
Property Preserving Abstractions under
Parallel Composition*

Susanne Graf and Claire Loiseaux

IMAG, BP 53X, F-38041 Grenoble
e-mail : {graf, loiseaux}@imag.fr

A b s t r a c t . We study property preserving transformations for reactive
systems. A key idea is the use of e-slmulations which are simulations
parametrized by a relation 6, relating the domains of two systems. We
particularly address the problem of property preserving abstractions of
composed programs. For a very general notion of parallel composition,
we give the conditions under which simulation is a precongruence for
parallel composition and we study which kind of global properties are
preserved by these abstractions.

1 I n t r o d u c t i o n

The investigation of property preserving abstractions of reactive systems has
been the object of intensive research during the last years. However, the existing
theoretical results are very fragmented. They strongly depend on the choice of
the specification formalism and the underlying semantics.

Some results are given in the framework of linear t ime semantics as e.g.,
in [AL88,LT88b,Kur89] where the underlying semantics of as well programs as
properties are languages traces. The notions of abstractions proposed are based
on the use of structure homomorphisms.

In the framework of process algebras, the problem of combination of ab-
straction and composition is the problem of defining proper ty preserving equiv-
alence relations or preorders which are congruences, respectively precongru-
ences for parallel composition and abstraction. This problem has been studied,
for equivalences e.g., in [HM85,BK85,GS86,GW89,GS90b] and for preorders in
[LT88a,Wa188,CS90,SG90,GL91].

The results presented here are based on those given in [BBLS92], where a
general framework for property preserving abstractions is given. Program models
are transition relations and abstractions are given by Q-simulations, which are
parameterized by a relation ~ between the domains of both systems. Thus, we
do not restrict ourselves to abstractions defined by functions from the concrete
to the abstract domain as cf. in [Kur89,CGL92].

In [BBLS92] the problem of compositional abstractions is not taken up at
all. Here, we extend the results on property preservation to composed abstract
programs, obtained by alternating steps of abstract ion and composition. For a

* This work was partially supported by ESPRIT Basic Research Actions "SPEC" and
"REACT"

645

general notion of parallel composition (expressed on program models), we give
conditions under which composition of abstract programs preserves properties
of fragments of branching-time #-calculus.

Our program models are transition relations on some domain D and are rep-
resented symbolically. The validity of the given results does not depend on the
symbolic representation, but their usability (computation of abstract programs)
does. Program models may be composed by means of three composition opera-
tors, namely a synchronous, an asynchronous and a mixed one. With these three
operators we can express most of the existing composition operators, for instance
those of CSP [Hoa85], Lotos [ISO89], Unity [CM88], of S/R-models [KK86] and
of I/O automata [LT88b].

The results presented in the paper are the following: for programs Ri and
R~, abstraction relations ~i from the domains of Ri to the domains of R[, we
give conditions under which:

1. R~ ei-simulates R~ implies Rt (9 R2 (et N ~2)-simulates R~ | R~ where
| is one of the three parallel operators.

This result allows us, using the results of [BBLS92], to deduce that for any
property f of the fragment DL# of the #-calculus (defined in Section 5) such
that all atomic predicates of] are preserved by fl (see Definition 14), then
R~ | R2 satisfies f implies R1 | R2 satisfies f.

2. If (Ri)e, are reasonable ~i-abstractions of Ri then, (R1)~ | (R2)~2 is a
reasonable (Yl N Q2)-abstraction of R1 | R2,

where R e stands for the abstract program computed from R by means of the
abstraction relation ~.

The conditions depend on the considered parallel operator | but for all par-
allel operators studied here, it is not necessary that the processes are defined on
independent domains. However, in order to have (2) for the asynchronous and
also for the mixed parallel operator, the abstraction ~1 N P2 must be decompos-
able so as the relation on the common domMn is independent of the relations on
the domains proper to each of the processes.

The paper is organized as follows. In the following section, we define the par-
allel operators. In Section 3, we present the results concerning composition and
abstraction, which are illustrated by a small example in Section 4. In Section 5,
we study which kind of properties are preserved by the abstractions defined in
Section 3 and we illustrate these results in Section 6.

2 Parallel Composition and Abstraction Operators

First, we introduce some definitions and notations concerning intersections and
unions of sets on different underlying domains.

Domains are as usual sets of valuations of program variables. We suppose a
universal set of global program variables V. Any domain is the set of valuations of
some subset of program variables V C_]), denoted D r . Thus, e.g., for V = {z, y},
D v = D~ • Dy.

646

D ef in i t i on 1. concerning independency of domains and projection functions.

- For any V, W the domains Dv and Dw are called independent if[V A W = 0,
that means they are defined on separate variable sets.

- For any V, W, we denote by 7~(Dv, Dw), the set of binary relations from
Dv ~o Dw. If Dv = Dw, we write ~ D v) .

- For V, W such that V C_ W, we denote by nv the projection function in
T~(Dw , Dv).

Now we can define intersections and unions of sets on different domains Dv
and Dw as operators on Dv u w.

D ef ln l t i on 2. Let Dv, Dv~,Dw, Dw,~i = 1,2 be domains, X C Dr, Y C Dw.
Then we define,

- X A Y = I C D v u w ~rv(z) e X A 7rw(z) ~ Y }
x u y e Dv w e e r }
Consider binary relations Ri E T~(Dvi, Dw~). Then, we define relations

R~ A R2 6 1~(Dv, u v~, Dwt u w~) and R1 x R2 6 ~(Dv, x Dye, Dw~ x Dw~), by

- R~ ~ R~ = { (z , ~ ') I z e D v , ~ v , A z' e D w , ~ w , A Orv,(z),~w,(z')) eR~
A e }

- t h • R~ = ((z , z ') l z e R~ A z' ~ R~}

We suppose that programs are represented by binary relations (transition re-
lations) on some domain. This is a very general form of programs. We do not
consider initial states since they are not necessary to obtain the results and it
makes the representation of programs much simpler. In terms of TLA [Lam91],
we consider programs consisting only of the invariant part.

D e f i n i t i o n 3. Let be domains Dr, Dw and programs given by transition rela-
tions R1 C 7~(Dv) and R2 E ~(Dw). Then, we define the transition relations
of tile composed processes in 7~(Dvuw) by

- asynchronous composition :
RIIIR2 = Rt x ldDw_v O IdDv_w •
where for any domain D, IdD is the identity function on D.

- synchronous composition :
RI~R2 = Rt (7 R2

- mixed composition :
Consider transition relations Ri of the form R1 = U / j Rli and R2 =
U~r R2j. Let be A _C I x J , indicating which commands have to be ex-
ecuted synchronously, A1 = {i[3j.(i,j)e A} a n d Az = {jl3i.(i,j)CA}.

Rz [[A]IR2 = U0,j)eA (Rt~ A R2j) U U~c~t~ (RL, • IdDw_v) u
U;~, (IdDv_w x Rz,)

Comments :

- In the asynchronous composition~ in each step one of the programs executes
one of the currently enabled transitions and the other idle. This operator
results in the "interleaving" of the component processes if they are defined
on independent domains; if not, the execution of a transition of one of the
processes may change the enabling conditions of the other one.
This operator is exactly the union operator of Unity [CM88].

647

- In synchronous composition, in each step both programs execute exactly one
action possible in this state, such that the changes on the common variables
are consistent. This operator corresponds exactly to A applied on programs
described by TLA formulas; it is also very similar to program composition
of S/R models [KK86].
If the domains of the component processes are independent, this operator is
exactly the one introduced in [GL91]; since they use also the same preorder,
their results are comparable to ours in the sense that they consider a logic,
subset of ours, and the particular case of independent domains.

- Finally, in the mixed composition operator, some of the actions must be ex-
ecuted synchronously, whereas the others are executed asynchronously. This
operator is not exactly the one in CSP [HodS5] or LOTOS [ISO89], where all
processes have di~stinct variable sets and communicate by exchanging values;
however the here defined operator allows to simulate these operators. The
results stated here are valid for any operator which can be considered as a
special case of the here defined operator.

The first two operators need imperatively models with shared memory be-
tween processes in order to allow communication, whereas the third one allows
also communication based only on action names without shared memory. Nev-
ertheless, in practice, processes composed by the third operator share often at
least some variables which are written by one of them and read by the other
(this allows to simulate the Lotos operator t[][).
The mixed composition operator is the most general one as it allows to express
the other ones as follows: II is equal to I[0] and | is equal to [I • J]l. We prefer
however to keep these operators because they are interesting to be considered
as subcases.

L e m m a 4 . Let R1 = (.J~d RI~, and R2 = UjcJ R2j, be transition relations
and A C_ I • J as in Definition 3. Then,

- R I I I R , : = Uic l (R l i • IdDw_v) U Ui~j(IdDv_w • R2j)
- RI| = U (i j) d •

-RI I [A]IR2 = (l[(i,j)ea(Rl~|][(H/cA1R1/)[] (l[jq.4~ R2j)
where we use the obvious n-dry extension of H.

- R1 II R~ = R1 [0]t R~
R1 | = R1 I[I x J] R~

The definition of y-simulation is the same as in [BBLS92] and defines our
imtion of preorder on programs. First, we need to introduce the "predicate trans-
formers" We and pi"e.

Def in i t ion 5. Given a relation e E ~ (D , D ') , we define the functions
 e[eJ, e[e] [2 D' 2 by,

- V X C_ D ' . pre[e](X) -= {x E D] Sx' E X . e(x,x ')} defines the inverse
image of X by ~.

- p~e[e] is the dual of prele], i.e.,

VX C D ' . p~e[e](X) = lqre[Q](X') = {x E D I Vx' e D ' . e(x ,x ') =~ ~' E X }

Def in i t ion 6. Let R E 7~(D) and R~ E 7~(Da) be transition relations, and let
e be an abstraction relation in 7~(D, Da). Then

R e-simulates R~ iff pre[Q -1] o pre[R] o p~e[e] C_ pre[R~]

648

Notice that "there exists e such that e-simulates" defines a preorder on pro-
grams which is the same as the one defined in [GL91], and which is also the
standard simulation preorder [Mil71]. If there exists g such that R e-simulates
R~, we say also that R simulates Ra o r Ra is an abstraction of R.

D e f in i t i on 7. Let be given a program by a transition relation R = (.Ji Ri 6
~ (D) . For any abstraction relation g 6 ~ (D , Da) we define an operator e yield-
ing an abstract program R e 6 ~.(Da), defined by the transition relation,

R e = g - l o R o g = U~ ~ ~ 1 7 6 1 7 6 1 7 6

The following property justifies our motivation for computing abstract pro-
grams R e from R and g: for a given abstraction relation e we want to compute
an abstract program R e with a reasonable cost and reasonably close to R, such
that a maximum of properties that are satisfied on R are also satisfied on R e.
In general the least abstract program Ra such that R g-simulates Ra does not
exist (since pre[e -1] o pre[R] o p~eIe] does not necessarily distribute over U and
it is therefore not of the form pre[Ra] for some relation R~).
However, R e is r e a s o n a b l e in the sense that for any transition relation R~, such
that
R e-simulates R~ and R~ _C R e and for any property f of the #-calculus such
that R satisfies f , we have Re satisfies f iff R e satisfies f . This is expressed by
the following proposition:

P r o p o s i t i o n 8.
3Re. R<eR~, R~ C R e

7 f E n L , , R a ~ x f ~ R e ~ x ~ f

where I and I A = post[el o I are the interpretation ~unctions on the concrete and
abstract domains respectively.

Proof. given in the full paper.

P r o p o s i t i o n 9. Let R be a transition relation on D, 8 E ~ (D , Da) an abstrac-
tion relation total on D (i.e. p~e[g] C_ pre[g]). Then

- R p-simulates the abstract transition relation R e which defines a reasonable
abstraction of R with respect to ~.

- I f even p~'e[e] = pre[g], i.e., g is a total/unction firom D into On, R e defines
the least abstraction o/ R with respect to g.

3 Abstraction of Composed Programs

When dealing with complex programs, it is interesting to construct abstractions
as far as possible before composition. This allows to compute abstractions on
smaller transition relations (and domains), and to compute the composition on
the so obtained smaller abstract programs. Here we show in which cases one
obtains an abstraction of the original composed program by proceeding this
way, and furthermore, in which cases this can be done without losing too much
with respect to the abstraction obtained proceeding the other way round.

We give conditions under which simulation is monotonic with respect to the
different composition operators | i.e.,

(R1 sinmlates R~) and (R2 simulates R~)

R1 | R2 simulates R~ | R~

649

holds. We show also which kind of atomic predicates of the composed program
are preserved.

Let R1 ~ 7~(Dv) and R~ ~ 7~(Dw) be transition relations and 0t e 7~(Dv,Dv:) ,
02 ~ T~(Dw, Dw:) abstraction relations. For any composition operator | of Defi-
nition 3 we have to find an abstraction relation 0 ~ 7~(Dv ~ w, Dv: u w:) allowing
to compute (R~)e, | (R2)e: instead of (Rt | i.e. such that (Rt)o, | (R~.)o~
is reasonably close to (Rt | R~)e.

We show that for all operators of Definition 3, Ri 0i-simulates R~ implies
R~ | R2 (01 ~ 02)-simulates R~ | R~ under some conditions on the abstraction
relations 0i.

P r o p o s i t i o n 10. Let be given transition relations Ri ~ 7~(Dv~),
R'~ ~ 7~(Dvo) and abstraction relations 0i ~ 7~(Dv~,Dv~.) total on Dye, such
that 01 ~ 02 is total on Dvt u v~. Then,

Ri o-simulates Ri; i = 1,2 implies Rx| (Or f3 Oz).simulates Rx| '

Proof. given in the full paper.

We are interested in the particular case that RI| (Or N ~2)-simulates
RI,~ | and furthermore Rto~ | is an abstraction reasonably close to

It turns out that if the values in Dye= n v:o in 01 and in 02 depend only on
Dv~ n v~ and if the projection of 01 n 02 on 7~(Dvt n v2, Dye= n v2:) is a function,
we hay%

and it is certainly less expensive to compute Rlot | than (Rt | n ~ .

Proposition 11. Let be given programs by transition relations Ri E 7~(Dv~),
and R~ E T~(Dv,.). Let be W1 = V1 - V2, W = V1 f3 V2, W2 =- V2 - V1 and
W l a = VI~ - V2~,I~ = Vlo n V2,,W2a = V2~ - V1,. Let 0~ e n (D v , , D v , .)
be abstraction relations, such that 01 N 02 total on Dv~ uv2, and such that 0i
can be put into the form 0i = Oit A 0~2, where Olt E 7~(Dw~,Dw~o) and 0i2 E
7~(Dv;, Dwo). Then,

R, O-simulates i = t, 2 implies R1 II R2 (ol n e)-simulates Ri II

Proof. given in the tull paper.

Remains to see in which cases RI~I [[R2o~ is a reasonable abstraction of
Rt [[R2. It is easy to see that in general Rte, 1[R2~ and (Rt II R2)~, n r are not
comparable~ but both reasonable abstractions.
In the case that Qt M 02 can be put into the form 011 • 0 x 02t such that
0 E 7~(Dw,Dw=) and 0it C 7~(Dw,,Dwo,) are functions, Rt~t [[R2Q2 and
(R1 []R2)~, ne~ coincide. If 0it are not fnnctions, we have even Rt~, [[R2~2 C
(R1 [I R2) 1 o .

650

Proposition 12. Let be given programs by transition relations Ri : Ui~ Riy E
7~(Dv~) and
R~ = U~, R~ E n (D v , .) . Let be W~ = Y~ - V2, W = V~ n V2, W~ = V2 - V~

and Wla = VI~ - V2~, W~ = VI~ A V2a, W2a = V 2 a - Via. Let ~ E 7~(Dv~,Dv~.)
be abstraction relations, such that Yl A 62 total on Dvt uv2, and such that yi
can be put into the form ~i = yil • ~i2, where Yil E 7r and ~i2 E
7~(Dw~Dw~). Let be furthermore A C I1 • I2 a synchronization set. Then,

R1 I[A]IR~ (Yl A O~.).simulates RIe, I[A]IR~.

Proof. The fact that R1 Ill R2 can be expressed by using only | and tl as given
in Lemma 4 and that the condition of both of the preceding Propositions are
satisfied is enough to prove the Proposition.

Proposition 13. Let Rt E ~(Dv~), R2 E 7~(Dv~) be transition relations.

1. RI | Q-simulates RI for some y such that

Y X C Dye. pre[o](pre[y-1](X)) = X

2. R1 o-simulates R1 [[R2 for some ~ such that

VX C Dye. pre[~](pre[~-1](X)) = X

Proof. Let be W = V1 U Vs. The required abstraction relations are

- gl = {(d,d') [d e D w A d' E DvI A 7rye(d) = d'} E T~(Dw, Dvl) in case (1)
- ~ = {(d',d) 1 d' E Dv, A d E D w A 7cv~(d) = d'} E T~(Dv~,Dw) in case (2)

Notice that Q1 is a function but ~2 is not.

By using the results given in [BBLS92], Proposition 13 allows to deduce that
formulas of [:fLu (cf. Section 5) are preserved from an asynchronous product to
its components, and from each component process to the synchronous product.

Now, we obtain from the preceding Propositions and the fact that R | = R
for any transition relation and any parallel operator, the results of [GL91] as a
particular case for the operator |

4 Example

In this section we illustrate the Propositions 11 and 12 with an example of a
mobile moving on a grid.

The motion of a mobile on a grid is controlled by a controller so as to visit
cyclically the points C D A C D A Initially the mobile is within the rectangle
defined by the points (A, B, C, D) (see figure 1). Its motion results of two inde-
pendent motors.

The motor M x makes the mobile move horizontally and M y vertically, the
controller Ctrl gives orders to both motors. We describe processes with a set of
guarded commands of the following form:

(label) guard --* command

651

Y

V
D
. ~ [. . . . ~ ~ ~ ~

...... [. . . . : : ~ r ~ ~
i * , e i I ,

. F * �9

i . i i b �9
i i , i | |

. . . . , ,~ ~ ~ ~
i i , t t * m
t t , , i * m

, : : : : : :
.

0 1 H

C

B : p X

Fig , 1. Mobile

where the label ident i f ies the g u a r d e d c o m m a n d a n d can be used for synchro-
n i z a t i o n , the guard is a b o o l e a n c o n d i t i o n which au tho r i ze s or n o t the e x e c u t i o n
of the command.

T h e m o t o r M x is def ined on the var iab les :
- dirx: a t h r e e - v a l u e d va r i ab le d e n o t i n g the m o v e m e n t d i r ec t ion (Left, R igh t

or S top) ;
- X: a real n u m b e r which deno te s the pos i t i on of the mob i l e on the ho r i zon t a l

a x e .

- 6 x is a r a n d o m i n p u t a n d is a pos i t ive real n u m b e r .
I t s t r a n s i t i o n r e l a t i on is g iven by:

Mx: (r ight) (dirx = R) A (X + ~x < H) --~ X : = X + 6 x
(left) (dirx= L) A (X-~x >__0) --* X := X - 6 x
(A) true ~ d irx : = R
(C) true --* d irx : = L
(D) true --* d irx : = S

T h e m o t o r M y is def ined ana logous ly .

M y : (up) (diry = U) A (Y + 6y <_ V) --* Y := Y + 6y
(down) (dirv = D) A (Y - 6v >_ O) -* Y : = Y - 6v
(A) true --* diry : = U
(C) true --~ diry : = S
(D) true --~ diry : = D

T h e con t ro l l e r is def ined on four var iab les :
- X , Y d e n o t e the c u r r e n t p o s i t i o n of the mobi l e ,
- X c , Y c are the c o o r d i n a t e s of the p rev ious v i s i t ed cont ro l po in t .

Ctrh (A) (X c = 0) / \ (Yc = V) h (Y = 0) --~ Yc : = 0
(C) (X c = O) A (Yc = O) A (X = H) A (Y = V) -~ X c := H A Yc := V
(D) (X c = H) A (Yc = V) A (X --- O) --~ X c := O

652

The whole program is defined by (M x II My) It(A, A), (C, C), (D,D)]I Ctrl.

This system has an infinite number of states as the mobile can be in any position
within the rectangle defined by the points A, B, C and D.

In order to verify that the mobile visits cyclically the points A~ C and D~ if it
is correctly initialized~ the only information we need is whether each coordinate
X (respectively Y) is equal to 0, is between 0 an H (respectively V) or is equal
to H (respectively V).

We propose the following abstraction relations consisting in replacing the co-
ordinates X and Y by three-valued variables x E {h0, hi, h2} and y E {v0, v~, v2}
and replacing in the controller the coordinates of the control point X c and Yc by
a three-valued variable Pcp E {A, C~ D} recording the previous visited control
point.

~z: (dirx , X) p x (d i r x , x) i f f
(x = ho A X = O) V (x = h~ A 0 < X < H) V (x = h2 A X = H)

~y: (diry, Y) p y (d i r y , y) iff
(y = v o A Y =O) V (y = v ~ A O < Y < V) V (y = v 2 A Y = V)

~Ctrl: (Xc , Yc, X , Y)ec t , z (Pcp, x, y) iff
[(x = h 0 A X = 0) V (x = h l A 0 < X < H) V (x = h 2 A X - = H)] A
[(y=voAY-=-0) V (y = v l A 0 < Y < V) V (y = v 2 A Y = V)] A
[(Pcp = A A X c = 0 A Y c = O) V (P c p = C A X c = g A Y c = V)V
(Pcp = D A X c = O A Yc = V)]

Note that the domains of M x and M y are
abstractions. We compute the following
controller:

independent and so are the respective
abstractions for the motors and the

(Mx)ex: (right) (dirx -= R) A (x = ho) --* x := hi
(right) (dirx = R) A (x = hi)--* x := hi or x := h2
(left) (dirx -= L) A (x = h2) --*x:---h1
(left) (dirx = L) A (x = h l) --* x :=ho o r x : = h l
(A) true --* d irx := R
(C) true -* d irx := L
(D) true -~ d irx := S

We obtain an analogous abstract program for M y .

(Ctrl)oo,~,: (A) (Pcp = D) A (yo = vo) --, Pcp :-- A
(C) (Pcp = A) A (x = h2) A (y = v2) --* Pcp := C
(D) (Pep = C) A (xo = ho) --. Pcp := D

From Propositions 11 and 12 and the fact that gx [3 ~y f-) ~ctvl - - ~ ~CtrI we have
that

PA: ((Mx)ax I] (M y) ~) It(A, A), (C, C), (D,D)] I CtrI~c,. , is a n Oc~.,-
abstraction of P.

653

5 Preservation of Properties

It is interesting to characterize the "global" properties preserved by the abstrac-
tion relation 01 n Q2 on the compositions of abstract programs defined previously.

From the results given in [BBLS92] we have the following result on preser-
vation of properties of [3L~,, which is the fragment of the #-calculus of [Koz83],
consisting of the fornmlas without occurrences of negations and using only uni-
versal quantification on paths. [:]Lu is strictly more expressive than linear time
#-calculus, and therefore contains all regular safety properties.

For a transition relation R, the meaning of formulas are subsets of the domain
D of R, where the meaning of atomic predicates in ~v is given by an interpretation
function I : :P --* 2 D.

We say R satisfies f or R ~1 f if the meaning of f depending on the transi-
tion relation R and interpretation function I is equal to D.

In order to verify a property f of DLu on a program R on D with interpre-
tation functions of atomic predicates I : 7 ~ --, 2 D respectively I~ : P --, 2 D", we
can proceed as foUows: find an abstraction relation 0 and then,

(1) Verify R e ~prr f
o r

(2) Verify R e ~I~ f .

We know from [BBLS92] that in case (1), we have R 0 ~p~,[o-1]oX f implies

R ~p-~[0]op-~[o-'loZ f-

Thus, in order to obtain the initially required result, R ~z f
we need for any predicate symbol p occurring in f

I(p) C_ pre[o] o pre[o -11 o I (p) (*)

As the opposite inclusion is always true, (*) equivalent to

pre[4 o pre[O-ll o I (p) = x(p).

Analogously, in case (2) R 0 ~z~ f implies R ~pve[o]oI. f .
As before, in order to be sure, that f is the same property on both interpre-

tations, we need to know that all predicates p occurring in f ,

 e[O -1] owe[0] o Io (p) = I .(p),

i.e. I,~(p) is in the image of 0 on which we[0] defines an isomorphism from
image(o) onto image(o -1) [Ore441.

Therefore, we already know which type of formulas we are allowed to verify
on abstract programs. Here, we are interested in characterizing the set of predi-
cates (considered as subsets of the domain D, respectively D I) of the composed
concrete program that can be used in these formulas, such that f is preserved
in the way explained above.

654

Def in i t i on 14. Let be D, D~ domains, I : :P --~ 2 D respectively I~ : :P --~ 2 D-
interpretation functions of atomic predicates and 0 an abstraction relation in
7~(D, D~). Then we say for a predicate p that it is preserved by 0 iff

pre[p] opre[o -~] o I (io) = I(p) respectively pre[p -~] o pre[o] o Ia (p) = In(p).

Notice that this notion of preservation of predicates depends only on the
abstraction relation p, and not on the particular program (i.e. transition relation)
under study.

In the following Proposition, we characterize a set of predicates on domains
of programs of the form R~ | that is preserved by relations of the form ~ M 8z
as in the Propositions 10 to 12.

P r o p o s i t i o n 15. t e t 0~ E 7~(Dv~,Dv,~), i = 1~ 2 be abstraction relations total
on Dv~ and such that ~1 ~ 02 is total on Dv~ u vs. Let p be a subset of Dv~ u v2
(interpretation of some atomic predicate) that can be put into the form Ui~j p~ (1
02 where p~ C Dv~ and p~ C_ Dv~ and J finite; let Pa be a subset of Dvx. u v~
that can be put into the form U~j, p~i ~ p~i where pt~i C_ Dv ~ and P~i C_ D v ~
and J' finite. Then,

- I f all the p~ ave presewed by Oj (for i C J and j = 1, 2), p is preserved by
01 M ~2.

- I f all thepJl are pvesewed by 0r (for i C J ' a n d j = 1,2), Pa is preserved by
01 M 02.

Proof. pre[p](pre[o.-1](Ui pl)) = Ui pre[0](pre[o-t](Pi)) and Vi e J
pre[~j](pre[e;~](p~)) = p~, j = 1, 2 implies

pre[e~ n ~,2](pre[o? ~ n o~](p~ n p~)) =

pr~[~,,](pre[O;~](p~)) n prde~](pr4~-~](p~)) = p~ n p~.

Comment: Notice that not only sets of this form may be preserved by 01 M 02.

However, in the case that 81 M 02 is a product of independent relations,
i.e., 01 f3 ~2 = 811 • 0 x 022, as it has been required in Propositions 11 and
12, pre[pl n 02] o pre[Q; 1 n 02] is of the form (pre[Qll] o pre[0~-tt]) x (pre[0] o
pre[0-~]) • (pre[0~] o pre[0~]) .
Then, only sets p which can be put into the form

U ~ p~ n p~ n p~

where p~ C Dvl-v2, P~ C Dv1~v~ and p2 C Dv~-vI are preserved by el M e2
i if all the p~ are preserved by Pll, all the p~ are preserved by 0 and all
the p~ are preserved by 022- That means instead of dealing with relations in
7~(Dvl u v~, D v ~ u v~) we deal only with relations on subdomains.

6 Example Continued

From the results given in [BBLS92] we have that for any formula f in [2L/~ and
any interpretation function I of atomic predicates on the abstract domain,

PA ~Z f implies P ~p~e[e]oz f

655

The following CTL formula expresses the fact that the mobile, if it is correctly
initialized and does effectively change control points, visits the control points A,
C and D cyclically. This formula can be translated into a rnLtt formula.

f =(Pcp = A) implies - ,(Pcp= D) until (Pcp= C) A
(Pcp = C) implies -~(Pcp = A) until (Pcp = D) A
(Pcp = D) implies -~(Pcp = C) until (Pcp= A)

In order to be sure that the formula is preserved, we have to verify that
predicates that appear in the formula are preserved. The predicates involved in
the formula appear only in Oct,z, we verify:

pre[Oc~.z](pre[oc,~l] (I(Pcp = A))) = I(Pcp = A)

This equality is obvious, and so are the equalities for the other predicates.

7 Discuss ion

We have studied property preserving abstractions of composed programs for a
eneral notion of parallel composition. The results are close to those given in

ur89] in the linear framework and are extensions of those given in [GL91].
A key idea is the parametrization of simulations by a relation 0 which allows

the computation of an abstract program (an idea which has been extensively
used in the domain of abstract interpretation, cf. e.g. in [CC77]) and is good
means to express composition of simulations.

The presented results are exploited in a tool which is currently being imple-
mented. Its inputs are expressions using parallel and abstraction operators on
boolean guarded command programs. The evaluation of such an expression re-
sults in guarded command program. Moreover, our tool verifies symbolically any
/z-calculus formula on programs and allows to know whether basic predicates are
preserved, in sense of Definition 14, by the applied abstractions.

Programs are represented by sets of relations instead of just a relation. Internally,
each guarded con~nand is implemented by a BDD ("Binary Decision Diagrams"
[Bry86]) which is an efficient representation of boolean expressions. We never
compute the BDD corresponding to the global transition relation as

- for the operator I[]l, we need the transition relations of each guarded com-
mand.

- the space needed for representation in memory of a set of relations is likely to
be much smaller than that needed to represent the global transition relation
[HDDY92].

The tool will be connected to the Caesar tool [GS90a], which translates Lotos
programs into Petri nets. For an important subclass of Lotos programs, these
Petri nets can easily be translated into parallel compositions of boolean guarded
command programs, which will allow to test the tool for important examples.

All the results obtained here are also valid if one represents programs by
sets of functions and this should allow to obtain still smaller representations of
programs as shown in [Fi191]. However, in case of functional representation, the
abstract program cannot in all cases be computed as easily as R e for a program
R and a relation 0. Experimentat ion is still necessary to compare the efficiencies
of the two approaches.

656

Acknowledgements

We thank Saddek Bensalem and Joseph Sifakis for many helpful discussions and
judicious remarks.

References

[AL88]

[BBLS92]

[BK85]

[Bry861

[CC77]

[CGL92]

[CM88]

[csg0]

[F~91]

[GL91]

[GS86]

[GSO0a]

[GS90b]

[Gw89]

[HDDY92]

M. Abadi and L. Lamport. The existence of refinement mappings. Technical
Report SRC-29, DEC Research Center, 1988.
A. Bouajjani, S. Bensalem, C. Loiseaux, and J. Sifalds. Property pre-
serving simulations. In Workshop on Computer-Aided Verification (CAV),
Montrdal, To appear in LNCS, june 1992.
J. A. Bergstra and J.W. Klop. Algebra of communicating processes with
abstraction. TCS, 37 (1), 1985.
R. E. Bryant. Graph based algorithms for boolean function manipulation.
IEEE Trans. on Computation, 35 (8), 1986.
P. Cousot and R. Cousot. Abstract interpretation: a upAfied lattice model
for static analysis of programs by construction or approximation of fixpoints.
In 4th POPL, january 1977.
E.M. Clarke, O. Grumberg, and D.E. Long, Model checking and abstrac-
tion. In Symposium on Principles of Programming Languages (POPL 92),
ACM, october 1992.
K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley,
Massachusetts, 1988.
R. Cleaveland and B. Steffen. When is "partial" adequate? a logic-based
proof technique using partial specifications. In LICS, 1990.
T. Filkorn. Functional extension of symbolic model checking. In Workshop
on Computer-Aided Verification 91, Aalborg (Denmark), LNCS Vol. 575,
june 1991.
O. Grumberg and E. Long. Compositionnal model checking and modular
verification. In J.C.M. Baeten and J.F. Groote, editors, Concur '91, 2nd
International Conference on Concurrency Theory, pages 250-265, Springer-
Verlag, august 1991.
S. Graf and J. Sffakis. A logic for the specification and proof of regular
controllable processes of CCS. Acts Informatica, 23, 1986.
Hubert Garavel and Joseph Sifakis. Compilation and verification of Lotos
specifications. In L. Logrlppo, R. L. Probert, and H. Ural, editors, Proceed-
ings of the l Oth International Symposium on Protocol Specification, Testing
and Verification (Ottawa), IFIP, North Holland, Amsterdam, june 1990.
S. Graf and B. Steffen. Compositional minimisation of finite state processes.
In Workshop on Computer-Aided Verification, Rutgers, LNCS 531, june
1990.
R.J. Van Glabbeek and W.P. Weijland. Branching time and abstraction
in bisimulation semantics (extended abstract). CS-R 8911, Centrum voor
Wiskunde en Iaformatlca, Amsterdam, 1989.
A.J. Hu, D.L. DiLl, A.J. Drexler, and C.H. Yang. Higher-level specification

and verification with bdds. In 4th Workshop on Computer.Aided Verifica-
tion (CAV92), Montrgal, To appear in LNCS, Springer Verlag, june 1992.

657

[HM85]

[ttoa85]

[so89]

[KK86]

[Koz83]

[Kur89]

[Lam91]

[LW88a]

[LTSSb]

[Mil71]

[Ore44]

[scgo]

[wais8]

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-
currency. Journal of the Association for Computing Machinery, 32:137-161,
1985.
C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Inter-
national, 1985.
ISO. IS ISO/OSI 8807 - LOTOS: a formal description technique based on
the temporal ordering of observational behaviour. International Standard,
ISO, 1989.
J. Katzenelson and B. Kurshan. S/R: A Language for Specifying Protocols
and other Coordinating Processes. In 5th Ann. Int'l Phoeniz Conf. Comput.
Commun., pages 286-292, IEEE, 1986.
D. Kozen. Results on the propositional #-calculus. In Theoretical Computer
Science, North-Holland, 1983.
R.P. Kurshan. Analysis of discrete event coordination. In REX Workshop
on Stepwise Refinement of Distributed Systems, Mook, LNCS 430, Springer
Verlag, 1989.
L. Lamport. The Temporal Logic of Actions. Technical Report 79, DEC,
Systems Research Center, 1991.
K. G. Larsen and B. Thomsen. Compositional proofs by partial specifica-
tion of processes. In LICS 88, 1988.
N.A. Lynch and M.R. Tuttle. An introduction to Input/Ouput Automata.
MIT/LCS/TM 373~ MIT, Cambridge, Massachussetts~ november 1988.
R. Milner. An algebraic definition of simulation between programs. In Proc.
Second Int. Joint Conf. on Artificial Intelligence, pages 481-489, BCS, 1971.
O. Ore. Galois eonnexions. Trans. Amer. Math. Soc, 55:493-513, February
1944.
G. Shurek and O. Grumberg. The Modular Framework of Computet-Kided
Verification: Motivation, Solutions and Evaluation Criteria. In Conference
on Automatic Verification (CA V), Rutgers, N J, LNCS 531, Springer Verlag,
1990.
D. J. Walker. Bisimulation and Divergence in CCS. In 3th Symposium on
Logic in Computer Science (LICS 88)~ IEEE, 1988.

