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A b s t r a c t .  We study property preserving transformations for reactive 
systems. A key idea is the use of e-slmulations which are simulations 
parametrized by a relation 6, relating the domains of two systems. We 
particularly address the problem of property preserving abstractions of 
composed programs. For a very general notion of parallel composition, 
we give the conditions under which simulation is a precongruence for 
parallel composition and we study which kind of global properties are 
preserved by these abstractions. 

1 I n t r o d u c t i o n  

The investigation of property preserving abstractions of reactive systems has 
been the object of intensive research during the last years. However, the existing 
theoretical results are very fragmented. They strongly depend on the choice of 
the specification formalism and the underlying semantics. 

Some results are given in the framework of linear t ime semantics as e.g., 
in [AL88,LT88b,Kur89] where the underlying semantics of as well programs as 
properties are languages traces. The notions of abstractions proposed are based 
on the use of structure homomorphisms.  

In the framework of process algebras, the problem of combination of ab- 
straction and composition is the problem of defining proper ty  preserving equiv- 
alence relations or preorders which are congruences, respectively precongru- 
ences for parallel composition and abstraction. This problem has been studied, 
for equivalences e.g., in [HM85,BK85,GS86,GW89,GS90b] and for preorders in 
[LT88a,Wa188,CS90,SG90,GL91]. 

The results presented here are based on those given in [BBLS92], where a 
general framework for property preserving abstractions is given. Program models 
are transition relations and abstractions are given by Q-simulations, which are 
parameterized by a relation ~ between the domains of both  systems. Thus, we 
do not restrict ourselves to abstractions defined by functions from the concrete 
to the abstract  domain as cf. in [Kur89,CGL92]. 

In [BBLS92] the problem of compositional abstractions is not taken up at 
all. Here, we extend the results on property preservation to composed abstract  
programs, obtained by alternating steps of abstract ion and composition. For a 
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general notion of parallel composition (expressed on program models), we give 
conditions under which composition of abstract programs preserves properties 
of fragments of branching-time #-calculus. 

Our program models are transition relations on some domain D and are rep- 
resented symbolically. The validity of the given results does not depend on the 
symbolic representation, but their usability (computation of abstract programs) 
does. Program models may be composed by means of three composition opera- 
tors, namely a synchronous, an asynchronous and a mixed one. With these three 
operators we can express most of the existing composition operators, for instance 
those of CSP [Hoa85], Lotos [ISO89], Unity [CM88], of S/R-models [KK86] and 
of I/O automata [LT88b]. 

The results presented in the paper are the following: for programs Ri and 
R~, abstraction relations ~i from the domains of Ri to the domains of R[, we 
give conditions under which: 

1. R~ ei-simulates R~ implies Rt (9 R2 (et N ~2)-simulates R~ | R~ where 
| is one of the three parallel operators. 

This result allows us, using the results of [BBLS92], to deduce that for any 
property f of the fragment DL# of the #-calculus (defined in Section 5) such 
that all atomic predicates of ] are preserved by fl (see Definition 14), then 
R~ | R2 satisfies f implies R1 | R2 satisfies f.  

2. If (Ri)e, are reasonable ~i-abstractions of Ri then, (R1)~ | (R2)~2 is a 
reasonable (Yl N Q2)-abstraction of R1 | R2, 

where R e stands for the abstract program computed from R by means of the 
abstraction relation ~. 

The conditions depend on the considered parallel operator | but for all par- 
allel operators studied here, it is not necessary that the processes are defined on 
independent domains. However, in order to have (2) for the asynchronous and 
also for the mixed parallel operator, the abstraction ~1 N P2 must be decompos- 
able so as the relation on the common domMn is independent of the relations on 
the domains proper to each of the processes. 

The paper is organized as follows. In the following section, we define the par- 
allel operators. In Section 3, we present the results concerning composition and 
abstraction, which are illustrated by a small example in Section 4. In Section 5, 
we study which kind of properties are preserved by the abstractions defined in 
Section 3 and we illustrate these results in Section 6. 

2 Parallel Composition and Abstraction Operators 

First, we introduce some definitions and notations concerning intersections and 
unions of sets on different underlying domains. 

Domains are as usual sets of valuations of program variables. We suppose a 
universal set of global program variables V. Any domain is the set of valuations of 
some subset of program variables V C_ ]), denoted D r .  Thus, e.g., for V = {z, y}, 
D v  = D~ • Dy. 
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D ef in i t i on  1. concerning independency of domains and projection functions. 

- For any V, W the domains Dv and Dw are called independent if[ V A W = 0, 
that means they are defined on separate variable sets. 

- For any V, W, we denote by 7~(Dv, Dw), the set of binary relations from 
Dv ~o Dw. If Dv = Dw, we write ~ D v ) .  

- For V, W such that V C_ W, we denote by nv  the projection function in 
T~( Dw , Dv ). 

Now we can define intersections and unions of sets on different domains Dv 
and Dw as operators on Dv u w. 

D ef ln l t i on  2. Let Dv, Dv~,Dw, Dw,~i = 1,2 be domains, X C Dr,  Y C Dw. 
Then we define, 

- X A Y = I  C D v u w  ~rv(z) e X  A 7rw(z) ~ Y  } 
x u y e Dv w e e r } 
Consider binary relations Ri E T~(Dvi, Dw~). Then, we define relations 

R~ A R2 6 1~(Dv, u v~, Dwt u w~ ) and R1 x R2 6 ~(Dv, x Dye, Dw~ x Dw~), by 

- R~ ~ R~ = { ( z , ~ ' )  I z e D v , ~ v ,  A z' e D w , ~ w ,  A Orv,(z),~w,(z')) eR~ 
A e } 

- t h  • R~ = ( ( z , z ' )  l z e R~ A z' ~ R~} 

We suppose that programs are represented by binary relations (transition re- 
lations) on some domain. This is a very general form of programs. We do not 
consider initial states since they are not necessary to obtain the results and it 
makes the representation of programs much simpler. In terms of TLA [Lam91], 
we consider programs consisting only of the invariant part. 

D e f i n i t i o n  3. Let be domains Dr, Dw and programs given by transition rela- 
tions R1 C 7~(Dv) and R2 E ~(Dw).  Then, we define the transition relations 
of tile composed processes in 7~(Dvuw) by 

- asynchronous composition : 
RIIIR2 = Rt x ldDw_v  O IdDv_w • 
where for any domain D, IdD is the identity function on D. 

- synchronous composition : 
RI~R2 = Rt (7 R2 

- mixed composition : 
Consider transition relations Ri of the form R1 = U / j  Rli and R2 = 
U~r R2j. Let be A _C I x J ,  indicating which commands have to be ex- 
ecuted synchronously, A1 = {i[3j.(i,j)e A} a n d  Az = {jl3i.(i,j)CA}. 

Rz [[A]IR2 = U0,j)eA (Rt~ A R2j) U U~c~t~ (RL, • IdDw_v) u 
U;~, ( IdDv_w x Rz,) 

Comments : 

- In the asynchronous composition~ in each step one of the programs executes 
one of the currently enabled transitions and the other idle. This operator 
results in the "interleaving" of the component processes if they are defined 
on independent domains; if not, the execution of a transition of one of the 
processes may change the enabling conditions of the other one. 
This operator is exactly the union operator of Unity [CM88]. 
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- In synchronous composition, in each step both programs execute exactly one 
action possible in this state, such that  the changes on the common variables 
are consistent. This operator corresponds exactly to A applied on programs 
described by TLA formulas; it is also very similar to program composition 
of S/R models [KK86]. 
If the domains of the component processes are independent, this operator is 
exactly the one introduced in [GL91]; since they use also the same preorder, 
their results are comparable to ours in the sense that  they consider a logic, 
subset of ours, and the particular case of independent domains. 

- Finally, in the mixed composition operator, some of the actions must be ex- 
ecuted synchronously, whereas the others are executed asynchronously. This 
operator is not exactly the one in CSP [HodS5] or LOTOS [ISO89], where all 
processes have di~stinct variable sets and communicate by exchanging values; 
however the here defined operator allows to simulate these operators. The 
results stated here are valid for any operator which can be considered as a 
special case of the here defined operator. 

The first two operators need imperatively models with shared memory be- 
tween processes in order to allow communication, whereas the third one allows 
also communication based only on action names without shared memory. Nev- 
ertheless, in practice, processes composed by the third operator share often at 
least some variables which are written by one of them and read by the other 
(this allows to simulate the Lotos operator t[][ ). 
The mixed composition operator is the most general one as it allows to express 
the other ones as follows: II is equal to I[0] and | is equal to [I • J]l. We prefer 
however to keep these operators because they are interesting to be considered 
as subcases. 

L e m m a 4 .  Let R1 = (.J~d RI~, and R2 = UjcJ R2j, be transition relations 
and A C_ I • J as in Definition 3. Then, 

- R I I I R , :  = Uic l (R l i  • IdDw_v) U Ui~j( IdDv_w • R2j) 
- RI|  = U ( i j ) d •  

-RI I [A]IR2  = (l[(i,j)ea(Rl~| ][ (H/cA1R1/)[] (l[jq.4~ R2j) 
where we use the obvious n-dry extension of H. 

- R1 II R~ = R1 [0]t R~ 
R1 | = R1 I[I x J] R~ 

The definition of y-simulation is the same as in [BBLS92] and defines our 
imtion of preorder on programs. First, we need to introduce the "predicate trans- 
formers" We and pi"e. 

Def in i t ion  5. Given a relation e E ~ ( D , D ' ) ,  we define the functions 
 e[eJ, e[e] [2 D' 2 by, 

- V X  C_ D ' .  pre[e](X) -= {x E D ] Sx' E X . e(x,x ')} defines the inverse 
image of X by ~. 

- p~e[e] is the dual of prele], i.e., 

VX C D ' .  p~e[e](X) = lqre[Q](X') = {x E D I Vx' e D ' .  e(x ,x ' )  =~ ~' E X }  

Def in i t ion  6. Let R E 7~(D) and R~ E 7~(Da) be transition relations, and let 
e be an abstraction relation in 7~(D, Da). Then 

R e-simulates R~ iff pre[Q -1] o pre[R] o p~e[e ] C_ pre[R~] 
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Notice that "there exists e such that e-simulates" defines a preorder on pro- 
grams which is the same as the one defined in [GL91], and which is also the 
standard simulation preorder [Mil71]. If there exists g such that R e-simulates 
R~, we say also that R simulates Ra o r  Ra is an abstraction of R. 

D e f in i t i on  7. Let be given a program by a transition relation R = (.Ji Ri 6 
~ ( D ) .  For any abstraction relation g 6 ~ ( D ,  Da) we define an operator e yield- 
ing an abstract program R e 6 ~.(Da), defined by the transition relation, 

R e = g - l o R o g =  U~ ~ ~ 1 7 6 1 7 6 1 7 6  

The following property justifies our motivation for computing abstract pro- 
grams R e from R and g: for a given abstraction relation e we want to compute 
an abstract program R e with a reasonable cost and reasonably close to R, such 
that a maximum of properties that are satisfied on R are also satisfied on R e. 
In general the least abstract program Ra such that R g-simulates Ra does not 
exist (since pre[e -1] o pre[R] o p~eIe ] does not necessarily distribute over U and 
it is therefore not of the form pre[Ra] for some relation R~). 
However, R e is r e a s o n a b l e  in the sense that  for any transition relation R~, such 
that 
R e-simulates R~ and R~ _C R e and for any property f of the #-calculus such 
that R satisfies f ,  we have Re satisfies f iff R e satisfies f .  This is expressed by 
the following proposition: 

P r o p o s i t i o n  8. 
3Re. R<eR~,  R~ C R e 

7 f  E n L , ,  R a ~ x f  ~ R e ~ x ~ f  

where I and I A = post[el o I are the interpretation ~unctions on the concrete and 
abstract domains respectively. 

Proof. given in the full paper. 

P r o p o s i t i o n  9. Let R be a transition relation on D, 8 E ~ ( D ,  Da) an abstrac- 
tion relation total on D (i.e. p~e[g] C_ pre[g]). Then 

- R p-simulates the abstract transition relation R e which defines a reasonable 
abstraction of R with respect to ~. 

- I f  even p~'e[e ] = pre[g], i.e., g is a total/unction firom D into On, R e defines 
the least abstraction o/  R with respect to g. 

3 Abstraction of Composed Programs 

When dealing with complex programs, it is interesting to construct abstractions 
as far as possible before composition. This allows to compute abstractions on 
smaller transition relations (and domains), and to compute the composition on 
the so obtained smaller abstract programs. Here we show in which cases one 
obtains an abstraction of the original composed program by proceeding this 
way, and furthermore, in which cases this can be done without losing too much 
with respect to the abstraction obtained proceeding the other way round. 

We give conditions under which simulation is monotonic with respect to the 
different composition operators | i.e., 

(R1 sinmlates R~) and (R2 simulates R~) 

R1 | R2 simulates R~ | R~ 
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holds. We show also which kind of atomic predicates of the composed program 
are preserved. 

Let R1 ~ 7~(Dv) and R~ ~ 7~(Dw) be transition relations and 0t e 7~(Dv,Dv:) ,  
02 ~ T~(Dw, Dw:)  abstraction relations. For any composition operator | of Defi- 
nition 3 we have to find an abstraction relation 0 ~ 7~(Dv ~ w,  Dv: u w:) allowing 
to compute (R~)e, | (R2)e: instead of (Rt | i.e. such that (Rt)o, | (R~.)o~ 
is reasonably close to (Rt | R~)e. 

We show that for all operators of Definition 3, Ri 0i-simulates R~ implies 
R~ | R2 (01 ~ 02)-simulates R~ | R~ under some conditions on the abstraction 
relations 0i. 

P r o p o s i t i o n  10. Let be given transition relations Ri ~ 7~(Dv~), 
R'~ ~ 7~(Dvo) and abstraction relations 0i ~ 7~(Dv~,Dv~.) total on Dye, such 
that 01 ~ 02 is total on Dvt u v~. Then, 

Ri o-simulates Ri; i = 1,2 implies Rx| (Or f3 Oz).simulates Rx|  ' 

Proof. given in the full paper. 

We are interested in the particular case that RI| (Or N ~2)-simulates 
RI,~ | and furthermore Rto~ | is an abstraction reasonably close to 

It turns out that  if the values in Dye= n v:o in 01 and in 02 depend only on 
Dv~ n v~ and if the projection of 01 n 02 on 7~(Dvt n v2, Dye= n v2:) is a function, 
we hay% 

and it is certainly less expensive to compute Rlot |  than (Rt |  n ~ .  

Proposition 11. Let be given programs by transition relations Ri E 7~(Dv~), 
and R~ E T~(Dv,.). Let be W1 = V1 - V2, W = V1 f3 V2, W2 =- V2 - V1 and 
W l a =  VI~ - V2~,I~ = Vlo n V2,,W2a = V2~ - V1,. Let 0~ e n ( D v , , D v , . )  
be abstraction relations, such that 01 N 02 total on Dv~ uv2, and such that 0i 
can be put into the form 0i = Oit A 0~2, where Olt E 7~(Dw~,Dw~o) and 0i2 E 
7~(Dv;, Dwo). Then, 

R, O-simulates i = t, 2 implies R1 II R2 (ol n e )-simulates Ri II 

Proof. given in the tull paper. 

Remains to see in which cases RI~I [[R2o~ is a reasonable abstraction of 
Rt  [[ R2. It is easy to see that in general Rte, 1[ R2~ and (Rt II R2)~, n r are not 
comparable~ but both reasonable abstractions. 
In the case that  Qt M 02 can be put into the form 011 • 0 x 02t such that  
0 E 7~(Dw,Dw=) and 0it C 7~(Dw,,Dwo,) are functions, Rt~t [[R2Q2 and 
(R1 []R2)~, ne~ coincide. If 0it are not fnnctions, we have even Rt~, [[R2~2 C 
(R1 [I R2) 1 o .  
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Proposition 12. Let be given programs by transition relations Ri : Ui~ Riy E 
7~(Dv~) and 
R~ = U~, R~  E n ( D v , . ) .  Let be W~ = Y~ - V2, W = V~ n V2, W~ = V2 - V~ 

and Wla = VI~ - V2~, W~ = VI~ A V2a, W2a = V 2 a  - Via. Let ~ E 7~(Dv~,Dv~.) 
be abstraction relations, such that Yl A 62 total on Dvt uv2, and such that yi 
can be put into the form ~i = yil • ~i2, where Yil E 7r and ~i2 E 
7~(Dw~Dw~). Let be furthermore A C I1 • I2 a synchronization set. Then, 

R1 I[A]IR~ (Yl A O~.).simulates RIe, I[A]IR~. 

Proof. The fact that R1 Ill R2 can be expressed by using only | and tl as given 
in Lemma 4 and that  the condition of both of the preceding Propositions are 
satisfied is enough to prove the Proposition. 

Proposition 13. Let Rt E ~(Dv~),  R2 E 7~(Dv~) be transition relations. 

1. RI | Q-simulates RI for some y such that 

Y X  C Dye. pre[o](pre[y-1](X)) = X 

2. R1 o-simulates R1 [[ R2 for some ~ such that 

VX C Dye. pre[~](pre[~-1](X)) = X 

Proof. Let be W = V1 U Vs. The required abstraction relations are 

- gl = {(d,d') [ d e D w  A d' E DvI A 7rye(d) = d'} E T~(Dw, Dvl) in case (1) 
- ~ = {(d',d) 1 d' E Dv, A d E D w  A 7cv~(d) = d'} E T~(Dv~,Dw) in case (2) 

Notice that Q1 is a function but ~2 is not. 

By using the results given in [BBLS92], Proposition 13 allows to deduce that  
formulas of [:fLu (cf. Section 5) are preserved from an asynchronous product to 
its components, and from each component process to the synchronous product. 

Now, we obtain from the preceding Propositions and the fact that R |  = R 
for any transition relation and any parallel operator, the results of [GL91] as a 
particular case for the operator | 

4 Example 

In this section we illustrate the Propositions 11 and 12 with an example of a 
mobile moving on a grid. 

The motion of a mobile on a grid is controlled by a controller so as to visit 
cyclically the points C D A C D A  .... Initially the mobile is within the rectangle 
defined by the points (A, B, C, D) (see figure 1). Its motion results of two inde- 
pendent motors. 

The motor M x  makes the mobile move horizontally and M y  vertically, the 
controller Ctrl gives orders to both motors. We describe processes with a set of 
guarded commands of the following form: 

(label) guard --* command 



651 

Y 

V 
D 
. . . . . . . . . .  ~ . . . .  [ . . . .  ~ . . . .  ~ . . . .  ~ . . . .  ~ . . . . .  

...... [ . . . .  : . . . .  : . . . .  ~ . . . .  r . . . .  ~ . . . .  ~ . . . . .  
i * , e i I , 

. . . . . . . . . . . . .  F . . . . . . . . . . . .  * . . . .  �9 . . . .  

i . i i b �9 
i i , i | | 

. . . .  , , . . . .~  . . . .  ~ . . . .  ~ . . . .  ~ . . . . .  
i i , t t * m 
t t , , i * m 

, : : : : : : 
. . . . .  . . . .  . . . .  . . . .  . . . .  

0 1 H 

C 

B : p  X 

Fig ,  1. Mobile 

where  the  label ident i f ies  the  g u a r d e d  c o m m a n d  a n d  can  be  used  for synchro-  
n i z a t i o n ,  the  guard is a b o o l e a n  c o n d i t i o n  which  au tho r i ze s  or n o t  the  e x e c u t i o n  
of the  command. 

T h e  m o t o r  M x  is def ined  on  the  var iab les :  
- dirx: a t h r e e - v a l u e d  va r i ab le  d e n o t i n g  the  m o v e m e n t  d i r ec t ion  (Left,  R igh t  

or S top) ;  
- X: a real  n u m b e r  which  deno te s  the  pos i t i on  of the  mob i l e  on  the  ho r i zon t a l  

a x e .  

- 6 x  is a r a n d o m  i n p u t  a n d  is a pos i t ive  real  n u m b e r .  
I t s  t r a n s i t i o n  r e l a t i on  is g iven  by:  

Mx:  ( r ight)  (dirx = R) A (X  + ~x < H)  --~ X : =  X + 6 x  
(left) (dirx= L) A (X-~x  >__0) --* X := X - 6 x  
(A) true ~ d irx  : =  R 
(C) true --* d irx  : =  L 
(D) true --* d irx  : =  S 

T h e  m o t o r  M y  is def ined  ana logous ly .  

M y :  (up)  (diry = U) A (Y  + 6y <_ V) --* Y := Y + 6y 
(down)  (dirv = D) A (Y  - 6v >_ O) -* Y : =  Y - 6v 
(A) true --* diry : =  U 
(C) true --~ diry : =  S 
(D) true --~ diry : =  D 

T h e  con t ro l l e r  is def ined  on  four  var iab les :  
- X ,  Y d e n o t e  the  c u r r e n t  p o s i t i o n  of the  mobi l e ,  
- X c , Y c  are the  c o o r d i n a t e s  of the  p rev ious  v i s i t ed  cont ro l  po in t .  

Ctrh (A) ( X c  = 0 ) / \  (Yc = V) h (Y = 0) --~ Yc  : =  0 
(C) ( X c  = O) A (Yc = O) A (X  = H)  A (Y  = V)  -~ X c  := H A Yc  := V 
(D) ( X c  = H)  A (Yc = V) A (X  --- O) --~ X c  := O 
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The whole program is defined by ( M x  II My)  It(A, A), (C, C), (D,D)]I Ctrl. 

This system has an infinite number of states as the mobile can be in any position 
within the rectangle defined by the points A, B, C and D. 

In order to verify that the mobile visits cyclically the points A~ C and D~ if it 
is correctly initialized~ the only information we need is whether each coordinate 
X (respectively Y) is equal to 0, is between 0 an H (respectively V) or is equal 
to H (respectively V). 

We propose the following abstraction relations consisting in replacing the co- 
ordinates X and Y by three-valued variables x E {h0, hi,  h2} and y E {v0, v~, v2} 
and replacing in the controller the coordinates of the control point X c  and Yc  by 
a three-valued variable Pcp E {A, C~ D} recording the previous visited control 
point. 

~z: (dirx ,  X ) p x ( d i r x ,  x ) i f f  
(x = ho A X = O) V (x = h~ A 0 < X < H )  V (x = h2 A X = H )  

~y: (diry,  Y ) p y ( d i r y ,  y) iff 
( y = v o A Y  =O) V ( y = v ~  A O <  Y < V) V ( y = v 2 A Y =  V) 

~Ctrl: (Xc ,  Yc,  X ,  Y)ec t , z (Pcp,  x, y) iff 
[ ( x = h 0 A X = 0 )  V ( x = h l A 0 < X  < H )  V ( x = h 2 A X - = H ) ] A  
[ (y=voAY-=-0 )  V ( y = v l A 0 < Y < V ) V ( y = v 2 A Y = V ) ] A  
[(Pcp = A A X c  = 0 A Y c  = O) V ( P c p =  C A X c  = g A Y c  = V)V 
(Pcp = D A X c  = O A Yc  = V)] 

Note that the domains of M x  and M y  are 
abstractions. We compute the following 
controller: 

independent and so are the respective 
abstractions for the motors and the 

(Mx)ex:  (right) (dirx -= R) A (x = ho) --* x := hi 
(right) (dirx = R) A (x = hi)--* x := hi or x := h2 
(left) (dirx -= L) A (x = h2) --*x:---h1 
(left) (dirx = L) A ( x = h l )  --* x :=ho o r x : = h l  
(A) true --* d irx  := R 
(C) true -* d irx  := L 
(D) true -~ d irx  := S 

We obtain an analogous abstract program for M y .  

(Ctrl)oo,~,: (A) (Pcp = D) A (yo = vo) --, Pcp :-- A 
(C) (Pcp = A) A (x = h2) A (y = v2) --* Pcp := C 
(D) (Pep = C) A (xo = ho) --. Pcp := D 

From Propositions 11 and 12 and the fact that gx  [3 ~y f-) ~ctvl - - ~  ~CtrI we have 
that 

PA:  ( (Mx)ax  I] ( M y ) ~ )  It(A, A), (C, C), (D,D)] I CtrI~c,. , is a n  Oc~.,- 
abstraction of P.  
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5 Preservation of Properties 

It is interesting to characterize the "global" properties preserved by the abstrac- 
tion relation 01 n Q2 on the compositions of abstract programs defined previously. 

From the results given in [BBLS92] we have the following result on preser- 
vation of properties of [3L~,, which is the fragment of the #-calculus of [Koz83], 
consisting of the fornmlas without occurrences of negations and using only uni- 
versal quantification on paths. [:]Lu is strictly more expressive than linear time 
#-calculus, and therefore contains all regular safety properties. 

For a transition relation R, the meaning of formulas are subsets of the domain 
D of R, where the meaning of atomic predicates in ~v is given by an interpretation 
function I : :P --* 2 D. 

We say R satisfies f or R ~1 f if the meaning of f depending on the transi- 
tion relation R and interpretation function I is equal to D. 

In order to verify a property f of DLu on a program R on D with interpre- 
tation functions of atomic predicates I : 7 ~ --, 2 D respectively I~ : P --, 2 D", we 
can proceed as foUows: find an abstraction relation 0 and then, 

(1) Verify R e ~prr f 
o r  

(2) Verify R e ~I~ f .  

We know from [BBLS92] that in case (1), we have R 0 ~p~,[o-1]oX f implies 

R ~p-~[0]op-~[o-'loZ f- 

Thus, in order to obtain the initially required result, R ~z  f 
we need for any predicate symbol p occurring in f 

I(p) C_ pre[o] o pre[o -11 o I (p) (*) 

As the opposite inclusion is always true, (*) equivalent to 

pre[4 o pre[O-ll o I (p) = x(p). 

Analogously, in case (2) R 0 ~z~ f implies R ~pve[o]oI. f .  
As before, in order to be sure, that f is the same property on both interpre- 

tations, we need to know that  all predicates p occurring in f ,  

 e[O -1] owe[0] o Io (p) = I .(p),  

i.e. I,~(p) is in the image of 0 on which we[0] defines an isomorphism from 
image(o ) onto image(o -1) [Ore441. 

Therefore, we already know which type of formulas we are allowed to verify 
on abstract programs. Here, we are interested in characterizing the set of predi- 
cates (considered as subsets of the domain D, respectively D I) of the composed 
concrete program that  can be used in these formulas, such that f is preserved 
in the way explained above. 
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Def in i t i on  14. Let be D, D~ domains, I : :P --~ 2 D respectively I~ : :P --~ 2 D- 
interpretation functions of atomic predicates and 0 an abstraction relation in 
7~(D, D~). Then we say for a predicate p that  it is preserved by 0 iff 

pre[p] opre[o -~] o I (io) = I(p) respectively pre[p -~] o pre[o ] o Ia (p) = In(p). 

Notice that this notion of preservation of predicates depends only on the 
abstraction relation p, and not on the particular program (i.e. transition relation) 
under study. 

In the following Proposition, we characterize a set of predicates on domains 
of programs of the form R~ | that  is preserved by relations of the form ~ M 8z 
as in the Propositions 10 to 12. 

P r o p o s i t i o n  15. t e t  0~ E 7~(Dv~,Dv,~), i = 1~ 2 be abstraction relations total 
on Dv~ and such that ~1 ~ 02 is total on Dv~ u vs. Let p be a subset of Dv~ u v2 
(interpretation of some atomic predicate) that can be put into the form Ui~j p~ (1 
02 where p~ C Dv~ and p~ C_ Dv~ and J finite; let Pa be a subset of Dvx. u v~ 
that can be put into the form U~j,  p~i ~ p~i where pt~i C_ Dv ~  and P~i C_ D v ~  
and J'  finite. Then, 

- I f  all the p~ ave presewed by Oj (for i C J and j = 1, 2), p is preserved by 
01 M ~2. 

- I f  all thepJl are pvesewed by 0r (for i C J '  a n d j  = 1,2), Pa is preserved by 
01 M 02. 

Proof. pre[p](pre[o.-1](Ui pl)) = Ui pre[0](pre[o-t](Pi)) and Vi e J 
pre[~j](pre[e;~](p~)) = p~, j  = 1, 2 implies 

pre[e~ n ~,2](pre[o? ~ n o~](p~ n p~))  = 

pr~[~,,](pre[O;~](p~)) n prde~](pr4~-~](p~)) = p~ n p~. 

Comment: Notice that not only sets of this form may be preserved by 01 M 02. 

However, in the case that 81 M 02 is a product of independent relations, 
i.e., 01 f3 ~2 = 811 • 0 x 022, as it has been required in Propositions 11 and 
12, pre[pl n 02] o pre[Q; 1 n 02] is of the form (pre[Qll] o pre[0~-tt]) x (pre[0] o 
pre[0-~]) • (pre[0~] o pre[0~]) .  
Then, only sets p which can be put  into the form 

U ~  p~ n p~ n p~ 

where p~ C Dvl-v2,  P~ C Dv1~v~ and p2 C Dv~-vI are preserved by el M e2 
i if  all the p~ are preserved by Pll, all the p~ are preserved by 0 and all 
the p~ are preserved by 022- That  means instead of dealing with relations in 
7~(Dvl u v~, D v ~  u v~)  we deal only with relations on subdomains. 

6 Example Continued 

From the results given in [BBLS92] we have that  for any formula f in [2L/~ and 
any interpretation function I of atomic predicates on the abstract domain, 

PA ~Z f implies P ~p~e[e]oz f 
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The following CTL formula expresses the fact that  the mobile, if it is correctly 
initialized and does effectively change control points, visits the control points A, 
C and D cyclically. This formula can be translated into a rnLtt formula. 

f =(Pcp = A) implies - ,(Pcp= D) until (Pcp= C) A 
(Pcp = C) implies -~(Pcp = A) until (Pcp = D) A 
(Pcp = D) implies -~(Pcp = C) until (Pcp= A) 

In order to be sure that  the formula is preserved, we have to verify that  
predicates that  appear in the formula are preserved. The predicates involved in 
the formula appear only in Oct,z, we verify: 

pre[Oc~.z](pre[oc,~l] (I(Pcp = A) ) ) = I(Pcp = A) 

This equality is obvious, and so are the equalities for the other predicates. 

7 Discuss ion 

We have studied property preserving abstractions of composed programs for a 
eneral notion of parallel composition. The results are close to those given in 

ur89] in the linear framework and are extensions of those given in [GL91]. 
A key idea is the parametrization of simulations by a relation 0 which allows 

the computation of an abstract program (an idea which has been extensively 
used in the domain of abstract interpretation, cf. e.g. in [CC77]) and is good 
means to express composition of simulations. 

The presented results are exploited in a tool which is currently being imple- 
mented. Its inputs are expressions using parallel and abstraction operators on 
boolean guarded command programs. The evaluation of such an expression re- 
sults in guarded command program. Moreover, our tool verifies symbolically any 
/z-calculus formula on programs and allows to know whether basic predicates are 
preserved, in sense of Definition 14, by the applied abstractions. 

Programs are represented by sets of relations instead of just a relation. Internally, 
each guarded con~nand is implemented by a BDD ("Binary Decision Diagrams" 
[Bry86]) which is an efficient representation of boolean expressions. We never 
compute the BDD corresponding to the global transition relation as 

- for the operator I[]l, we need the transition relations of each guarded com- 
mand. 

- the space needed for representation in memory of a set of relations is likely to 
be much smaller than that needed to represent the global transition relation 
[HDDY92]. 

The tool will be connected to the Caesar tool [GS90a], which translates Lotos 
programs into Petri nets. For an important  subclass of Lotos programs, these 
Petri  nets can easily be translated into parallel compositions of boolean guarded 
command programs, which will allow to test the tool for important  examples. 

All the results obtained here are also valid if one represents programs by 
sets of functions and this should allow to obtain still smaller representations of 
programs as shown in [Fi191]. However, in case of functional representation, the 
abstract program cannot in all cases be computed as easily as R e for a program 
R and a relation 0. Experimentat ion is still necessary to compare the efficiencies 
of the two approaches. 
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