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Abs t r ac t .  This paper concentrates upon similarity between objects de- 
scribed by vectors of nominal features. It proposes non-metric measures 
for evaluating the similarity between: (a) two identical values in a fea- 
ture, (b) two different values in a feature, (c) two objects. The paper 
suggests that similarity is dependent upon the context: It is influenced 
by the given set of objects, and the concept under discussion. The pro- 
posed Context-Similarity measure was tested, and the paper presents 
comparisons with other measures. The comparisons suggest that com- 
pared to other measures, the Context-Similarity suites best for natural 
concepts. 

1 I n t r o d u c t i o n  

The notion of similarity is fundamental  in many  areas of cognition and computer  
science. The most  frequent approach to similarity is to interpret it as a closeness 
in a spatial  sense. According to this approach, objects are represented as points 
in a geometrical space; similarity between objects is inversely related to the 
distance between the objects, where the distance is measured by some metric 
function. 

Many similarity measures exist in the li terature (el. [6] for a short survey of 
different measures), yet most  of them are truly suited for continuous or ordered 
variables, but  not for nominal  (symbolic, unordered) ones. The most  frequently 
used similarity measure for nominal  domains is the City-Block one. The  City- 
Block measure evaluates the similarity between every two identical values in a 
feature as equals to one, and the similarity between every two different values 
as equals zero. The similarity between two objects is the sum of the similarities 
of their features. 

This paper  concentrates upon similarity in the context of learning. ExeMplar-  
Based LEarning Models (EMBLEMs) suggest tha t  concepts are learned by mem- 
orizing examples; the main information the learner needs to store in his/ i ts  
memory  is the classified examples the teachers supply; no general information 
in the form of rules is induced; the learner classifies new examples by comparing 
them to stored exemplars.  EMBLEMs are represented in machine learning by 
Aha Kibler and Albert ' s  Instance-Based Learning (IBL) [2], Stanfill and Waltz 's  
Memory-Based Reasoning [11], Salzberg's Generalized Exemplar Theory [9], Pro- 
tos of Porter et al. [7], and others. These models are based upon similarity be- 
tween objects, yet, as described above, for nominal  domain variables some of 
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them use the naive City-Block or modifications of it as their similarity measure. 
Aha Kibler and Albert write: "we have not yet experimented with sophisticated 
definitions for defining similarity for symbolic-valued attributes." ([2], p. 62) 

Following Tversky [12], this paper suggests that  similarity is not a fixed prop- 
erty, but is dependent upon the context, that  is, the given set of examples, and 
the concept under discussion. For example, if we present subjects the countries: 
USSR, China, Germany, Austria, they would tend to say that  USSR is most 
similar to China, but if we replace Austria by Taiwan most subject would in- 
dicate that  USSR is most similar to Germany. This finding evidences that  the 
similarity between a pair of examples is dependent upon other examples that  
are presented, i.e., upon the context. Similarly, the similarity between USSR 
and Cuba is perceived as large when the concept under discussion is political 
system, but as small when the relevant concept is geographical area. Thus the 
similarity between two objects is not fixed for all contexts, but changes. Tversky 
notes that  "judgments [of] similarity depend on context and frame of reference 
that,  in turn, are determined by the nature of the task and the set of objects 
under consideration." ([12], p. 340) 

The next section presents my motivation and intuition. Sections 3 and 4 
present functions for evaluating similarity between: (a) two primitive values in a 
feature (e.g. the colors red and green), (b) two examples (e.g. an apple and an or- 
ange). Section 5 presents experiments with the the proposed Context-Similarity 
measure, and suggests that  among the measures that  were tried Stanfill and 
Waltz's Value Difference Metric (VDM) [11] performs best on domains that  con- 
tain many irrelevant features, while the Context-Similarity performs best with 
natural concepts; Sect. 5.1 explains which concept are considered natural. Briefly 
stated, natural concepts can not be defined by necessary and sufficient condi- 
tions, are structured, may change with time and context, and generally have no 
sharp boundaries. 

2 M o t i v a t i o n  

The City-Block measure evaluates two different values in a nominal scale feature 
as contributing zero to the overall similarity between their examples. In many 
cases this evaluation is inaccurate as even in nominal domains humans differen- 
tiate between different degrees of similarity (e.g. the color red is more similar to 
orange than to blue, the material paper is more similar to textile than to metal, 
the faculty computer science is more similar to mathematics than to literature). 
Medin and Schaffer [5] suggest that  the similarity between every pair of nominal 
values should be represented by a unique parameter. They do not specify how 
this parameter would be set. Protos [7], an EBL system, implements an elabo- 
rated similarity measure for nominal variables; in Protos this is achieved using 
the assistance of an expert that  supplies the necessary domain theory (e.g. the 
colors red and green are equivalent for the purpose of classifying apples). Here I 
would like to propose a few principles that  may guide one in an effort to evaluate 
the similarity between two different nominal values. The aim is to evaluate this 
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similarity in a more subtle manner than assuming it is zero, without relying on 
the assumption that  this knowledge is supplied by an external source. 

Metric similarity measures assume that  the contribution of two equal values 
to the perceived similarity between their examples is equal for all values. I also 
question this assumption: Think of two people who are anarchists versus two 
people that  hold main-stream political views; or think of two left handed people 
as opposed to two right handed people. I suggest that  two examples that  share 
an exceptional value (property) in some feature are perceived as more similar 
one another than two examples that  share a common value. In other words, there 
is a 'pop-out '  effect to a unique value which causes the examples to be perceived 
as similar to each other, and stand in contrast to the rest of the examples. 
Tversky [12] demonstrated this idea by saying that  we perceive two identical 
twins as more similar to each other than two identical cars; the reason to this 
phenomenon is that  there are only two identical twins 'of a certain model',  but  
many identical cars of a certain model. 

A third property of many of the existing measures is that  their similarity 
evaluation is not affected by the concept under discussion. This assumption is 
also inaccurate in many cases; for example a concept like 'apples' contains both 
green and red members; thus red and green should be considered similar for the 

�9 task of classifying apples; but  cucumbers are always green, therefore if one needs 
to classify cucumbers she should consider red and green as dissimilar; another 
example that  demonstrates this idea involved the 'items' USA and USSR; these 
two countries were similar with respect to the concept ' the Great  Powers' but  not 
with respect to 'communist countries'. I, therefore, suggest that  when a system 
needs to evaluate the similarity between two objects it should do so with respect 
to a certain concept. 

Finally, following Medin and Schaffer [5], t t intzman [4] and Porter et al. [7] it 
is proposed that  the similarity between two objects is determined by an interac- 
tion of the different components. This assumption is in contrast to independent 
cue models, like the City-Block one, which assume that  the overall similarity is 
a function of the independent components that  are summed. 

These considerations lead me to propose a set of non-metric functions for 
evaluating similarity between examples described by nominal attributes, in the 
context of a categorization task. 

3 S i m i l a r i t y  o f  F e a t u r e s  

This section proposes a similarity measure between two values in a feature. The 
next section utilizes this measure, and presents a measure of similarity between 
objects. 

The features similarity measure considers two cases: whether the two values 
to be compared are equal or not. 

Denote the similarity function between two values by svaz; this function is 
composed of s~q which computes the similarity between two equal values, and 
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sdil that  handles the case where the  values are different; finally Se:~ denotes the 
examples similarity measure. 

3,1 E l e m e n t s  w i t h  E q u a l  Va lues  

In contrast to the minimality axiom of the metric approach, I suggest that  the 
similarity between two identical elements is not necessarily equal for all values 
(this implies that  the triangle inequality also does not hold). The similarity 
between two examples that  share a same value v in a feature is perceived as 
larger if v is less frequent in the population. 

Denote by P the set of all examples supplied by the teachers, by I P I the size 
of P,  and by I v I the number of examples with a value v. The contribution of 
two equal values vi i  = v2] in a feature f to the similarity between the examples 
that  contain them, E1 and E2, is negatively correlated with their frequency in 
P. Therefore it is defined to be: seq(vl],  v2/)  - bPi-I,ljI - -  ] p ]  

Yet, the similarity between the two values might be an artifact that  con- 
tributes nothing to the categorization task, or might be irrelevant for the con- 
cepts that  should be learned; but then the the occurrence rate of the value in 
the different concepts would be more or less equal (e.g., if being in favor of the 
Israeli-Palestinian agreement is meaningless for the categorization of members 
of the Israeli parliament into the different parties then the proportion of sup- 
porters of this agreement in the different parties would be more or less equal). In 
other words, the variance of the value's occurrence rate in the different concepts 
would be small. Denote this variance by var(v,  C S ) .  We , therefore, conclude 
that  for the task of categorization, the contribution of two equal elements to the 
similarity between their examples, should be defined as: 

= I__PI - Iv : j  I. Var(v:<, cs) 
]P[ 

3.2  E l e m e n t s  w i t h  N o n - E q u a l  Values  

The above expression evaluates the contribution of two equM values to the sim- 
ilarity between their examples. For a pair of non-equal values I suggest the 
following considerations: 

- S i m i l a r i t y  b e t w e e n  di f ferent  values:  If two objects (e.g. an orange and a 
lemon) belong to the same concept, and share equM values in many features 
(e.g. texture, kind-of-peeling, juicyness, season-in-which-eaten), then we tend 
to perceive them as generally similar, and conclude, that  in particular in 
those features where they have different values (e.g. oranges' color is orange 
while lemons are yellow) the values are similar with respect to the concept 
under discussion. In other words, the similarity between two different values 
v and u in a feature f with respect to a concept C, is positively influenced 
by pairs of examples that  belong to C, contain the values v and u in f ,  and 
share equal values in many other features. In a dual manner: 
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- D i f f e r e n c e  b e t w e e n  di f ferent  values:  If two objects (e.g. an apple and a 
tomato)  belong to different concepts (e.g., one is a fruit while the other is a 
vegetable), and share equal values in many features (e.g., texture, kind-of- 
peeling, juicyness, taste), then these features make them relatively similar; in 
order to explain why they belong to contrasting concepts we tend to assume 
that  v and u are relatively different, and they, at least partially, cause to the 
split between concepts. In other words, the similarity between two different 
values v and u in a feature f ,  with respect to a concept C, is negatively 
influenced by pairs of examples E l ,  E2, where E1 belongs to C, E2 does not 
belong to C, E1 has the value v (or u) in f ,  E2 has the value u (or v) in f ,  
and El ,  E2 share many other properties. 

An implementatio n of the above principles is as follows: Let E v and E ~ be 
two examples that  share equal values Vl, ..., vm in a subset of their features, but 
have different values v and u in some feature. The effect of this pair over the 
perceived similarity between v and u can be expressed as ef fect(E",  E u, v, u) = 
~i~=1 s~q (vi, vi)/n, (where n is the total number of features used to describe each 
example). If both E",  E"  belong to a same concept C then this effect is positive 
over Sd~l(v, u, C); if, on the other hand, E" belongs to C, while E ~ belongs to 
C' (or vice versa) then their effect over Sdi/(v, u, C) is negative, s~i/(v, u, C) is 
calculated by averaging over all pairs of examples that  contain ~), u, and at least 
one of them belong to C. Formally expressed: 

s~ii (v, u, C) = )-~E.eS',E~eC,E. eS.,E.eC e f fec t (E, ,  E~, v, u) 
n l  

E~.eS',E.r e f f  ect( E. ,  Eu, v, u) 
n2 

EE~eS',E~eC,E= eS:,E.~C e f fec t (E. ,  E. ,  v, u) 
n3 

where S" denotes the set of examples that have a value v, nl ,  n2, n3 denote the 
number of examples that  enter into each of the three summations. 

3.3 E l e m e n t s  w i t h  M i s s i n g  Va lues  

In many real life domains some feature values are missing from certain examples. 
In these cases the similarity measure should estimate the similarity between a 
missing value and present one, or between two missing values. 

Different estimations can be made in such cases. Aha et al. [1] choose a 
'cautious' approach: If either values of a pair is missing, then it is assumed that  
the two values are maximally different from each other. The Context-Similarity 
proposes a more optimistic estimation, namely the similarity between a value v 
and a missing value (with respect to a concept C) is estimated as the average 
similarity of v to every other value (with respect to C), weighted by the relative 
frequency of this value (e.g., if in some feature there are three different values 
v, u and w; such that  Sdil(V, u, C) = 1, 8dil(V , W, C)  : O, and there are twice 
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many examples that  have u than w; under these assumptions,  the similarity 
between v and a missing value with respect to the concept C equals 0.66). The 
similarity between two missing values is evaluated along the same line as the 
average similarity between every pair of values with respect to C. 

Formally expressed: Let v, va, ..., vm be the set of values in some feature, 
Sdil (v, Vl, C) , . . . ,  Sdii(v, vm, C)  the similarity between v and each vi (i -- 1, ..., m) 
with respect to some concept C; [ v I denotes the number  of examples tha t  have 
the value v. T h e  similarity between v and a missing value - is defined to be: 

(v, - ,  c )  = E m--1 sd l (v, vl, C) I I 
Iv l+. .+lvml 

4 S i m i l a r i t y  o f  E x a m p l e s  

The previous section described the contribution of two values in a feature to the 
perceived similarity between their examples; denote this similarity by s,  az (vl,  v2). 

The similarity between two examples E1 = (v11, ..., vim), and E2 = (v2t, ..., v2,~) 
is defined to be: 

So (Ea, E2) = s o (va , v2d/m 
i=a  

where r is an odd natural  number,  larger than one. 
The only point of interest in this definition is the condition over r. A larger 

value of r will yield larger interactions between the values of the different fea- 
tures, as it would produce larger terms, i.e., terms tha t  are composed of more 
factors. An odd r is necessary in order to preserve the sign of the sum (that  
might be negative). This consideration was proposed by Medin and Schaffer [5] 
in their context model, and by Hintzman [4] in his MINERVA 2--1earning f rom 
examples model. 

Raising the sum by a power larger than one has another property:  If  a clas- 
sifier tha t  needs to classify an example E sums the similarity of E to a subset 
of the different concepts then raising the sum of the features similarity by a 
power greater than one 'amplifies '  the similarity of more similar examples, and 
cuts down the similarity of less similar items, thus creating a preference t o  a 
set that  contains few items very similar to E over a set tha t  has more m e m b e r s  
tha t  are less similar to Eo For example, assume tha t  the sums of the features 
similarities of E to two members  of a concept Ca are 0.5 and 0, while these sums 
to two members  of C2 are 0.25 and 0.25. If  the sum of the feature similarities is 
not raised by a power, then E is equally similar to the two concepts; if, on the 
other hand, the sum of the features similarity is raised by a power greater than  
one, then E is found to be more similar to Ca than  to C2. In the experiments 
described bellow the value of r is irrelevant. 

5 Experimental  Results  and Discussion 

The presented similarity measure was tested on a variety of examples. The next 
subsection presents the domains that  were used in the experiments. Section 
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5.2 presents two experiments that  compare between the Context-Similarity and 
four other similarity measures: The  City-Block measure, Stanfill and Waltz's 
[11] Weighted Feature Metric (WFM) and Value Difference Metric (VDM), and 
Tversky's Contrast  similarity measure [12]. 

5.1 T h e  E x a m p l e s  t h a t  w e r e  U s e d  in t h e  E x p e r i m e n t s  

This section overviews the domains that  were used in the experiments, and 
their main properties. This overview would later enable us to draw preliminary 
conclusions regarding the question "which similarity measure is best suited for 
which class of concepts?". I suggest that  this kind of research is no less important  
than proposing a new similarity measure, as no measure would be best for all 
domains, therefore it would be desired if we could match between the possible 
measures and the different domains. 

The examples that  were used were obtained from the repository of machine 
learning databases cited in the University of California, Irvine (UCI). Figure 1 
presents a statistic overview of the examples. 

Anderson and Matessa write: "It is informative to engage in horse races be- 
tween learning algorithms. Different algorithms will work optimally given differ- 
ent data  sets, and it should be our first task to understand the characteristics of 
the domains to which the algorithms are adapted" ([3], p. 293). Psychologists and 
philosophers distinguish between natural concepts versus logical ones. The idea 
is that  logical concepts can be defined by a ~et of necessary and sufficient condi- 
tions, have sharp boundaries, and are unstructured--al l  members of a concept 
belong to the concept and represent it equally (prime numbers, grandmothers 
are examples of logical concepts). Natural concepts, on the o ther  hand, can not 
be defined by a set os rules, have no sharp boundaries, and are s t ructured--some 
members represent their concepts better that  others. Most concepts humans use 
in everyday life are natural (e.g. furniture~ vehicles). Three of the databases that  
are used in the following experiments are good examples of domains that  contain 
natural  concepts: (a) The 'Zoo' domain contains different kinds of animals. (b) 
The 'LED display' example can be described as an 'artificial natural concept': 
It is artificial on the one hand, as it is produced by a computer program, but  it 
has many characteristics of natural  concepts on the other hand; it also.resembles 
the kind of concepts psychologists use in their laboratory experiments that  aim 
to investigate human categorization in natural  domains. (c) 'Hayes-Roth and 
Hayes-Roth (1977)' is an example of a database that  was borrowed from such 
experiments. The characterization of other concepts with respect to the 'logical' 
versus 'natural '  property is less obvious. 

In some databases, the number of attributes used to describe each example 
is large. Two of these databases (~5  and ~6)  describe different diseases, and 
their attributes were proposed by experts in these fields. One can wonder about 
their dimensionality, and whether an expert, when diagnosing a patient, con- 
siders this number of variables. The answer is 'no'; some of the attributes are 
irrelevant for some of the diseases, and are not used by a human expert. The 
complete set is needed in order to cover all the possible categories, but every 
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The domains that were used in the experiments 

Missing values 

Frequency of most frequent concept (%) 

Number ot concepts 
Number of values in attribute 
Number of predicting attributes 
Number of examples �9 

Domain Domain 
# 

1 1984 U.S. Congressional voting 435 16 2 2 61 y 

2 LED display 500 7 2 10 10 n 

3 LED display + i7 irrelevant attributes 500 24 2 10 10 n 

4 Tic-Tac-Toe endgame 958 9 3 2 65 n 

5 Standardized audiology 226 69 2 24 48 y 

6 Lung cancer data 32 56 3 3 41 y 

7 E. coli promoter gene sequences ( D N A )  106 57 4 2 50 n 

8 Primate splice-junction gane sequences (DNA) 1200 60 4 3 50 n 

9 Zoo 101 16 2 7 41 ,:" n 

10 Hay.es-Rotli ~ Hayes-Roth (1977) . 160 . 4 4 3 .41 n 

Fig. 1. A statistic overview of the examples. 

single example would contain many values that practically imply that this at- 
tribute or this symptom is missing, and is not needed for the classification of 
the patient. From the examples presented by Porter et al. [7] it seems that only 
about a dozen attributes are actually used by a human expert to diagnose each 
patient. Databases #7 and #8 are taken from molecular biology. Each example 
in them describes a sequence of nucleotides in the DNA. The learning algorithm 
relates to each nucleotide as an attribute. Some of the nucleotides sequences 
(i.e., the examples) are responsible for a certain biochemistry activity (e.g., the 
production of protein). The task of the algorithm is to identify whether a specific 
sequence (i.e., a certain example) initiates this activity, and thus belongs to the 
desired concept, or not. It is known that some of the nucleotides in each sequence, 
(e.g., some of the attributes in the example) are the ones that evidence whether 
the sequence initiates the activity or not (e.g., whether the example belongs to 
the target concept or not), but in different examples different nueleotides are the 
ones that determine the behavior of the sequence, in other words, in different 
examples different attributes evidence on membership of the desired concept. 
Therefore one needs a large set of attributes though for each example only a 
subset of them actually determines the type of the example. We may conclude 
that in some domains a large number of attributes is needed, though in each 
examples some of the attributes might be irrelevant 

Some of the domains contain missing values. Missing attribute values degrade 
the performance of a learning algorithm; yet some algorithms (e.g., ID3) are more 
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susceptible to missing at tr ibutes than others, or make certain assumptions on the 
distribution or prevalence of the missing values. Quinlan, calls the percent of the 
missing values ' the ignorance level'. He writes: "in practice, an ignorance level 
of even 10% is unlikely" ([8], p. 99). Naturally, Quinlan's  decision trees perform 
poorly on databases tha t  contain many  missing values. EMBLEMs are generally 
less susceptible to missing values than decision trees, thus we can expect tha t  
the performance of an EMBLEM would degrade less than the performance of a 
decision tree based algori thm when the database contains missing attr ibutes.  

5.2 A C o m p a r i s o n  w i t h  O t h e r  S i m i l a r i t y  M e a s u r e s  

A similarity measure as described above is only a tool tha t  can be used by a 
learning algorithm, and composes a central component  in any EMBLEM. In this 
section the similarity measure is relatively isolated f rom other possible compo- 
nents of a learning algori thm in order to evaluate it on its own. 

A N e a r e s t  N e i g h b o u r  Class i f ie r .  The most simple examinat ion of the Context-  
Similarity in a learning task would probably be to incorporate it in a nearest- 
neighbour classifier, and compare the performance of this classifier with those 
of one tha t  uses another measure. Such a comparison was made with four other 
measures. All the comparisons were performed in the same manner:  Each clas- 
sifier received 70% of the examples as a training set, and was tested on the 
remaining 30% of the examples. 1 2 . All the classifiers were tested on the same 
training set and test set. For each classifier and each domain fifty runs were 
executed. Figure 2 depicts the results of this experiment.  

If  we examine the figure we notice that  in eight out of the ten domains 
the Context-Similari ty performs bet ter  than  the City-Block one. In some of 
these domains the difference is greater than in others. Whether  the difference 
is meaningful or not is probably task dependent. As the City-Block measure is 
cheaper to compute,  in each implementat ion it should be considered whether it 
is worth using the more expensive Context-Similari ty measure or not. 

A comparison between the Context-Similari ty and the Contrast-Similari ty 
shows that  in almost all databases the former performs better.  Shanon describes 
the Contrast-Similari ty as "the one that  defines the state of the art  in the field 
[of cognitive similarity measures]" ([10], p. 308). If one accepts Shanon's  state- 
ment  then the above finding may seem surprising: How does it happen tha t  a 
computat ional  model performs bet ter  than a cognitive one? I may t ry  to suggest 
few possible answers to this question, (the different answers do not necessarily 
exclude each other): 

1 Exceptions are the Audiology database and the Hayes-Roth and Hayes-Roth 
database. In these two databases the examples are divided into standard training 
set and test set, therefore, a single run was performed with each of them 

2 If a test item was most similar to n training set examples, i.e., its similarity to all of 
the n examples was equal, m out of them from the correct concept, and n - m from 
wrong ones, then its classification level was taken to be m/n 
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Average classification rates 

Average classification rate of Context-Similarity 

Average classification rate of VDM 
Average classification rate of WFM 

Average classification rate of Contrast-Similarity 

Average classification rate of City-Block 

Domain 1 
1 1984 U.S. Congressional voting .92 .92 .94 .95 .95 

2 LED display .61 .60 .60 .60 .60 

3 LED display + 17 irrelevant attributes .48 .50 .57 .68 .65 

4 Tic-Tac-Toe endgame .68 .49 .56 .60 .61 

5 Standardized audiology .76 .84 .88 .80 .85 

6 Lung cancer data .32 .37 .36 .42 .45 

7 E. coli promoter gene sequences (DNA) .79 .80 .80 .86 .84 

8 Primate splice-junction gene sequences (DNA) .70 .71 .72 .88 .80 

9 Zoo .95 .96 95 .95 .97 

10 Hayes-Roth & Hayes-Roth (1977) .87 .90 .93 .94 .99 

Ntm]ber of domains in which performs better than CS 2 0 1 3 

Number of domains in which performs less well than CS 8 9 8 5 

Fig. 2. The classification rates of five different nearest neighbour classifiers, on 
a set of ten domains. Each classifier is based on a different similarity measure. 
For each classifier a comparison with the Context-Similarity based algorithm 
is also presented: in how many domains this classifier performs better (less 
well) than the Context-Similarity based one 

- The Contrast-Similari ty models human similarity scaling well, but  humans 
do not represent objects by vectors of a fixed size. Actually, when Tversky 
proposed his model one of his main arguments was tha t  people represent 
objects by sets of features; different objects are represented by different sets 
(and not by a fixed set, as is usually done in machine learning). 

- The contrast model describes objects by sets of qualitative features. These 
features might be either identical or different, but there are no graded degrees 
of similarity between features. 

Stanfill and Waltz, in their MBRtalk  system [11], proposed two new similar- 
ity measures: the Weighted Feature Metric (WFM), and the Value Differences 
Metric (VDM). 

As can be seen in Fig. 2 the Context-Similari ty performs better  than WFM 
in eight out of the ten domains, and better  than  VDM in five of them. The 
difference between WFM and VDM is tha t  the lat ter  evaluates separately the 
similarity between every pair of values (thus allowing v to have different distance 
f rom u than  from w), while the former assume that  the similarity of a value to all 
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other values is equal (i.e., the distance of v from u is equal to its distance from 
w). We may, therefore, conclude that a more 'fine' similarity evaluation, one that 
assigns a unique similarity value to each pMr of values, improves performance. 

The three main differences between VDM and the Context-Similarity are 
that the former gives weights to attributes, a property that does not exist in the 
latter; on the other hand, the latter evaluates the similarity between any pair of 
values with respect to each concept separately, while in the former the similarity 
between any pair of values is not dependent upon the concept to which the 
examples belong. Thirdly, in VDM the contribution of two equal values to the 
similarity between the objects they describe is equal for all values, while in the 
Context-Similarity each pair of equal values has a unique contribution to the 
overall similarity between their objects. 

It is difficult to characterize the domains in which each measure is superior, 
or to generalize from these results when should we use one similarity measure 
or another. Yet, if we try, tentatively, to analyze the results, we note that on 
the two molecular biology domains (#7 and #8) and on the 'LED display + 
17 irrelevant attributes' database VDM performs best. These domains contain 
many irrelevant attributes. It, therefore, seems that in such domains VDM's fea- 
ture weighting approach is more successful than the Context-Similarity's concept 
dependent method (i.e., a method that considers the specific concept when eval- 
uating similarity). 

Now, turn to the following items: the 'zoo' database, which composes 'clas- 
sic' natural concepts, and the 'Hayes-Roth and Hayes-Roth' example, that is 
intended to be an artificial natural concept. On these databases the Context- 
Similarity performs best. These results hints that the Context-Similarity suites 
better than other measures for natural concepts. This conclusion is not definite 
as for example in the 'LED display' domain, which is essentially similar to the 
'Hayes-Roth and Hayes-Roth' example, the Context-Similarity does not perform 
better than the other measures. 

Figures 3 and 4 compares between a Context-Similarity based nearest neigh- 
bour classifier and two others (VDM and City-Block) on two different domains 
(' 1984 U.S. Congressional voting' and 'E. Coli promoter gene sequences (DNA)'). 
the figures present the classification rates of each classifier as a function of the 
size of the training set. The two main findings that are presented in these figures 
are: (a) The accuracy of both classifiers improve gradually as the size of the 
training set grows. (b) Generally, if one classifier performs better than another, 
it does so for all sizes of training sets and test sets; in other words, in most do- 
mains it is not the case that while for certain sizes of training sets one classifier 
performs better, for other sizes another classifier is more accurate. 

Overall  Similarity. The experiment reported above involved a nearest neigh- 
hour classifier. The performance of this classifier is affected by the similarity of 
a test item E to a single example in each concept--the example that  is most 
similar to E; the similarity of E to other members of each concept does not 
affect the prediction of the classifier. The experiment demonstrates a common 
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Fig. 3. The classification rates of a Context-Similarity based nearest neighbour 
classifier versus a VDM based nearest neighbour classifier on the domain '1984 
U.S. Congressional voting'. The x axis denotes the size of the training set, the 
y axis denotes the classification rate of each classifier. 

usage of a similarity measure in learning tasks, yet it examines only one aspect 
of the similarity measure. 

In order to examine another aspects of a similarity measure I@ropose another 
experiment: A common assumption in clustering and concept ~arning is that  
members of a same concept are relatively similar to each other, whil'&members 
of contrasting concepts are relatively dissimilar. The extent that  this assumption 
is valid varies across domains; some domains satisfy it well, as each of their 
concepts is centered in a definable region that  is well separated from regions 
occupied by other concepts; other domains satisfy this assumption more loosely 
either as their concepts are composed of more than a single cohesive and distinct 
cluster, or as the separability of the concepts is less sharp. Yet, to some extent, 
this assumption holds, especially if, using some clustering method, we divide 
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Pig. 4. The classification rates of a Context-Similarity based nearest neighbour 
classifier versus a City-Block based nearest neighbour classifier on the domain 
'E. Coli promoter gene sequences (DNA)'. 
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each concept to a set of sub-concepts in a way that  aims to create cohesive and 
distinct categories. 

If we accept this ' intra concept similarity versus inter concept dissimilarity' 
assumption, then we would prefer a similarity measure that  reflects this property 
best. Therefore, this could be another criterion for evaluating a similarity mea- 
sure. To quantify the extent that  a similarity measure expresses this property 
of a set of concepts, I propose a measure that  divides the average similarity be- 
tween pairs of examples that  belong to a same concept, by the average similarity 
between pairs of examples that  belong to contrasting concepts. A larger value 
of this measure is preferred, as it evidences that  the average similarity within a 
concept is large, while the average similarity between concepts is small. The wb 
measure could therefore be defined as: 

�88 Ec  ~E,,Ej~C sim(Ei, Ej) 
w b  ::~--- 1 "m ECI ECj#Ci EEkECi,E, eCj sim( Ek, Ez) 

where C, Ci, etc. denote concepts, Ei etc. denote examples, sim(Ei,Ej) etc. 
denote the similarity between Ei and Ej as evaluated by the similarity measure 
that  is examined, n and m denote the number of elements that  are summed in 
the two summations. 

This measure does not take into account the variance of the similarity scores 
of the examined similarity measure. One may argue that  if two similarity mea- 
sures score the same grade in wb, yet one of them produces more homogeneous 
evaluations then the other, then the first is preferred. Therefore to account for 
the variance of the scores each similarity measure produces, the numerator  and 
denominator of the above wb measure are divided by the standard deviation of 
the similarity scores of the within/between pairs respectively. 

The five similarity measures that  are used in the experiments were examined 
using the wb measure on the ten domains that  were presented before. Figure 
5 presents the results of this experiment. As expected, the wb scores of most 
measures in most domains is larger than one, which evidence that ,  as expected, 
the evaluated intra concept similarity is larger than the inter concept similarity. 
This result is in accordance with the ' intra concept similarity versus inter concept 
dissimilarity' assumption, and thus strengthen our confidence in the assumption 
and the proposed experiment. 

If we calculate the average wb scores for each similarity measure on the ten 
domains, we obtain the following results: Contrast Similari ty-- l .18,  City B l o c k -  
1.32, WFM--1 .46 ,  VDM--1.63,  Context Similari ty-- l .67.  This oredering of the 
measures resembles the ordering from the previous experiment. Thus, again, we 
see that  the Context-Similarity performs best, though only slightly better  than 
VDM: 

The results reported above were obtained on the original domains. As was 
mentioned earlier, some of the domains that  are used are not composed of con- 
cepts that  comprise a single distinct cluster. In a similar experiment the original 
domains were first subject to a clustering program (a variant of the k-means 
method).  This version of the experiment was composed of two phases: In the 
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The ratio: within concept similarity to between concept similarity 

Context-Similarity 
Contrast-Similarity 
VDM 
WFM -. 
City-Block ~ 1 

1 1984 U.S. Congressional voting 1.73 1.82 2.20 1.79 2.76 

2 LED display Io99 1.84 1.84 1.61 2.20 

3 LED display + 17 irrelevant attributes 1.21 1.15 1.41 1.16 1.80 

4 Tic-Tac-Toe endgame 1,02 1.06 1.12 1.00 1.05 

5 Standardized audiology 1.12 1.46 1,51 0.69 1.28 

6 Lung cancer data 1.24 0.93 0.95 0.97 1.29 

7 E. coli promoter gene sequences (DNA) 0.86 1.40 1.33 0.93 0,70 

8 Primate splice-junction ~ene sequences (DNA) 0.96 1.26 1.25 0.96 0.83 

9 Zoo 1.98 2.53 3.07 1.66 3.88 

10 Hayes-Roth & Hayes-Roth (1977) 1.17 1.21 1.62 1.10 0.93 

Each item in this table presents the following measure for some similarity measure in a certain domain: 

Average similarity of pairs of items that belong to the same concept 
Standard deviation of the similarity scores of items the belong to the same concept 

Average similarity of pairs of items that belong to contrasting concepts 
Standard deviation of the similarity scores of items the belong to contrasting concepts 

Fig. 5. 

first phase the clustering program was executed on each domain; the program 
divided each concept into a set of homogeneous and distinct sub-concepts each 
having a unique label. The output  of the clustering program served as the input 
to a second phase that  was identical to the original experiment (as described in 
the preceding section). The results of this experiment were even more in favor 
of the Context-Similarity: Its score on the wb measure was improved from 1.67 
to 2.12, and the gap between it and VDM grew from 0.04 to 0.52. 

As aforesaid, the difference between this 'experiment and the previous one 
is tha t  while in the former the results are dependent on the similarity of a 
probe i tem to a single example in each concept, in the latter all the possible 
pairs enter into the calculated measure. Though the two experiments differ in 
some aspects they both evaluate the same similarity measures using the same 
domains. We may raise the question what is the correspondence between the 
results of the two experiments? To answer this question I calculated the Pearson 
correlation between the average accuracy of the five classifiers in each domain, 
and the average wb ratios of the corresponding similarity measures on these 
domains. The Pearson correlation equals 0.46. The fact that  the correlation is 
positive confirms the intuition that  there is, or there should be, a correspondence 
between the two aspects that  are examined. The finding that  the correlation is 
not very large may be interpreted as an evidence that  the two experiments do 
not examine the same property. 
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6 Conclus ions  

This paper  presented a context similarity measure, and compared it with other 
measures. Not surprisingly, in some cases the Context-Similari ty measure per- 
forms better  than  other measures, while in other examples it was less accurate. 
As a conclusion of this paper  I would like to suggest tha t  future research should 
try to either combine the different measures, or characterize more thoroughly 
which similarity measure is best suited for which class of concepts. 
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