select the best one heuristically. The predicate weights are adjusted statistically. 
Inductive specialization eliminates overgeneralizations. Constructive induction improves the 
learning process in several ways. The system is organized as a learning apprentice system. It 
provides an interactive design tool and can automate single floorplanning steps. 

1 .  I n t r o d u c t i o n  

During the last few years the number of reported machine learning applications to real- 
world problems has grown significantly. ML techniques have been used successfully for 
tasks from various domains (Morik, 1992), (Kodratoff and Langley, 1993). A main use for 
the implemented systems is the acquisition of knowledge and data for knowledge-based 
systems and for conventional software systems. 
Many successful machine learning systems acquiring knowledge about complex real-world 
problems are shaped according to characteristics of the considered domain, i.e. they are 
tailored to an application. In this context there are two relevant directions of machine 
learning research: 

�9 The combination of several different machine learning strategies that cooperatively 
acquire knowledge about the domain (multistrategy learning systems, (Michalski, 1993; 
Saitta et al, 1993; Morik, 1993)) 

�9 The integration of a learning system into a problem solving tool for the domain (van 
Someren, 1993) 

In this paper we present the learning tool COSIMA that combines these two aspects. The 
system acquires knowledge about floorplanning, a subtask of IC design. The incrementally 
learned rules are used to automate single design steps performed with an interactive 
floorplanning tool. For learning the following strategies are used: Selective inductive 
generalization, inductive specialization, constructive induction and statistical adjustment of 
parameter weights. 
The rest of the paper is organized in following way: To motivate the design decisions for 
COSIMA, we briefly introduce the floorplanning domain in Section 2. Section 3 gives on 
overview on the COSIMA system. The combination of the different learning strategies is 
explained. Our multi-staged inductive generalization algorithm is presented in Section 4. 
Section 5 deals with the inductive specialization component that is used to eliminate 
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overgeneralizations. The three different uses of constructive induction in COSIMA are 
described in Section 6. The mechanism for the tuning of predicate weights (which 
influence all other learning strategies) is the topic of Section 7. Some remarks about the 
representation of floorplanning knowledge can be found in Section 8. COSIMA's problem 
solving component that is organized as a floorplanning assistant is explained in Section 9. 
A description of results and conclusions are presented in the last two sections. 

2.  Characteristics of the Floorplanning Domain 

The system COSIMA acquires knowledge about floorplanning for the early phases of IC 
design. Floorplanning synthesizes a geometrical hardware description from a structural one 
(a netlist of functional blocks and their interconnections on register-transfer level). The 
functional blocks are placed on a two-dimensional area and connected to each other. 
Typically, the placement is performed by the designer stepwise (see Figure 1). 
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Figure 1: Simplified sequence of steps performed during floorplanning 

The objectives of this task are the minimization of the consumed chip-area and the 
minimization of the total length for the connections. A machine learning system for the 
floorplanning domain has to be shaped according to the following characteristics: 

�9 There is only limited and incomplete knowledge about synthesis and analysis of 
floorplans. As a consequence machine learning strategies that depend on a strong domain 
theory cannot be applied. Besides that, the evaluation of a performed floorplanning step 
is difficult: The effect of an operation on the quality of a floorplan can be evaluated 
accurately only at the end of a floorplanning process. So a "good-looking" operation can 
turn out to have a negative effect later. Because of the incomplete knowledge about 
floorplan analysis, overgeneralizations cannot be avoided. 

�9 The learning and representation of topological and geometrical properties is crucial. To 
represent this information adequately, structural descriptions with typically several 
hundred facts are required. Therefore, a learning system for floorplanning must scale up - 
it must be capable to with cope with complex example descriptions. For the same 
reason, it is not feasible to store old examples - instead incremental learning should be 
used. 

�9 Depending on the state of the floorplanning process different aspects of an example have 
diverging importance. To represent this fact, we use weighted predicates (see Section 4). 
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3.  Combination of Different Machine Learning Strategies 

The floorplanning characteristics described above have led to the selection and combination 
of the different machine learning strategies for COSIMA described in this section. 
Selective inductive generalization is the basic learning strategy used to generate 
floorplanning rules from examples. An example consists of a floorplanning state (the 
floorplanning basic area on which some blocks are placed and the list of unplaced blocks) 
and an operator to be applied to a certain part of this state description. COSIMA uses a 
fixed set of predefined basic floorplanning operators. A floorplanning rule consists of a 
fight-hand side determining the operator to be applied and a left-hand describing the 
situations in which the operator can be applied successfully (according to the objectives). 
Each time a new example becomes available, the corresponding rule is generalized. 
Overgeneralizations are eliminated by use of selective inductive specialization. An 
overgenerlization is detected, if a rule matches on a negative example. If an example is 
rejected by COSIMA's built-in evaluation function or if it is classified by the user 
accordingly, it is marked as a negative example. The evaluation function can reject an 
example, if the applied operator leads to an obvious decrease of the floorplan quality. 
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Figure 2: Cooperation of different machine learning strategies in the COSIMA system. 
Selective inductive generalization and constructive induction cooperatively incorporate a 
positive example into an existing rule. Inductive specialization and constructive induction are 
used to eliminate overgeneralizations. Parameter adjustment influences all other strategies. 

Constructive induction is used for three different purposes: 
1) Before each generalization step, the descriptions of the new example and the 

corresponding rule are modified to improve generalization. 
2) Typically, each generalization step results i~n several alternative most specific 

generalizations (MSGs). New predicates are constructed and added to the MSGs to 
select the best one heuristically. 

3) If the selective inductive specialization fails t o  eliminate an overgenerization, 
constructive induction is used as an alternative specialization strategy. This situation 
occurs, if a correct discrimination of a negative example is not possible with current 
hypothesis language. 
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Predefined predicate weights guide COSIMA's three different inductive learning strategies, 
On the basis of statistics about sequences of generalization steps adjustment of predicate 
weights is performed. 
The cooperation of the strategies is depicted in Figure 2. In the next sections the different 
strategies are described with more detail. 

4 .  Selective Inductive Generalization 

As COSIMA is learning from examples incrementally, each generalization step matches 
two example descriptions (or one rule and one example). Typically each description 
consists of several hundred facts. As Haussler (Haussler, 1989) has pointed out many 
MSGs (of different quality) may be created from structural descriptions for complex design 
tasks. A mechanism is therefore necessary to evaluate (intermediate and final) 
generalizations and to select the best one. The quality of a generalization depends on the 
corresponding facts in both input descriptions in accordance with a certain list of consistent 
object bindings 1. As far as complex design tasks are concerned, each description typically 
consists of some important facts and many additional ones describing detail information. A 
good MSG must prefer the important ones, i.e. the selection of the object bindings must 
be dominated by the important facts. 

_Example: Two different lists of object bindings 
Many possible combinations of object bindings, called binding lists, exist for the two 
floorplanning examples shown in Figure 3. 

Figure 3: Two simple floorplans that can be matched against each other in different ways 

Two of them are e.g. 
LI: (A:I, B:2, C:3, D:4, E'5, F:6, G:7) or 
L2: (A:2, B:6, C:3, D:5, E:I, F:7, G:4) 

The first one binds objects according to the structure of the floorplans. Corresponding 

1 We only use one-to-one bindings of objects for our generalization strategy. Many-to-one 
bindings that are used in logic-oriented systems as KBG (Bisson, 1992) are not feasible for the 
learning of knowledge about complex design tasks like floorplanning. Floorplanning operators 
like the 'placement of BlockA between BlockB and BlockC' require a definite substructure of 
related objects to be manipulated. In hypotheses with many-to-one bindings this information is 
lacking. 
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blocks have the same relative positions and neighbors in both floorplans. For the second 
list (L2), the areas and shapes of the blocks determine the bindings. If  the main aim of  the 
floorplanning process is to minimize the total connection length, the structure of  a 
floorptan is more relevant than the shape of  the blocks. Nevertheless, the areas and shapes 
must be considered too. Therefore, predicate weights are a suitable mechanism to express 
the importance of each feature and relation. 
In COSIMA selective induction is performed by the multi-staged generalization algorithm 2 
that uses these numerical weights intensively. They are used to evaluate each (intermediate 
or final) generalization. A generalization consists of several facts. Each generalized fact F 
corresponds to a pair of  facts from the two considered examples. The similarity of  these 
two facts delivers a weight 3"for F. 
Our calculation of  the similarity of  two facts is somewhat more simple than the formula 
used in KBG (Bisson 1992). Let F1 = p(A1, A2, "",  An) and F2 = p(B1, B2, ~176 Bn) be 
the two facts from the two considered examples E1 and E2 that are generalized into F. F1 
and F2 are instances of  the same predicate p. The weight of F is defined as the similarity 
between F1 and F2: 

n 

sim(F1, F2) = weight (p) * I-[ sim(Ai,Bi) (1) 
i=l 

The similarity value for any pair of arguments ranges from 0 to 1. The calculation of  
sim(Ai,Bi) depends on their type. For two objects it is equal to 1, for two numerical 
values it is the quotient of their minimum and maximum 4. If the difference of the values 
is above a certain limit, the similarity is too low and the fact is dropped from the 
generalization. Typically this can take place after several generalization steps. 
The weight of  a generalization is the sum of the weights of  its facts being calculated with 
Formula (1). This method implies that not necessarily the generalizations with the highest 
number of  facts, but those with many important facts, get the highest ratings. In this way 
the best description that is used for further generalization steps can be determined 
heuristically. 
The multi-staged generalization splits up each example description into two parts: The 
important part consisting of instances of predicates with high Weights and the additional 
part consisting of the other facts 5. During the first stage only the important example parts 
are matched. This leads to initial, preliminary MSGs. The second stage matches the 
additional example parts and completes the initial MSGs adding further generalized facts. 
Each stage is performed by a SPROUTER-like matching procedure (Hayes-Roth and 
McDermott,  1977). It searches for the best (initial or final) MSGs by stepwise 
construction of maximal consistent binding lists. 

2 This generalization algorithm was first used in the system LEFT (Herrmann and Beckmann, 
1992 and t994), a predecessor of COSIMA. LEFT has the same selective inductive 
generalization method but no constructive induction or inductive specialization strategies. 
3 We are calculating weights only for generalized facts. The weight of a fact in an example 
description is identical to the weight of the corresponding predicate. 
4 The range of the numerical arguments in our floorplanning domain is relatively small. It is 
e.g. [1,20] for the numerical argument of the predicate area. The similarity of two areas is 
expressed by their ratio. According to our point of view, two blocks with areas 1 and 2 are as 
similar to each other as two blocks with areas 5 and 10. For large numerical domains, a normed 
similarity measure could be more appropriate (e.g. dividing the difference of two values by the 
maximum possible value). 
5 Alternatively, the example descriptions can be split into several parts. In this case, for each 
part a separate matching phase must be performed. 
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Example: Binding of objects after the initial matching 
Each of the two simple floorplans in figure 4 has 9 blocks. The description language 
consists of the three predicates 

connected(<block>, <block>) with the weight 40 
size(<block>, <integer>) with the weight 15 
shape(<block>, <size-descriptor>) with the weight 10 

The important part of the example description consists of instances of the first predicate. 
The additional parts describes the size and shape features. After the initial matching (first 
stage) only the following blocks are bound to each other: 
(A:I, B:2, C:3, D:4, E:5, F:6, G:7) 
The other blocks are bound during the second matching stage. The initial bindings are not 
changes during the second stage. 

Figure 4: Two simple floorplans after the initial matching: The hatched blocks are already 
bound to each other 

The generalized facts are created by use of the closing interval, climbing generalization 
tree, turning constants into variables and dropping condition generalization rules 
(Michalski, 1983). At last the final MSG with the highest rating is selected. A detailed 
description of the multi-staged generalization algorithm can be found in (Herrmann and 
Beckmann, 1994). The effects of this algorithm are the following one: 
The instance and the hypothesis space are split into 2 disjoint parts. This leads to a 
significant reduction of the complexity for generalization. On the other hand, few 
important facts (with high weights) cannot be "outvoted" by many additional (less import) 
ones. For that reason, our generalization algorithm can find better MSGs for domains like 
floorplanning that are represented adequately by descriptors with varying importance. 

5.  Selective Inductive Specialization 

The inductive specialization component is applied, if the application of a learned rule, 
matching on the current floorplanning state, is rejected. The rejection of a rule means that 
its application would lead to an unfavorable new state according to the floorplanning 
objectives. The rejection is either initiated by the user or the built-in evaluation function 
for floorplanning states. 
As the floorplanning domain requires an incremental learning system (see Section 2), 
specialization strategies that systematically analyze the whole set of examples at one time 
cannot be used, e.g. MOBAL's rule discovery tool (Kietz and Wrobel, 1992) or the 
knowledge refinement component in WHY (Saitta et al, 1993). 
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One simple method for incremental specialization is the inclusion of exceptional examples 
into the rule to be specialized, as it is used in the system LEFT (Herrmann and Beckmann, 
1994). Using a "without-part" in each rule, negative examples can be excluded easily. 
Unfortunately this method does not scale up. It blows up the rule description so that the 
advantages of incremental learning are jeopardized. 
An alternative incremental specialization strategy is performed in the system LAIR (Elio 
and Watanabe, 199 I). It compares each new (positive or negative) example with the current 
hypothesis and uses the differences for the construction and update of  a list of candidates for 
specialization. 
LAIR uses a constructive induction method for creation of  the fact needed for 
specialization. It utilizes a set of horn-clauses as background theory. The background 
knowledge is applied to the candidate list to find the best fact to be added to the rule. 
Because of the insufficient background knowledge in the floorplanning domain we cannot 
use this construction method for our system. (COSIMA's alternative constructive 
induction strategy is explained in the next section.) 
Nevertheless a list of candidates can be used for specialization in our domain. The list is 
constructed and updated in a more distinctive way than in LAIR, which removes a candidate 
form the list, if it contradicts the current new single example. In COSIMA all facts are 
stored in the so-called specialization part that occurred in at least C % of the examples used 
for generalization or used during application of  a given rule 6. C is a user selected 
parameter. Realistic values for C are e.g. 50 or 30. A smaller value for C leads to a bigger 
specialization part. Each fact in the specialization part is marked with two numeric values: 

�9 The percentage of example descriptions for generalization that comprise the fact 

�9 The percentage of example descriptions the rule has been applied to successfully, i.e. 
without rejection, that comprise the fact 

If  a rule matches on a negative example the rule is too general and has to be specialized. 
Adding a literal to the left-hand side of  the rule that discriminates the example, this is 
achieved. In this way a most general specialization (MGS) of  the rule is created. In analogy 
to most specific generalizations (Haussler, 1989) there are many alternative most general 
specializations, so the selection of  the best or at least a good one is crucial. Our 
specialization strategy uses two different rules for the creation of  a MGS (Dietterich and 
Michalski, 1983), both utilizing the information in the specialization part as bias. 

a) The introducing exception specialization rule 
The negation of a fact is added to the left-hand side of  the rule that occurs in the 
negative example and in few (at least c %) of the positive ones. 

b) The adding condition specialization rule 
A fact is added to the left-hand side of  the rule that does not occur in the negative 
example but in most (close to 100%) of the positive ones. 

Both rules can lead to a discrimination of old examples that were classified as positive 
ones. This effect is intended, as the classification of examples is fuzzy in our domain. 
(There is limited knowledge about the analysis of floorplans, see Section 2.) Therefore, 
misclassified examples are a major reason for overgeneralizations. Nevertheless, the 
number of discriminated old examples must be kept small, to minimize the effect of the 
specialization. The specialization part provides the necessary information to meet this 

6 To make the construction of the list less sensitive to the presentation order of the examples, 
for the fist examples all possible candidate facts are included. Only after a number of examples 
have been used for generalization or application of the rule, the less frequently occuring facts are 
discharged. 
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requirement. Other incremental specializations strategies, like e.g. the one in ACT 
(Anderson, 1986), have a less elaborated discrimination mechanism. The discrimination is 
based only on the analysis of one positive and one negative example. The influence on the 
total set of old examples cannot be estimated. 
There are several criteria for the evaluation of the alternative specializations created with 
rule a) and b). The selection of the "best" literal to be added to the rule is based on the 
following information: 

�9 Number of  positive examples discriminated by the literal 
As has been mentioned above this number should be minimized to limit the effect of 
specialization 

�9 Predicate weight for the instance 
In our current implementation predicates with high weights are preferred, as they add 
significant information to the hypothesis 

�9 Statisticsaboutprioruseofthecorrespondingpredicatefordiscrimination 
Statistics represent the success of predicates during previous specialization steps. If a 
predicate has lead to a successful specialization several times, it is a good candidate for 
the current specialization step according to this heuristic criterion. 

�9 Number of  objects referenced in the rule before and after specialization 
The addition of a single literal to a hypothesis can increase the number of referenced 
objects. This is a significant modification of the hypothesis. Therefore, specialization 
steps that do not increase the number of objects are preferred in COSIMA. 

These four criteria provide basic information about the evaluation of the specializations. 
The way how they should be combined to gain a compound evaluation function depends 
strongly on the characteristics of the underlying domain. 

Besides the rules a) and b) that add a literal to the rule to be specialized COSIMA uses the 
following specialization rules that are the inverse operations to standard rules of 
generalization: descending-concept-hierarchy-tree, reducing-interval, turning-variable-into- 
constant, removing-alternative. A formal description of the corresponding generalization 
operators can be found in (Michalski, 1983). 
Each of these four rules specializes an argument of a fact already existing in the considered 
floorplanning rule. As the influence of these specializations on the total set of old 
examples cannot be estimated, the rules a) and b) are the preferred specialization operators 
in COSIMA. 

6 .  Three  Dif ferent  Ways  to Use Constructive Induct ion  

COSIMA's constructive induction strategy combines knowledge-based and syntactical 
construction of new descriptors. Knowledge-based approaches, e.g. Oxgate (Gunsch, 1991), 
use domain-dependent knowledge for the construction process. In contrary, syntactical 
approaches (Wirth and O'Rourke, 1991) are based on domain-independent biases limiting 
the space of predicates that can be constructed. 
In the following the three different uses for constructive induction in COSIMA are 
explained sequentially. 

Modification of Example and Rule Descriptions Before Matching 

One purpose of the modification (and the general intention of constructive induction) is to 
make the descriptions more distinctive, i.e. to make information explicit that is only 
implicitly represented in the descriptions. For this purpose COSIMA's background 
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knowledge provides several predefined construction operators. They create new predicates, 
being possibly useful for our domain, from existing "basic" ones. Examples of operators 
are e.g. the following two ones (Michalski 1983): 

�9 Counting the instances o f  a predicate that all have the same constant value at one 
argument position 
Example: Consider the following basic predicate: 
block_state(<block>, <state-value>). The possible values for <state-value> are 
placed and unplaced. The constructed predicate 
#placed_blocks(<number>) makes explicit the number of blocks with the state-value 
placed. 

�9 Selecting that instance o f  a predicate with the maximum numerical value at one 
argument position 
Example: The constructed predicate maximum_size(<block>) makes explicit that the 
object <block> is the biggest one. 

Each of the construction operators can create a diverse set of different predicates. For 
instance the maximum-operator can be applied to any predicate with at least one numerical 
argument type. Some of the operators depend on each other. For the creation of a 
maximum-predicate a counting-instances-predicate must be used. 
The constructed predicates that get a sufficient rating from the predicate evaluation function 
(see below) are included into the example and the considered rule description. It would not 
be feasible to add the predicate to the description language for all rules. This would blow 
the descriptions significantly. Instead, the effect of the construction is limited to the 
current rule. For different rules different constructed predicates can be relevant. 
The second type of modification for example and rule descriptions is the compaction. For 
this purpose intermediate concepts represented as horn-clauses are induced (Bergadano et al, 
1988). An intermediate concept represents a compound property occuring repeatedly in the 
set of examples. 
If  the body of a horn-clause (with two ore more literals) matches on an example the unified 
titerals in the example description are substituted with the clause head. (In the system 
DUCE (Muggleton 1987), this operation, called absorption if the horn-clause is predefined, 
was used for transformation of propositional descriptions.) Using intermetiate concepts the 
size of the description is decreased and high-level information about the example is 
extracted. The left-hand side of Figure 5 shows an example of an intermediate concept used 
in COSIMA. The right-hand side depicts a geometrical illustration of the concept "corner". 
A corner consists of three connected blocks that form an "L-shaped" structure. Using 
intermediate concepts of this kind, several blocks can be combined to substructures of the 
floorplan topology. 

corner(a,b,c) :- on_same_line(a,b,horizontal), 
on_same_line(a,c,vertical), 
directneighbour(a,b), 
directneighbonr(a,c), 
state connection(a,b,existing), 
state connection(a,c,existing) t  . b  I 

Figure 5: Intermediate concept representing the structure "comer" left-hand side) 
and the geometrical representation of a corner in a floorplan example (right-hand side) 

COSIMA uses rule-models (Kietz and Wrobel, 1991; Pazzani and Kibler, 1992) for 
syntactical construction of predicates representing intermediate concepts. The head of a 
successfully instanciated model forms a new predicate to be included into the considered 
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description. To limit the set of possible new predicates that can be constructed from a rule 
model, sorts are used constraining the instanciations of predicate variables and arguments. 
In Figure 6 the rule model is depicted that was used to create the intermediate concept for 
"comer". 

new(X,Y,Z) :- P(X,Y,horizontal) A Type (P) = IndirectNeighbourhood, 
P(X,Z,vertical), 
Q(X,Y) A Type (Q) = DirectNeighbourhood, 
Q(x,z), 
R(X,Y,existing) A Type (R) = Connection, 
R(X,Z,existing) 

Figure 6: Rule model in COSIMA. "new" stands for a predicate identifier to be created 
automatically during instanciation of the model. (Meaningful predicate names have to be 

inserted by the user.) The italic terms denote the sort restrictions. 

COSIMA's  two different construction methods can be combined.  A new predicate  
constructed from a predefined construction operator can be included into the body of  an 
intermediate concept. Besides that, intermediate concepts can be created hierarchically: 
More complex intermediate concepts are defined by use of existing ones. 
To make the creation of intermediate concepts less dependent on the existing rule models, 
C O S I M A  has a method for the creation of  new models based on past  successful  
instanciations of  existing ones. If  there are several instanciations of the same model, a new 
clause is created with a body consisting of the corresponding literals in all instanciations. 
A new rule model is abstracted from this clause. For a more detailed description of the 
constructive induction mechanisms see (Reipa, 1993). 

Evaluat ion of  the Constructed Predicates 

This is a crucial task for any constructive induction strategy. Typical ly ,  a f lexible 
construction mechanism results in a big number of irrelevant new predicates. COSIMA's  
evaluation function is based on the following criteria: 

�9 number of literals in the rule model used 

�9 number of instances of the new predicate in the two considered descriptions 

�9 degree of compaction achieved with the new predicate 

�9 past success of  the rule model 

From these criteria a heuristic numerical value is calculated for each new predicate. Only 
the predicates with a high rating are included into example and rule descriptions. 

Select ion A m o n g  Alternative  MSGs 

This is the second use for constructive induction in COSIMA. From structural description 
many different alternative most specific generalizations (MSGs) can be created. The weight 
of each MSG is the sum of the weights for the facts. If  there are several MSGs with the 
same highest rating, constructive induction is used to select the best one. 
If  applicable, COSIMA adds instances of constructed predicates to an MSG making it more 
specific in that way. A fact is added, if it is valid for the corresponding objects in all 
examples  7. This increases the weights for some MSGs and makes a selection possible. 

7 This condition already limits the number of accepted constructed predicates significantly. For 
this reason the threshold value for the acceptance of new predicates, that reduces this number 
further, is now lower than during the modification of descriptions (see above). 
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During this stage of the generalization process new facts are only added to the MSGs, no 
compaction takes place, 

Specialization of Rules 

If  the inductive specialization strategy mentioned above fails to select a discriminating fact, 
constructive induction is used as an alternative specialization strategy. A new fact is 
constructed that discriminates the negative example from the positive ones. 

COSIMA's constructive induction strategy is incremental. For the creation of a new 
predicate the two current descriptions (rule and example) are analyzed. When a new positive 
example becomes available and is generalized with the rule the utility of the new instances 
is checked. If they are not valid for the new example, they are dropped. 

7.  Adjustment of Parameter Weights 

Experts know what information is absolutely necessary for a certain operation in the 
considered domain. They can therefore divide the set of predicates into the two required 
subsets (important predicates and additional ones) and deliver possibly a partial ordering for 
each set. From this information initial predicate weights can be determined. A modification 
of these weights is performed by a statistical parameter adjustment mechanism. Analyzing 
the generalization and specialization steps regularly it evaluates the relevance of the 
different predicates for the learning process and adjusts the weights incrementally. 

8 .  Representation of F l o o r p l a n n i n g  K n o w l e d g e  in  C O S I M A  

Floorplanning may be divided into two steps: The topology planning which performs a 
rough, relative placement of the blocks, and the geometry planning which determines the 
exact floorplan geometry based on this topology. 
COSIMA incrementally acquires rules which create a floorplanning topology. 8 The 
topology is represented as a grid-graph (Watanabe, 1987), a graph with (square) nodes 
which are marked with positions on a two-dimensional grid. The nodes represent the 
floorplan blocks; grid-positions stand for the relative placement of the blocks. Two blocks 
are connected by an edge if there is a corresponding connection in the circuit description 
COSIMA gets as an input. Four rectangles represent the boundary of the floorplan. The 
upper left part of Figure 7 show a grid graph with some blocks that have already been 
placed. 
A logic-based description is not well suited for the representation and manipulation of 
structural and geometrical knowledge. For this reason we use a hybrid representation for 
COSIMA. The manipulation of the current floorplanning state is performed by a set of 
predefined floorplanning operators that operate on an object-oriented representation, 
implemented in the CommonLisp Object System CLOS. Each operator is implemented 
using quite a complex CommonLisp procedure. After each manipulation, the new state is 
translated into the predicate description which the learning component can work on. 

8 The geometry planning is more straight-forward and can be calculated by a conventional 
algorithm (Watanabe, 1987). 
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9.  Integration of the Learning System into a Floorplanning 
Tool 

The learning strategies described above are embedded in an interactive floorplanning system 
that assists the designer.  LEFT has a graphical  interface that shows the current 
floorplanning state and which is used by the designer to initiate the application of  an 
operator (see Figure 7). 
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Figure 7: User Interface of COSIMA. The upper right window shows the ordered list of blocks to 
be placed. The blocks are placed onto the positions of the grid shown in the upper left window. 
In this way the topology of the floorplan is designed. The lower window depicts performance 
statistics. The graph on the left-hand side shows the quality of the most recent floorplanning 
operations. The user can take back unfavorable operations. The bar on the right hand side 
informs about the state of current matching and generalization process. 

The system operates as a learning apprentice (Mitchell et al, 1985). The user can select 
from the list of  possible operations an appropriate floorplanning operator for the next 
design step. The performance component executes the operator. This leads to a new 
floorplanning state. The old state description and the operator form a positive example. It 
is used to construct a new rule or to generalize an existing one. The learned rules are used 
in the following way: To make the selection of a well-suited operator easier, each time a 
rule matches on the current state the execution of  the operator in the right-hand side is 
proposed to the user. If  the user rejects the proposed operator the current state forms a 
negative example for that rule and it is specialized accordingly. 
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10. Experimental Results 

We are currently evaluating the quality and capability of COSIMA's different strategies. 
This includes for instance the selection of appropriate parameters for the different 
evaluation functions. 
The effect of the multi-staged generalization algorithm on the speed of matching and 
generalization has already been evaluated and is illustrated in Figure 8. The algorithm is 
compared to another version that is limited to a single stage, i.e. all predicates are 
considered during one single generalization stage. Both versions used the same predicate 
weights. The results show that the multi-staged generalization algorithm can significantly 
improve the run time for inductive generalization taken from real-world design examples. 
(The single-staged generalization is only quicker for very small examples.) 
On top of which, the tests show that the multi-staged generalization improves the quality 
of the gained learning result. It selects the appropriate MSGs for several test cases, which 
could not be generalized correctly by the single-staged generalization algorithm. 

CPU TIME 

3000 
SINGLE-STAGED 

2000 

1 O00 

MULTI-STAGED 

, , I .  . l _  , I l l  , i - . 

z lo 1~ 
COMPLEXITY OF THE EXAMPLES (NUMBER OF OBJECTS) 

Figure 8: Comparison of Run-Times for the 
Single- and the Multi-Staged Generalization 

There are some preliminary results about the effects of the other machine learning 
strategies, based on a limited number of tests we have already performed9r Figure 9 depicts 
the results of one test series. In each of the floorplan examples used for this series at least 
one corner occurred (see Figure 5 for a description of the intermediate concept corner). The 
example size varied from 250 to 520 facts. 
We have investigated how the description length of a rule created from these examples 
changed during multi-staged generalization with and without constructive induction. It is 
the typical case for realistic floorplanning examples that only a smaller part of the example 
description is significant for the concept to be learned. Therefore, the dropping condition 
generalization rule is the most important one. 

9 Therefore, at the moment our interpretation of the experimental results is somewhat fuzzy. 
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Figure 9: Comparison of rule sizes for multi-staged generalization without constructive 
induction (upper line) and with constructive induction (lower line) 

The combination of  constructive induction with multi-staged generalization had several 
effects. From the beginning it decreased the rule size, and it lead to an earlier convergence 
of  the number of facts. This combination of the two machine learning strategies does also 
influence the quality oft the learned rules, as has been confirmed by several other series of 
tests, too. It decreases the error rate of the rules significantly. 
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Figure 10: Comparison of number of facts for the specialization part and the condition part of 
a rule that is generalized several times 

Another series of  tests analyzed the development of the specialization part during a number 
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of successive generalizations (see Figure 10). In this series the size of  the specialization 
part was always somewhat larger than the size of  the condition part, but the specialization 
part did not grow significantly during generalization. There is no combinatorial explosion 
of  the specialization part. This is an important difference to the simple specialization 
strategy of  the system LEFT (Herrmann and Beckmann, 1994) that blew up the size of the 
specialization part after learning from a few negative examples. 
Another aspect that has still to be analyzed and is relevant for all incremental systems is 
the influence of the example order on the learning results. 

11. Conc lus ion  

The implemented system COSIMA combines different machine learning strategies. It 
demonstrates how selective inductive generalization, inductive specialization, constructive 
induction and statistical adjustment of  parameter weights can be integrated into a multi- 
strategy machine learning system that acquires knowledge about a real-world problem - 
floorplanning for integrated circuits. 
Another important aspect of machine learning applications is the integration of  a learning 
system into the daily work of the user. The organization of  the user interaction has a great 
impact on the acceptance for the software tool. Considering this aspect, COSIMA has been 
organized as a learning apprentice system that is integrated into an interactive floor- 
planning tool. COSIMA does not require a teaching mode. It learns from examples that the 
user generates during his/her normal work with the floorplanning tool. 

Acknowledgements: We would like to thank Siegfried Bell for useful comments on an 
earlier version of  this paper. 
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