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Abs t rac t .  This paper presents a novel idea to the problem of learning 
concept descriptions from examples. Whereas most existing approaches 
rely on a large number of classified examples, the approach presented 
in the paper is aimed at being applicable when only a few examples 
are classified as positive (and negative) instances of a concept. The ap- 
proach tries to take advantage of the information which can be induced 
from descriptions of unclassified objects using a conceptual clustering 
algorithm. The system COLA is described and results of applying COLA 
in two real-world domains are presented. 

1 I n t r o d u c t i o n  

The learning task considered in "learning-from-examples" is to induce a descrip- 
tion of a set of objects which are classified by a user or a system as instances 
(and non-instances) of a general meaningful class, i.e., a concept. The  concept 
description is supposed to help to determine other instances (and non-instances) 
of the concept. Some examples of well known systems which are able to learn 
from examples are: AQ [Michalski 73], ID3 [Quinlan 83], FOIL [Quinlan 86], and 
RDT [Kietz/Wrobel 92]. 

Although previous research on learning-from-examples has lead to impressive 
results, the existing approaches are not able to explain an impor tant  aspect of 
human concept learning - namely the ability to learn new concepts from very 
few examples (see [Carey 85]). We are not interested here in constructing a cog- 
nitive model of human learning, but look for some kind of knowledge and /or  
generalization method which may help us t o  learn from few examples. However, 
the problem of learning from a small set of examples is also of great practical 
relevance. In some application domains, a classification of large number of ex- 
amples is not available or the acquisistion of the data  is too expensive. Also 
autonomous agents may sometimes be required to improve their behavior from 
very limited experience. 

In the following, it is argued that  the use of additional background knowledge 
(which is often available, but not used in other approaches) enables programs to 
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learn characteristic concept descriptions from small sets of positive and negative 
examples only. The approach described in this paper tries to take advantage of 
the information contained in descriptions of unclassified objects (as a kind of 
additional background knowledge) using a conceptual-clustering algorithm. 

In the next section, the consequences of the number of examples available 
for concept learning on the quality of learning results is analyzed. In the third 
section of the paper, the general idea of the new approach based on the use of a 
conceptual-clustering algorithm is described. Section 4 describes ,an implemen- 
tation of the new technique in the system COLA. Experimental results obtained 
by applying COLA to different real-world data sets are presented in section 5. 
We finish with a discussion of related work (section 6) and some final remarks. 

2 Learning from few examples  

In the literature two kinds of generalized descriptions are distinguished: charac- 
teristic descriptions and discriminanl descriptions [Dietterich/Michalski 81]. A 
characteristic description of a class of objects describes the sufficient conditions 
for class membership and enables a system to identify all instances of the class 
and reject all instances of other (disjoint) classes. A discriminant description 
can be applied to discriminate between instances of one class from instances of 
a pre-defined set of other classes. As a discriminant description needs only to 
specify properties relevant in the context of a fixed set of other classes, these 
descriptions are usually more general. 

These two kinds of descriptions can be related to two kinds of generalization 
algorithms: algorithms constructing most-specific generalizations and algorithms 
constructing most-general generalizalions from a given set of positive and nega- 
tive examples. A most-general generalization algorithm generalizes the descrip- 
tions of the positive examples to the most general description in the hypotheses 
space such that (only) the negative examples are excluded. 1 A most-specific 
generalization algorithm generalizes the descriptions of the positive examples 
to the most-specific description in the hypothesis space covering just all posi- 
tive examples and excluding all negative examples. Most-general generalizations 
are built by programs like Aq [Michalski 73], GOLEM [Muggleton/Feng 90] 2, 
RDT [Kietz/Wrobel 92], and FOIL [Quinlan 86]. Examples of programs, which 
construct most-specific generalizations are ARCH [Winston 75] and OQUST 
[Vrain 90]. A most-specific generalization algorithm tends to produce charac- 
teristic descriptions. A most-general generalization algorithm tends to produce 
discriminant descriptions. 

Whether an intended learning goal can be achieved heavily depends on the 
number of available learning examples. If the number of examples is large, both 
kinds of generalizations are likely to deliver descriptions which are complete and 

1 It may also be the case that an algorithm searches for a borderline "ill the middle" 
between positive and negative examples. 

2 GOLEM produces first a most specific generalization, which is reduced to a most 
general generalization in a later step. 
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correct not only on the training set, but on the future test sets as well. If only a 
small number of examples is available, a most-specific generalization is still likely 
to be correct, but will probably be incomplete. All objects predicted as instances 
of the goal concept are instances, but several instances will not be predicted. A 
most-general generalization from few examples on the other hand, is still likely 
to be complete, but will tend to be incorrect. 

The consequence of this analysis is that many current learning programs are 
able to learn from relatively few examples, but the classification accuracy of the 
concept description is likely to be bad if it is used as a characteristic description. 
Current inductive learning programs cannot be improved simply by changing 
their generalization algorithm. What we can do is extend the learning input and 
improve the algorithms so that they can make use of it. An approach following 
this direction has already been developed with the system Iou [Mooney 93] 
which combines empirical and explanation-based learning. This system requires 
an overly-general domain theory as additional background knowledge in order to 
be able to learn more accurate concepts from fewer examples than other learning 
systems (section 6). 

3 C o n c e p t u a l - c l u s t e r i n g - b a s e d  g e n e r a l i z a t i o n  

For concept learning problems where only a relatively small number of positive 
(and negative) examples is known, but a large set of descriptions of unclassified 
objects is available, we propose a generalization approach called "conceptual- 
clustering-based-generalization" (CCG) incorporating a conceptual clustering 
step. 

3.1 C o n c e p t u a l  C lus t e r ing  

The learning task of a conceptual clustering algorithm can be described as fol- 
lows. From a given set of descriptions of (unclassified) objects of a domain, a 
conceptual clustering algorithm is supposed to aggregate the objects into an or- 
ganized set of meaningful classes and to find (intensional) descriptions of these 
classes. A class is regarded as meaningful if the organization of knowledge be- 
comes more effective and/or more efficient, e.g., enables a system to infer missing 
information for partially described objects. Some conceptual clustering programs 
(e.g., CLUSTER [Michalski/Stepp 83] or COBWEB [Fisher 87]) construct a hierar- 
chy of classes, other programs (e.g., UNIMEM [Lebowitz 87], KBG [Bisson 92b]) 
construct a directed acyclic graph of classes, which means that the classes are 
not necessarily disjoint. 

An example of a directed-acyclic graph of classes constructed by the concep- 
tual clustering system KBG is shown in figure 1 below. It is a sub-graph of a 
graph constructed from descriptions of unclassified diseased soybean plants (see 
section 5), i.e., without the information about the correct diagnoses. The leaves 
of the graph show the identifier numbers of the different plant disease cases. 
The nodes are the classes formed by KBG labelled with identifier numbers of 
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the classes. The soybean plant numbered 5 is an instance of class 39, class 38, 
and class 44. Such non-disjoint classes can be interpreted as capturing different 
views/similarities on a set of objects. 

3.2 A R o u g h  Descr ip t ion  o f  C C G  

Following this rough characterization of conceptual clustering, we can now de- 
scribe the basic idea behind the CCG approach. We assume that the instances of 
the goal concept are similar to each other and that this similarity can be uncov- 
ered in the set of unclassified instances. Thus, we use the set of descriptions of 
unclassified instances to find a set of classes which capture different similarities 
among the instances. This is achieved using a conceptual clustering algorithm. 
The (small) set of classified examples is then used to identify one of the classes 
produced by the clustering algorithm as the class which captures the similarity 
of instances of the goal concept. The selection of the class is done after compar- 
ing the extensions of all classes with the positive and negative examples. The 
intensional description of the selected class (produced by the clustering algo- 
rithm) is finally proposed as a description of the goal concept. All other classes 
and class descriptions produced by the clustering system are not incorporated 
into the knowledge base of t~e overall system. 

The conceptual clustering step can been seen as building a space of possible 
generalizations. The second step of selecting one class using the examples can 
been understood as search in the hierarchy (or graph) of generalizations. 

The induced concept description covers the positive examples and those un- 
classified instances used in the clustering step, which are 'similar' to the positive 
examples. It excludes all negative examples and the unclassified instances, which 
are not 'similar' to the positive examples. Thus, the induced description of the 
goal concept is neither a most-specific generalization nor a most-general gener- 
alization of the sparse set of examples. The description covers more instances 
than the most-specific generalization, but less instances than the most-general 
generalization. In addition, the description produced by the CCG method tends 
to be intensionally more specific (e.g., the description contains more premises) 
than a description built by a most general generalization, because the class de- 
scriptions built by the clustering algorithm usually need to discriminate between 
a large number of classes. Therefore, we say that the CCG approach delivers a 
characteristic description of instances of the goal concept. 

Before we discuss the details let us state the learning problem this paper 
deals with more clearly: 

Given:  

- B: background knowledge in the form of descriptions of objects in a domain, 
- C: the name of a goal concept which is not used in the description of the 

objects in the background knowledge B, but would be helpful in order to 
complete the descriptions, and 
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- E: a (small) set of positive (and negative) examples of the instances of the 
concept C which are already partially described with the background knowl- 
edge B. 

F i n d :  

- It: an intensional characteristic concept description of the concept C, which 
covers all (or at least a large number of) the positive examples as well as 
similar objects described in B and excludes all (or at least most of) the 
negative examples in E as well as similar objects described in B. 

3.3 Deta i l s  o f  t he  C C G  A p p r o a c h  

In the above rough description of the CCG approach, several important details 
are missing. For example, how should a learning system deal with the case that 
more than one class satisfies the requirement that all positive examples and 
no negative example is covered? Suppose case 15 (see figure 1) is described as 
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Fig. 1. Classes of diseased soybean plants 

positive example and case 3 is described as negative example. The requirement is 
satisfied by class 25, class 55, and class 66. The first step to deal with this problem 
is to identify two extreme cases of possible generalizations: the generalization 
which delivers the most specific CCG and the generalization which delivers the 
most general CCG. 

The most specific CCG of examples may be computed by climbing the graph 
from a leaf with a positive example up to the node in the graph covering all 
other positive examples, the least number of total instances, and no negative 
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examples. This type of generalization is especially appropiate if no negative 
examples are available to prevent over-generalizations. The most general CCG 
results from climbing the graph to the top-most class covering all other positive 
examples, the largest number of total instances, and no negative examples. In 
the last example, the definition of class 25 would be the most specific CCG and 
the description of class 66 would be the most general CCG. 

It may be interesting to know that class 67 (see figure 1) covers all instances 
of the soybean disease Diaporthe Stem Canker; furthermore, class 66 covers 
all soybean plants suffering from Charcoal Rot. This clustering result means 
that conceptual-clustering-based generalization is able to deliver 100% correct 
concept descriptions of both soybean diseases from one example per disease only 
(if the positive examples of one disease is used as negative example for the other 
class). For example, if case 1 is given as positive example of Diaporthe Stem 
Canker and case 14 is given as positive example of Charcoal Rot, the most 
general CCGs of the examples would be the descriptions of class 67 and class 
66. On the other hand, the most specific CCGs are class 17 and class 66. In this 
case, the generalization of case 1 is correct, but extremely incomplete. 

The type of generalization a system should perform depends on the intended 
use of the description and the availability of negative examples. In this paper we 
assume that the user specifies which kind of generalization the system should 
perform and discuss in section 5 the classification accuracy of both kinds of 
generalizations in different domains. 

If a clustering algorithm is used which delivers non-disjoint classes, there is 
still the problem that more than one class fulfills the above requirements. If it is 
acceptable that a learning system sometimes selects the wrong class, e.g., because 
the system contains a knowledge revision component able to repair faults in the 
knowledge base, the system might choose one of the competing class descriptions 
randomly. Otherwise, the selection should be made interactively with the user 
of the system. 

Up to now we assumed that the conceptual clustering result contains a class 
covering all positive examples of the target concept. This need not always be 
the case. If the number of descriptions of unclassified objects is too small, if the 
described objects represent a non-representative subset of objects in the domain, 
if the data are noisy, or if the object descriptions are not well suited for the in- 
tended use of the descriptions, then a system may run into difficulties. Thus, it 
can not be assumed, that a class can be found which covers all positive and/or 
excludes all negative examples. In order to overcome this problem, we propose 
to use an evaluation function which computes a quality measure for the classes 
built by the clustering algorithm and enables the system to select one promising 
class description. The system COLA (see section 4) uses a evaluation function 
derived from a function to determine the accuracy of concept descriptions and 
computes a high quality measure for classes which cover a large number of posi- 
tive examples and exclude a large number of negative examples. If two (or more) 
classes have the same quality, one is selected randomly. 

However, the use of an evaluation functions is of no help if a target concept 
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can not be described by a conjunctive description. This poses a severe prob- 
lem, because conceptual clustering systems typically generate only conjunctive 
class descriptions and the CCG approach described so far is only able to output 
concept descriptions built by the conceptual clustering algorithm. Although it 
has been argued that conjunctive descriptions are one of the most common de- 
scriptive forms used by humans [Michalski/Stepp 83], it is clear that disjunctive 
concepts can also be relevant. An obvious solution to this problem is to select a 
set of classes, which cover together all positive and exclude all negative examples, 
and to connect the corresponding class descriptions disjunctively. 

In this section, the general idea of the CCG approach generalization has been 
described. The method is independent from a specific choice of a representation 
formalism and is also independent from a particular conceptual-clustering algo- 
rithm. The next section describes the details of an implemention of the method 
in a system called COLA. 

4 COLA: T h e  System 

COLA is an inductive learning tool in the knowledge acquisition and machine 
learning system MOBAL [Morik et al. 93] and makes use of MOBAL's knowledge 
representation environment. This means that COLA uses an extended function- 
free Horn-clause representation (paraconsistent with negation) [Morik et al. 93, 
p. 27 J. 
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Fig. 2. Various block world objects 

The attributes of objects and relations among objects in the domain are 
described by facts. A set of facts related to one building in a blocks world domain 
(see figure 2) is shown as an example in table 1. 
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block_world_object (arch2) 
part_of (arch2_brick I, arch2) 
part_of (arch2_brick2, arch2) 
part_of (arch2_wedge, arch2) 
brick (arch2_brick I) 
brick (arch2_brick2) 
wedge (arch2_wedge) 
left_of (arch2_brick2, arch2_brick I) 
not (touches (arch2_brick2, arch2.brick I ) ) 
supports (arch2_brick I, arch2_wedge) 
supports (arch2_brick2, arch2_uedge) 
on_table (arch2_brickl) 
on_table (arch2_brick2) ~ 
larger_than (towerl, arch2) 

Table 1. Facts describing a block world object shown in figure 2 

Before the CCG learning algorithm of COLA and the conceptual clustering 
program used in COLA is described, let us start with an example of a learning 
result achieved by COLA in the blocks world domain. As background knowledge, 
facts (like those shown in table 1) about all 'buildings' shown in figure 2 were 
added to the knowledge base. In addition, the following facts of an instance and 
a non-instance of the concept is_an_arch were added as positive and negative 
example to the knowledge base. 

is_an_arch (arch2) 
not (is_an_arch (tower I ) ) 

The description for the concept is_a~_.arch induced by COLA from this infor- 
mation is shown below. The description covers both arches and excludes Ml 
other buildings shown in figure 2. Note that only one positive and one negative 
example were necessary to build the description. 

on_table(X4) ~ part_of(Xl,X2) ~ ne(X4,Xl) 
brick(X4) ~ supports(X4,Xl) ~ supports(X3,Xl) 
ne(X3,X4) ~ not(touches(X3,X4)) ~ on_table(X3) 

-->is_an_arch (X2) 

4.1 KBG-2 

COLA uses the conceptual clustering program KBG-2 [Bisson 92b] to perform 
the conceptual clustering step. The advantage of KBG-2 compared to systems 
like UNIMEM or COBWEB lies in the fact that KBG'S knowledge representation 
language is based on first-order logic (without negation and function symbols) 
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with some extensions, e.g., for numerical values. Based on this, COLA is able to 
learn from relational descriptions of objects and to deal with numerical data. 

KSG requires as input a case-oriented representation, i.e., a set of object 
descriptions each in form of a conjunct of ground literals and, optionally, a set 
of rules as domain theory. The output of KBG consists of a graph of classes and 
a system of rules enables to predict the instances of the classes. 

The conceptual clustering of KSG can be divided into three successive steps. 
In the first step, the description of the examples are saturated using a domain 
theory which can be specified optionally. COLA does not need to pass a do- 
main theory to KBG, since (forward-inference) saturation with available rules is 
performed in MOBAL. In the second learning step, a set of generalization and 
clustering operators are applied iteratively in a bottom-up fashion guided by sim- 
ilarity measures in order to build a graph of generalizations. The last step aims 
at building a hierarchical system of rules from the generalization graph. In this 
step, KBG drops all premises in the class descriptions which are not neccessary 
to discriminate between the instances of different classes. For a detailed descrip- 
tion of the learning step see [Bisson 92a, Bisson 92b]; the rule construction step 
is described in [Bisson 91]. 

4.2 Construct ion of  the KBG input  

In research on conceptual clustering it is usually assumed that the descriptions 
of the objects for clustering is given as a conjunction of attribute-value pairs. 
This assumption makes sense for a lot of applications, because such data is often 
available from existing databases. The assumption poses difficulties in knowledge 
based systems using a more powerful representation based on predicate logic, 
especially if the representation is fact-oriented. If, e.g., a domain is described by 
a set of facts and rules describing the attributes and relations between several 
kinds of objects, there is no naturally given input for a clustering algorithm. An 
obvious answer to this problem is: Collect all facts related to an object to be 
clustered and make a big conjunction. Unfortunately, this is not a very fruitful 
idea using a well elaborated knowledge base, because in the worst case it may 
turn out that each object is related somehow to all other object in the domain. 
So, each conjunction would contain all facts in the knowledge base. 

The system COLA uses currently a language restriction to deal with this 
problem and to avoid a overly large search space. Using this language restriction 
COLA is able to learn 1-1 (non)determinate clauses (see [Muggleton/Feng 90]) 
with conclusions described by one-place predicates. As the restriction is not 
relevant for the experiments which are described in this paper, we will not go 
into details of the transformation process here. 

4.3 Select ion of  a class description in COLA 

All class descriptions formed by KBG are translated into rules of the MOBAL 
representation. This translation includes the transformation of the case-oriented 
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representation of the clustering program back into the fact-oriented representa- 
tion. These resulting rules are applied to all facts stored in knowledge base in 
order to compute the extension of all classes formed by KBG. 

In the next step, COLA searches for disjunctive combinations of the classes 
constructed by KB~. The maximum number of classes which are combined dis- 
junctively can be specified by the user. As default COLA connects up to 4 class 
descriptions disjunctively. Only those classes covering at least one positive ex- 
ample and no negative example are taken into account in this step. From these 
classes COLA creates disjunctive class descriptions and adds them to the class 
descriptions formed by KBG. In order to avoid a too large search space and to 
promote the creation of meaningful classes COLA combines only classes whose 
extensions do not intersect. Furthermore, it is required that the number of cov- 
ered positive examples is increased by the combination. 

In the next step, the following evaluation function is applied to all class 
descriptions stored in the knowledge base. 

ClassQuaiity(NumCovPos,NumCovNeg,NumPosE,NumNegE) := 
(NumCovPos + NumNegE - NumCovNeg) / (NumPosE 4- NumNegE) 

where: 
NumCovPos is the number of covered positive examples 
NumCovNeg is the number of covered negative examples 
NumPosE is the total number of positive examples 
NumNegE is the total number of positive examples 

Then, COLA selects the class with the best evaluation. If two or more classes 
are assigne~l the same quality, COLA selects the class covering the least number 
of instances (classified and unclassfied objects) if the system is searching for 
a most specific generalization. If the system is searching for the most general 
generalization, the system chooses the class covering more instances. If the same 
number of instances is covered, COLA selects the class whose class description 
contains the least number of disjuncts. 

The selected class description is used to build the final concept description by 
renaming the conclusion predicate, e.g., a conclusion like instance_oLclassl3(X) 
is changed into is_an_arch(X). This description is added to the knowledge base 
(while all class descriptions are deleted) and the concept description becomes 
available to the overall system as well as to following learning processes. 

5 Experimental  Results 

COLA has been applied in several real-world domains in order to test if and under 
which circumstances the CCG approach improves upon existing methods. In the 
following we report only about experiments conducted in domains which can also 
be represented using an attribute-value representation. This has the advantage 
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that the results can also be compared with results achieved by learning programs 
not able to learn in relational domains (e.g., C4.5 and IBL). 3 

5.1 Test  D o m a i n s  

We present the results of experiments done in two well-known domains which 
represent extreme cases: the soybean domain with a highly regular data set and 
the primary tumor domain with a data set known to be relatively incomplete, 
i.e., not sufficient to induce high quality rules even if a large number of exam- 
ples is supplied to a learning program. For example, C4.5 and IBL achieve an 
accuracy between 33%-38% using 275 examples if they are applied to learn 22 
class descriptions [Aha et al. 91]. 

The soybean domain data set [Stepp 84] contains descriptions of 307 diseased 
soybean plants. Each plant is described by 35 attributes and suffers from one 
of 19 soybean plant diseases present in the data set. The learning task in this 
domain was to induce the description of four soybean diseases: Diaphorte Stem 
Canker (with 10 instances in the data set), Charcoal Rot (10 instances), Rhi- 
zoctonia Root Rot (10 instances), and Phytophthora Rot (40 instances). The 18 
boolean attributes in the data set and the diagnoses are described in MOBAL 
using a one-place predicate. All other nominal attributes are represented with a 
two-place predicate. If the attribute value is missing in the original data set, a 
corresponding fact is not stored in the knowledge base of MOBAL. 

This primary tumor domain data set 4 describes 339 tumor cases. Each case 
is described by 17 attributes and is assigned to one of 22 possible locations of 
primary tumor. For our experiments we selected the following four locations 
covering different numbers of instances as goal concepts: lung (84 instances), 
head/neck (20 instances), esophasus (9 instances), and breast (24 instances). 
The data set contains 14 boolean attributes and 3 nominal attributes which are 
described in the knowledge base using one-place and two-place predicates. 

5.2 Learning Programs 

In order to be able to make general statements about how the apprach imple- 
mented in COLA improves upon existing methods it was necessary to apply also 
other learning programs to the same learning data. We chose the learning pro- 
gram FOIL-6 [Quinlan 86] as a representative of systems which produce most 
general generalizations. As a representative of systems performing most specific 
generalizations we applied a program using the well-known least general gener- 
alization rule of Plotkin [71] to the positive examples (without considering the 
negative examples). 

Note that FOIL-6 and the LGG program were no expected to produce learn- 
ing results which show the best classification accuracy of all applicable learning 

3 The learning data stem from the UCI Machine Learning data repository. 
4 The data set was collected by M. Zwitter and M. Soklic at the Ljubljana University 

Medical Centre in Slovenia. 
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programs of their class in both test domains and under all test conditions con- 
sidered in the experiments. Therefore, we were not so much interested in the 
absolute values of the classification accuracy of their learning results, but the 
general effect caused by the occurrence of instances of non-goal concepts in the 
test set. 

5.3 Test M e t h o d  

The learning programs were applied to induce descriptions of the four goal con- 
cepts in both domains. In each test run they were supplied with a small number 
N of randomly selected descriptions of instances of each goal concept including 
the correct diagnoses. All programs were supplied with the same (MOBAL-) rep- 
resentation of the data. FOIL-6 and COLA used the positive examples of one class 
as negative examples for the other goal concepts. So, COLA and FOIL-6 used N 
positive examples and N.3 negative examples to induce a concept description. As 
additional background, knowledge COLA was supplied with a varying number M 
of randomly selected descriptions of instances of goal (and sometimes non-goal) 
concepts in the domain without information about the correct diagnoses. 

The accuracy of the learning result was tested using the set of descriptions of 
instances not given as examples. The concept descriptions induced by a program 
in one trial were tested one after another. The first concept description was 
applied to all test instances, the second was applied to all instances not classified 
as instances of the first concept and so forth. The classification accuracy results 
discussed below are averaged over 20 to 30 trials. 

In a first set of experiments described in the next section we used the learning 
programs to induce descriptions of the goal concepts which were then applied to 
classify the remaining unseen instances of the goal concepts. In another set of 
experiments (section 5.5) we evaluated the classification accuracy of the induced 
concept descriptions applied to the descriptions of instances of non-goal concepts 
as well as the remaining unseen instances of the goal concepts. 

5.4 Test  D a t a  Set Descr ibes  Ins tances  of  Goal  Concep ts  

The kind of experiments described in this section is similar to the experiments 
described in other papers in the field of machine learning except that the number 
of examples supplied to the learning programs is much smaller than usually. 

As described above, COLA can be parameterized to output the most general 
CCG or the most specific CCG. We let COLA build both kinds of generalizations 
from different numbers N (between 1 and 10) of examples per goal concept and 
varied the number of descriptions of unclassified instances (of the goal concepts) 
which were supplied as background knowledge. The goal concepts in the soybean 
data set cover altogether 70 instances. So, if M is set to 70, all descriptions of 
instances of all goal concepts are used in the conceptual clustering step. If M 
is set to 0, the conceptual clustering graph is built only from the N*4 example 
descriptions. The goal concepts in the primary tumor data set cover altogether 



115 

137 instances. Therefore, the maximum number of unclassified descriptions in 
the backgroud knowledge was 137. 

The following hypotheses were tested: 

H1 The classification accuracy of the learning result increases with the number 
of examples N per goal concept. At some point, the number of examples 
is sufficient to select the best class descriptions in the conceptual clustering 
graph. If this point is reached, the classification accuracy can not be improved 
any more using more examples. 

H2 The classification accuracy of the learning result increases with the number 
of descriptions of unclassified instances. 

H3 The classification accuracy of a most general CCG is better than the accu- 
racy of the most specific CCG. The most specific CCG covers only instances 
very similar to the examples. Therefore, a large number of instances will not 
be predicted as instance of one of the goal concepts. As all cases described 
in the test data sets are instances of the goal concept, a most specific CCG 
may be correct, but tends to be very incomplete. The most general CCG 
may be correct and tends to be complete. 

H4 At least in the highly regular soybean data set, COLA will output concept 
descriptions with a better classification accuracy than FOIL-6 and the LGG 
program. 
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The experimental results confirming these hypotheses to a large degree are 
shown in figure 3 and figure 4. Hypothesis H1 is only partially confirmed by the 
learning curves, because only two curves clearly show that the accuracy remains 
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Fig. 4. Test Results in the Primary Tumor Domain without Instances of Non-Goal 
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constant after a certain number of examples per class. Hypothesis H2 seems to 
be correct, but other experiments have shown that the classification accuracy 
of most specific CCGs can become better if less descriptions of unclassified in- 
stances are supplied as background knowledge. This can be explained by the fact 
that a larger number of descriptions of unclassified instances results in a concep- 
tual clustering graph with more intermediate classes. Although this graph will 
contain a class covering all instances of a concept, the probability that COLA 
selects a more specific class increases. The hypotheses H3 and H4 are confirmed 
by the test results in both domains. As expected, COLA performs better in the 
soybean data set, but in the primary tumor data set FOIL-6 is the winner. 

The conclusion which can be drawn from this first set of experiments is that 
existing methods should be preferred over the method described in this paper if 
it is known that the learning result will be applied only to classify instances of 
goal concepts, because usually it is unknown that a domain is highly regular (as 
is the case with the soybean domain, where COLA performs much better). 

5.5 Test  D a t a  Se t  D e s c r i b e s  Ins tances  of  Goal  a n d  Non-Goa l  
Concep t s  

In the second set of experiments the concept descriptions built by the learning 
programs were applied to all descriptions of instances of the goal concepts not 
supplied as examples and all descriptions of instances of non-goal concepts. 

Following hypotheses were tested: 

H5 The classification accuracy of a most specific CCG is better than the accu- 
racy of the most general CCG, because there are a large number of instances 
of non-goal concepts and a most general CCG can cover also instances of 
non-goal concepts. 
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H6 The classification accuracy of a most specific CCG is better than a descrip- 
tion built by a most general generalization algorithm, because the latter will 
contain only descriptors necessary to discriminate between the instances of 
the goal concepts and, thus, tends to cover instances of non-goal concepts. 

t t7  The classification accuracy of a most specific CCG is better than a de- 
scription built by a most specific generalization algorithm, because the most 
specific generalization will exclude a large number of instances of the goM 
concepts. 
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Fig. 5. Test Results in the Soybean domain with Instances of Non-Goai Concepts 

Also these hypotheses were confirmed to a large degree (figure 5 and figure 6). 
Hypothesis 5 is confirmed by experiments in both domains. The classification 
accuracy of the descriptions built by the most specific CCG in the primary tu- 
mor domain (figure 6) is about 30% better than the classification accuracy of 
the descriptions produced by the most general CCG. A similar result could be 
observed in the soybean domain. In addition, the experiments have shown that 
the classification accuracy tends to be better, if the conceptual clustering algo- 
rithm is supplied not only with descriptions of (unclassified) instances of goal 
concepts but also with descriptions of instances of non-goal concepts. In addi- 
tion, the classification accuracy of COLA decreases with an increasing number of 
examples, if only descriptions of non-goal concepts are available in the concep- 
tual clustering step. This can be explained by the fact that KBG drops premises 
not necessary to discriminate between the instances of different classes. 

As expected, the classification accuracy of descriptions produced by COLA 
is significantly better than the results produced by FOIL-6. In contrast to the 
experiments reported in the last section, the accuracy of the concept description 
built by FOIL-6 becomes not better with an increasing number of examples. 
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cepts 

Thus, hypothesis H6 is confirmed by the experiments. 

The next hypothesis H7 was confirmed by the experiments in the primary 
tumor domain, but in the soybean domain, the LGG program performed better 
than COLA. As the most specific generMization excludes all instances of non-goal 
concepts the classification accuracy starts with 78% (1 example), all instances (of 
goal and non-goal concepts) were predicted as non-instances of the goal-concept. 
In addition, the LLG program is able to take advantage of the regularity in this 
domain. As the LGG program only constructs conjunctive concept description, 
the number of correct predicted instances increases with an increasing number 
of examples (without misclassification of non-goal concept instances). Note that 
with a decreasing number of descriptions of instances of non-goal concepts in test 
data set, the classification accuracy of the LLG program will decrease (while the 
accuracy of the FOIL-6 results will become better). In the primary tumor domain, 
the classification accuracy of descriptions built by the LGG program decreased 
with an increasing number of examples. 

The conclusion which can be drawn from the second set of experiments is that 
the CCG approach should be prefered over existing methods, if it is known that 
the learning result will also be applied to descriptions of non-goal concepts. It is 
not reasonable to prefer a program which produces most specific generalizations, 
because usually it is not known that a domain is highly regular. Furthermore, 
it might be the case that a more sophisticated most specific generalization al- 
gorithm (e.g., able to built disjunctive concept descriptions) delivers concept 
description with a lower classification accuracy. 
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6 Related  work 

While there are no other approaches to learning-from-examples trying to use 
the information contained in unclassified examples, there are several other ap- 
proaches to concept formation related to the work described in this paper. First 
of all, one has to mention the experiments made by Fisher using his concep- 
tual clustering system COBWEB to learn from examples [Fisher 87, pp. 161f[]. In 
contrast to the approach described above, the information about concept mem- 
bership was included as additional attribute-value pair in the cases presented 
to COBWEB. After incorporating every fifth instance, the remaining cases were 
classified and COBWEB predicted the value of the "goal attribute". In one experi- 
ment in the soybean domain, it turned out that a 100% correct diagnosis of cases, 
which were not used in the training phase, requires between 7 and 25 examples. 
Although COLA performs a little bit better, the result is still impressive. 

Such a use of COBWEB is closely related to instance-based learning (IBL) 
[Aha et al. 91], although the underlying representation of concepts is very differ- 
ent. In both systems, prediction is performed by using the concept membership 
information of the most similar classified instance. Therefore, IBL and COBWEB 
can be expected to show a similar classification accuracy as FOIL-6. 

An alternative to the use of descriptions of unclassified objects is described 
by Mooney [93]. His system Iov uses an overly general domain theory as addi- 
tional background knowledge. The system requires that all features referenced 
in the domain theory are irrelevant for the induction of additional premises to 
specialize an over-general concept. This enables Iov to learn more accurate con- 
cepts from fewer examples than previous purely inductive systems. Although the 
assumption made by Iou is very strong, it seems promising to combine the use 
of information about unclassified objects with the use of an incomplete domain 
theory in order to learn concepts from small sets of examples. 

7 Final remarks 

In this paper, a new approach for learning concepts has been described which 
tries to take advantage of the information contained in unclassified examples. 
It has been shown that the classification accuracy of concept description can 
significantly be improved by using this information as additional background 
knowledge. 

It should be emphasize that classification accuracy should not be the only 
criterion to compare generalization methods. The concept descriptions produced 
by the CCG approach are more specific than descriptions produced by systems 
using a most general generalization algorithm, because such systems deliver con- 
cept descriptions using only descriptors (e.g., predicates or attributes) necessary 
to discriminate between the instances of the goal concepts. Therefore, the de- 
scriptions produced by a system based on the CCG approach may be more 
comprehensible. 

The computational complexity of the CCG approach is mainly determined 
by the computational complexity of the conceptual clustering step. Although 
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KBo searches only for heuristic approximations of most specific generalizations, 
it was impossible to cluster the whole soybean or primary tumor data set (on 
a SUN Sparc-lO). Therefore, it is necessary to improve our method by a clever 
strategy for filtering the data passed to the conceptual clustering system. 

Experiments with relational data sets and different hypotheses language r e- 
strictions are in progress and will be described in another paper. 
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