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Abs t rac t .  Daily experience shows that in the real world, the meaning 
of many concepts heavily depends on some implicit context, and changes 
in that context can cause radical changes in the concepts. This paper 
introduces a method for incremental concept learning in dynamic envi- 
ronments where the target concepts may be context-dependent and may 
change drastically over time. The method has been implemented in a 
system called FLORA3. FLORA3 is very flexible in adapting to changes 
in the target concepts and tracking concept drift. Moreover, by explicitly 
storing old hypotheses and re-using them to bias learning in new con- 
texts, it possesses the ability to utilize experience from previous learning. 
This greatly increases the system's effectiveness in environments where 
contexts can reoccur periodically. The paper describes the various algo- 
rithms that constitute the method and reports on several experiments 
that demonstrate the flexibility of FLORA3 in dynamic environments. 

1 I n t r o d u c t i o n  

One of the basic tasks of Machine Learning is to provide methods for deriving 
descriptions of abstract concepts from their positive and negative examples. So 
far, many powerful algorithms have been suggested for various types of data, 
background knowledge, description languages, and some special 'complications'  
such as noise or incompleteness. 

However, relatively little attention has been devoted to the influence of vary- 
ing contexts. Daily experience shows that  in the real world, the meaning of many 
concepts can heavily depend on some given context, such as season, weather, ge- 
ographic coordinates, or simply the personality of the teacher. 'Ideal family'  or 
'affordable t ransportat ion '  have different interpretations in poor countries and 
in the North, the meaning of 'nice weather'  varies with season, and 'appropriate 
dress' depends on time of day, event, age, weather, and sex, among other things. 
So time-dependent changes in the context can induce changes in the meaning or 
definition of the concepts to be learned. Such changes in concept meaning are 
sometimes called concepi drift (especially when they are gradual). 
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To discover concept drift, the learner needs feedback from its classification 
attempts, to update the internal concept description whenever the prediction 
accuracy decreases. This was the experimental setting of the system FLORA, 
which was first published in Kubat (1989), with a theoretical analysis in Kubat 
(1991). The system, though very simple, was successfuly applied in an expert- 
system-driven control mechanism for load re-distribution in computer networks 
(Kubat, 1992). 

Frankly spoken, the original program FLORA was not very sophisticated 
from the machine learning (ML) point of view because it did not contain such 
common ML mechanisms as explicit generalization operators or search heuristics. 
These came later, in the frame of FLORA2 (Widmer ~: Kubat, 1992) where some 
kind of intelligence was implemented (generalization, check for subsumption, and 
flexible reaction to the speed of drift). 

Still, even this later version lacked an important attribute of intelligent be- 
havior: the ability to use experience from previous learning. Whenever an old 
context reoccured, the system just blindly tried to re-learn it, waiving any previ- 
ous experience. The consequence was that even if the same context re-appeared 
a thousand times, the system always needed, on average, the same number of ex- 
amples to modify the concept description. This shortcoming motivated another 
upgrade of the system, FLORA3, which is able to adapt to concept drift while 
utilizing past experience and deals with recurring contexts much more effectively. 

The next section discusses, in more detail, the issues of hidden contexts and 
concept drift, and the relevance of this problem in real-world applications. Then, 
the system FLORA2 is described. Section 4 is dedicated to the main contribution 
of this paper, the algorithm for context tracking, which differentiates FLORA3 
from her predecessors. Section 5 reports on experimental results demonstrating 
the utility of the idea. 

2 Dynamic environments, hidden contexts, and concept 
drift 

When speaking about concept drift, one might distinguish two different types of 
drift (though they are not always clearly separable): Real concept drift reflects 
real changes in the world and can be exemplified by the changes in f a sh ion-  
'fancy skirt' or 'modern musiC--or language--the semantic variation of such 
words as left-wing policy, conservatism, or liberalism. 

Virtual concept drift, on the other hand, does not occur in reality but, rather, 
in the computer model reflecting this reality. In a practical setting, this kind of 
effect can emerge when the representation language is poor and fails to iden- 
tify all relevant features, or when the order of training examples for learning is 
skewed, so that different types of instances are not evenly distributed over the 
training sequence. 

Many potential sources of virtual concept drift can be identified. Most typ- 
ically, the teacher is to blame, having only a particular context in mind and 
considering only the related pieces of information to be relevant; or the teacher's 
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knowledge is limited. Also, the teacher may have good knowledge but some of the 
features may depend on values that cannot be measured, or the measurements 
are too expensive. 

Sometimes, the agent learns by experimentation and simply does not come 
across all reasonable examples. For illustration, consider an autonomous agent 
or robot moving through a foreign world and trying to induce rules to survive 
(see the experiments reported in Section 5). In a complex world where not all 
relevant features are explicit, there is no choice but to put up with variables and 
predicates that can be acquired by the robot's devices. Their number is of course 
limited. Obviously, slightly different laws are valid in different parts of the world. 
If you want to grow a palm tree, you will surely apply different techniques in 
Africa and on the Arctic Circle. 

Another aspect of the problem is that the agent does not a priori know how 
many contexts exist in the world, how to discern them, what their ordering 
is, and what impact they excercise on the concept drift. Sometimes, the drift 
consists in changed values of some variables, sometimes also the relevance of 
individual variables or predicates can dramatically change. Moreover, the tran- 
sition is usually only gradual with rather fuzzy boundaries between two different 
concept interpretations. All this must be taken into account when building a 
flexible learning system. 

The core idea underlying the philosophy of FLORA is that more recent pieces 
of information should receive higher levels of trust, in the belief that the older 
the examples, the higher the danger that they relate to an outdated context (the 
agent has meanwhile moved from the Arctic Circle to the Equator). The system 
always maintains a set of current (positive and negative) examples that represent 
its current world and that should be correctly described by the current concept 
hypothesis. The set of these examples is called window (FLORA, sitting in a 
coach, observes through it the world passing by). One by one, new examples are 
encountered and used to update the internal knowledge structures; at the same 
time, however, older examples are distrusted and deleted from the window. This, 
too, causes changes to the concept description. In this way, the current context is 
approximated--the system trusts only those examples that are currently inside 
the window. That enables FLORA to recognize a concept drift and adjust itself 
to it. 

The latest descendant of the family, FLORA3, possesses the ability to store 
encountered contexts for future use, and to re-examine them whenever it discov- 
ers (or suspects) drift. Evidently, this makes sense only if the same (or similar) 
contexts reappear in the future, which is certainly the case in many realistic ap- 
plications where the number of possible contexts is ]ini~e. For instance, there are 
four seasons that follow one by one in a cyclic order and cause regular changes in 
many natural phenomena. The specific environment where a robot is expected 
to work might consist of several rooms, each with its own characteristics. Even 
in fashion we can see that some phenomena reappear periodically, among them 
short skirts, preferred dress fabrics, or hair style. The same goes for contexts 
in political life--autocracy versus oligarchy versus democracy, lesser or greater 
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influence of the church, and the like. Each of them implies different heuristics 
for defining law, guidelines for everyday life, and morale (these reappear, too). 

3 T h e  b a s i c  F L O R A  f r a m e w o r k :  l e a r n i n g  a n d  f o r g e t t i n g  

In this section we briefly review the basic learning mechanism in the FLORA 
framework, as it was already realized in FLORA2 (Widmer • Kubat, 1992). The 
following section will then describe the more advanced features of FLORA& 

The principle of the FLORA algorithm is shown in Figure 1. The rectangle 
'knowledge' stands for the current concept description, the rectangle 'window' 
contains the currently trusted examples. Each time a new example arrives, it 
is added to the window; from time to time, the oldest or, alternatively, least 
relevant example is deleted from the window. Both events necessitate updates 
to the concept description. 

knowledge 

context 1 

I 
2 

\ 

examples 

( 
context 2 

Fig. 1. The window of the system FLORA moving across the stream of examples. 

The concept description is represented by three description sets, ADES, 
PDES, and NDES. The description sets are collections of description items--- 
conjunctions of attribute-value pairs. Thus a description set can be interpreted 
as a DNF expression. ADES is a set of 'accepted' description items (D/s) cov- 
ering only positive examples in the window (not necessarily all of them) and 
no negative examples; PDES is a set of 'potential' Dis, covering both positive 
and negative examples; NDES is a set of 'negative' Dis, covering only negative 
examples. Any DI for which we cannot find at least one example in the window 
is deleted. (Widmer & Kubat, 1992) gives an intuitive motivation for these three 
sets. 

Obviously, each example that is being added to or deleted from the window 
may be described by a number of Dis. This entails the following consequences: 

Adding a positive example to the window can cause new description items to 
be included in ADES, or some existing items to be 'confirmed,' or existing items 
to be transferred from NDES to PDES. 
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Adding a negative example to the window can cause new description items 
to be included in NDES, or some existing items to be 'reinforced,' or existing 
items to be transferred from ADES to PDES. 

Forgetting an example can cause existing description items to be 'weakened,' 
or even deleted from the current description set, or moved from PDES to ADES 
(if the example was negative) or to NDES (if the example was positive). 

Figure 2 summarizes these updates. The arrows indicate possible migrations 
of description items between sets after learning (L) or forgetting (F) from a 
positive (+) or negative (-) instance, respectively. 

Learning: 

Forgetting: 

L- L+ 

Fig. 2. Transitions among the description sets. 

To operationalize this learning schema, let us recapitulate the learning algo- 
rithm of FLORA2 as it was presented in Widmer and Kubat (1992). Assume 
that the three description sets already exist (at the beginning they might also 
be empty) and that they are encoded in the following form: 

ADES = {ADesl/AP1, ADes2/APu,...} 
PDES = {PDesl /PP1/PN1, . . .}  (1) 
NDES = {NDesl /NN1, . . . }  

where ADesi (PDesi, NDesl) are description items; APi and PPi represent 
the number of positive examples matching the respective Dis; and PNi and NNi 
represent the number of negative examples matching the respective Dis. The 
counters APi, PPi, PNi, and NNi help to decide whether to move the respective 
item to another description set, or, if it is equal to zero, whether to drop it 
altogether. 

In order to prevent combinatorial explosion, the sizes of these description sets 
must somehow be restricted. In FLORA2, the set ADESis not a set of all possible 
description items. It is constructed by stepwise careful generalization (see below) 
and, in effect, represents one non-redundant DNF formula that expresses the 
current concept hypothesis. The same holds for NDES. Redundancy is eliminated 
by checking for subsumption within description sets: ADES is kept maximally 
general (that is, if some description item ADcsi subsumes some ADesj, only 
ADesi is kept in ADES). In PDES, only the most specific descriptions are kept, 
and NDES is again maintained maximally general. Inconsistency is avoided by 
checking for subsumption between description sets. In this way, for instance, 
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over-generalization of ADES is avoided by checking it against PDES and NDES. 
These conditions are tested whenever one of the description sets is modified. The 
algorithms for incremental learning and forgetting then proceed as follows: 

Incremental learning: 

Assume that  the system is presented with a new training instance, with given 
classification C E {positive, negative}. Then the description sets are updated as 
follows (see also Figure 2): 

If classification C is pos i t ive :  

For all ADesi /APi  in ADES: 
if match(instance, ADesi) then APi := APi + 1; 

For all P D e s i / P P i / P N i  in PDES: 
if match(instance, PDesi) then PPI := PPi + 1; 

For all N D e s i / N N i  in NDES: 
if match(instance, NDesi)  then remove NDesi from NDES and include it 
into PDES as a triple N D e s i / 1 / N N i  and check the updated PDES for sub- 
sumptions; 

If there is no ADesi in ADES that  matches the new instance, then find a gener- 
alization of one of the ADesi E ADES such that  (1) the generalization covers 
the new instance; (2) the required degree of generalization is minimal and 
(3) the generalization does not subsume any descriptions in PDES or NDES 
(this ensures consistency against negative instances); as an extreme case, the 
description of the instance itself may be added to ADES; then check ADES 
for subsumptions (remove redundant descriptions); 

If classification C is nega t ive ,  the algorithm works analogously (just exchange 
ADES and NDES in the above algorithm). 

Incremental forgetting: 

w h e n  an old instance is dropped from the current window and 'forgotten,'  the 
description sets are updated as follows (again, see Figure 2): 

If the instance was a pos i t ive  one: 

For all ADesi /APi  in ADES: 
if match(instance, ADesi) then APi := APi - 1; 
if APi = 0 then remove ADesi from ADES; 

For all PDes l /PP i /PNI  in PDES: 
if match(instance, PDesl) then PPi := PPi - 1; 
if PPi = 0 then remove PDesi from PDES and include it into NDES as a 
pair P D e s J P N I  and check the updated NDES for subsumptions; 
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If the instance was a nega t ive  one, the algorithm works analogously (just ex- 
change ADES and NDES in the above algorithm). 

This algorithm provides the basis for learning in dynamic environments. How- 
ever, more is needed to achieve really flexible and effective learning behaviour in 
domains with substantial concept drift. 

4 F L O R A 3 :  E x p l i c i t  c o n t e x t  t r a c k i n g  

The ability to forget, as described in the previous section, provides the funda- 
mental basis for the system's ability to adapt to concepts that change over time. 
Eventually, old instances will drop out of the window and be forgotten. However, 
this will work well only in domains where changes in the concepts are almost 
imperceptibly slow. When dramatic or sudden concept shifts occur, the fixed 
window size prevents the system from reacting flexibly. Ideally, when the system 
notices (or suspects) a beginning concept drift, it should shrink the window in 
order to discard old instances that now contradict the new concept. FLORA3 in- 
cludes a heuristic to automatically adjust the size of its window during learning. 
This is the subject of the next section. 

Also, in environments where contexts can re-occur (periodically or randomly), 
the system would have to re-learn concepts that it had already learned at some 
earlier time. In such environments it would be advantageous to keep old, out- 
dated concepts around for possible use in the future. In FLORA3, a mechanism 
for doing this has been developed. It is tightly coupled to the window adjustment 
algorithm and will be described in the section after next. 

4.1 A u t o m a t i c  a d j u s t m e n t  of  window size 

The behaviour of a FLORA-type system depends crucially on the size of the 
window. Too narrow a window will cause relevant instances and information to 
be forgotten too early; and when the window is too wide, the system will be 
very reluctant to follow a concept drift: it will hang on to noisy or outdated 
instances and hypotheses too long. The optimal window size, then, is a function 
of the current learning situation and should not be fixed beforehand. Rather, the 
learning system should be intelligent enough to automatically adjust its window 
size to the current demands. These demands are, of course, not clearly definable; 
the adjustment decisions can be made on a heuristic basis only. 

We have experimented with many different heuristics for automatic window 
adjustment. The latest version takes into account both the complexity of the 
current hypothesis (vis-a-vis the number of instances covered) and the current 
estimated predictive accuracy of the hypothesis, which is constantly monitored 
by the system. The heuristic depends on three parameters which must be Set 
by the user: lc ( = threshold for low coverage of ADES); hc ( = threshold for 
high coverage of A DES); and p ( = threshold for acceptable predictive accuracy). 
Given these three parameters, the window adjustment heuristic (WAIl) is defined 
as follows: 
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Let N -- number of (positive) instances covered by ADES and 
S = size of ADES (in terms of number of literals) 

Then: 
If N / S  < lc (coverage of ADES is low) 

or the current predictive accuracy is bad (< p and falling) 
and if PDES is not empty (there are alternative hypotheses) 
then decrease window size by 20% and forget the oldest instances 

else if N / S  > 2 * hc (coverage extremely high) 
and the current predictive accuracy is good (> p) 
then reduce the window size by 1 

else if N / S  > hc (coverage high) 
and the current predictive accuracy is good (> p) 
then freeze the current window size (i.e., forget one example each time a new 
one is added) 

else grow window by 1 (accommodate new instance without forgetting the oldest 
one) 

where the predictive accuracy is an incrementally computed and updated 
measure of how well the current hypothesis fits the data: before learning from a 
new training instance, FLORA3 first tries to classify the instance on the basis 
of its current hypothesis; the predictive accuracy measure is the ratio, over the 
last 20 instances, of correctly classified instances. 

In more colloquial terms, the window adjustment heuristic operationalizes the 
idea that  the window should shrink (and old, now possibly outdated examples 
should be forgotten) when a concept drift seems to occur, and should be kept 
fixed when the concept seems stable enough. (When the concept is extremely 
stable, the window is even reduced stepwise by 1, in order to avoid keeping in 
memory unnecessarily large numbers of instances.) Otherwise the window should 
gradually grow until a stable concept description can be formed. The occurrence 
of a concept drift can only be guessed at by the learner, and the two heuristic 
indicators of such a drift used by FLORA 3 are (1) the complexity of the descrip- 
tions in the set ADES (where the intuition is that  during the time of occurrence 
of a concept drift, it will be difficult to find a concise concept description that  
is consistent with all the examples), and (2) drops in the predictive accuracy, 
which is constantly monitored. 

The ideal parameter settings will vary from one domain to the next. In all 
our experiments, we used lc = 1.2, hc = 4 and p = 70%. Given that  the heuris- 
tic is (necessarily) very syntactically oriented and is thus very sensitive to the 
description language used, it seems hopeless to try to find a completely general 
heuristic that  would not depend on any parameters. (Widmer & Kubat,  1992) 
discusses in more detail the effects of this heuristic on the learning process. 

4 . 2  S t o r a g e  a n d  r e - u s e  o f  o l d  c o n t e x t s  

As already noted, there are many natural domains where there is a finite num- 
ber of hidden contexts that  may reappear, either cyclically or in an unordered 
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fashion. In such domains, it would be a waste of effort to re-learn an old concept 
from scratch when it reappears. Instead, concepts or hypotheses should be saved 
so that  they can be re-examined at some later time, when there are indications 
that  they might be relevant again. The effect should be faster convergence if the 
concept (or some similar one) has already occurred. FLORA3 includes a mech- 
anism for doing just  this. In designing this mechanism, several questions had to 
be answered: 

1) Which parts of a hypothesis should be stored? 

2) Which hypotheses are worth saving? 

3) When should old hypotheses/concepts be reconsidered? 

4) How can the adequacy or 'degree of fit' of an old concept be measured in a 
new situation? 

5) How is an old hypothesis/concept to be used in a new situation? 

The answer to question 1) is quite simple: the concept description/hypothesis 
is a triple {ADES, PDES, NDES} and is saved as such, because these sets sum- 
marize the current state of affairs. The match counts associated with the de- 
scription items in the sets are not stored, because they will not be meaningful 
in some new situation. 

In designing a solution to question 5), we note that  when an old concept 
is retrieved at some later point in time, it finds itself in a new context: it will 
not agree with all the training instances in the current window; some items in 
the concept's description sets will be too specific, and others will be inconsistent 
with the data. Thus, it is not enough just to recompute the counts for the various 
description items. Instead, all the instances in the current window must be re- 
generalized. The retrieved concept is used as a model in this re-generalization 
process: the counts associated with all the items in the description sets are set 
to zero, and then the regular FLORA learning algorithm is invoked for every 
training instance in the current window. Instances that  fit items already in the 
concept's description sets will confirm these items, and generally, those partial 
generalizations in the old concept that  are in accordance with the new data  will 
be used in the re-generalization process. Others will not be confirmed by the 
new instances and thus their counts will remain at zero. After re-generalizing 
all instances in the window, all those description items that  still have counts of 
zero are removed as incorrect or irrelevant from the updated concept. 

As for questions 2) - 4) - -  which hypotheses deserve to be saved, and when; 
when should old concepts be reconsidered; how is the appropriateness of an 
old concept to a new situation measured - -  the criteria that  can be used to 
make these decisions can only be of a heuristic nature. Intuitively, only stable 
hypotheses/concepts should be saved, and the system should reconsider some 
old concepts whenever it perceives some substantial concept drift. It is the win- 
dow adjustment heuristic (WAH) that  tries to determine precisely these circum- 
stances. So in FLORA3, storage and re-examination of old hypotheses are tightly 
linked to changes in the window size. 

The complete algorithm for handling old contexts works as follows: 
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- When the current concept is stable (according to the WAH - see section 4.1): 
save the current hypothesis (unless there is already a stored concept with 
the same set of ADES descriptions). 

- When FLORA3 suspects a concept drift, i.e., when the WAH enforces a 
narrowing of the window: reconsider old, saved concepts and compare them 
to the current hypothesis. This is done in three steps: 

1) Find the best candidate among the stored concepts: an old concept be- 
comes a candidate if it is consistent with the current example. All the 
candidates are evaluated with respect to the ratio of the numbers of pos- 
itive and negative instances that  they match (from the current window). 
The best candidate according to this measure is chosen. 

2) Update the best candidate w.r.t, the current data: the retrieved concept 
description is updated by setting all the counts in the description sets 
to 0 and then re-processing all the instances in the window according to 
this hypothesis (see the above discussion). 

3) Compare the updated best candidate to the current hypothesis: use some 
'measure of fit' to decide whether the updated candidate (=  old concept) 
is better t han  the current hypothesis; if so, replace the current hypothesis 
with the updated old concept. In the current version of FLORA3, the 
measure of fit is simply the relative complexity of the description, as it is 
used also in the window adjustment heuristic: a hypothesis is considered 
better  if its ADES set is more concise. (Remember that  ADES covers all 
positive and no negative instances, so the number of instances covered 
is the same for the ADES sets in both the current hypothesis and the 
updated best candidate.) 

As one possible class of application domains for the FLORA systems is flex- 
ible control in real t ime systems (cf. Kubat,  1992), efficiency of the learning 
algorithm is an important  criterion. The above algorithm tries to maintain ef- 
ficiency by limiting the number of expensive re-processing episodes. First, old 
concepts are not reconsidered after every new training instance; they are only 
retrieved when the window adjustment heuristic suspects that  a concept drift is 
taking place. And second, the expensive part of reconsidering an old concept - -  
the re-generalization of all the instances in the window--is done only for one of 
them - the best candidate. Which old concept is the best candidate is deter- 
mined through a simple heuristic measure, the number of positive and negative 
matches (see above). This is a very weak measure, of course, and can sometimes 
lead to an inappropriate candidate being chosen. Thus, efficiency is achieved at 
the possible expense of quality. 

It seems worth pointing out once more exactly what the role of old con- 
cepts/hypotheses is in this process: at the t ime of a suspected concept shift, an 
old concept is used to bias the re-generalization of the examples in the window. 
It is not just  retrieved and used as the current concept hypothesis. Instead, the 
old concept is used as a model for the re-generalization of the instances: it simply 
provides a list of generalizations that  were useful in the past and that  might, at 
least in part, also be useful in the new context. This reflects the insight that  when 
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an old hidden context reappears, the target concepts will tend to be similar, but 
not necessarily identical to how they appeared in the old context. 3 

5 E x p e r i m e n t a l  r e s u l t s  

In (Widmer & Kubat, 1992) it was shown that F L O R A 2  (i.e., the basic learning 
algorithm plus automatic window adjustment) compares very favourably with 
systems like S T A G G E R  (Schlimmer ~5 Granger, 1986), which was also designed 
to deal with problems of concept drift. Here, we will concentrate on demon- 
strating that in domains with recurring hidden contexts, learning can still be 
considerably improved by explicitly storing and re-using old concepts. 

We have done extensive experiments with F L O R A 3  in various artificial do- 
mains, where we had full control over the rate and strength of concept drift. 4 In 
each case, we contrasted two versions of FLORA3,  one with and one without the 
algorithm for re-examining old concepts (the latter one will be called F L O R A 2  
here, as it corresponds essentially to the system described in (Widmer & Kubat, 
1992)). 

For reasons of comparability, the first set of experiments used the same kind 
of data and concepts that were originally introduced in (Schlimmer & Granger, 
1986) and then also used in (Widmer & Kubat, 1992), namely, a sequence of 
three (rather different) target concepts: (1) size = smal l  A color = red, (2) 
color ---- green Y shape = circular and (3) size = (med ium V large) in a sim- 
ple blocks world. Training instances were generated randomly according to the 
hidden concept, and after processing each instance, the predictive accuracy was 
tested on 40 test instances (also generated randomly, according to the same un- 
derlying concept). The underlying concept was made to change after every 40 
training instance, in the cyclic order 1-2-3-1-2-3-1-2-3. Thus, we created a situ- 
ation of recurring concepts. This experiment was repeated several times. In the 
following plots, the solid line represents the results achieved by FLORA3,  and 
the dashed line gives the results for FLORA2.  Figure 3 displays the results of 
two typical individual runs, and Figure 4 shows the averaged results of 10 runs. 
The dotted vertical lines indicate where the underlying concept changes. 

In interpreting these results, we first note that both systems do recover very 
quickly (in most cases) from changes in the underlying hidden concept. This is 
due to the basic learning and forgetting operators and to the window adjustment 
heuristic. This was discussed already in our previous publication on FLORA2.  

3 Fashion certainly is a prime example of this phenomenon. 
4 We also did experiments with 'real world' data, namely, the well-known lymphography 

data from Ljubljana. Ivan Bratko (personal communication) had suggested that there 
might be some perceptible concept drift in this data set. However, when analyzing 
FLORA3's behaviour on these data, we could not discern any noticeable drift, and 
in compar&tive learning experiments, FLORA3's performance on these data lagged 
behind that of a non-incremental learner like CN$ (Clark & Niblett, 1989), so we 
concluded that the lymphography data were not appropriate for studying issues of 
concept drift. 
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Fig. 3. Predictive accuracy in two individual runs (experiment 1). 
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What  is more interesting here is that in situations where a concept re-occurs 
after a few cycles, there is a marked superiority of  FLORA3 over FLORA2 in 
re-adjusting to this old concept. This can be seen most  clearly from the two 
single-run plots, where FLORA3 returns to the 100% mark much faster than 
does FLORA2. This strongly confirms the utility and importance of  the context 
tracking mechanism in domains  with recurring contexts.  

The superiority of  FLORA3 can also be seen in the averaged plot in Figure 
4, albeit less clearly. In the particular experiment summarized in this figure, 
it happened that in 2 out of  the 10 random runs, FLORA3 performed worse 
than FLORA2 on the third concept - in fact, very much worse (which caused 
the average to be pushed below the curve for FLORA2). In both cases, the 
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F|g .4 .  Predictive accuracy, averaged over 10 runs (experiment 1). 
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reason was that  FLORA3 stored some overly general hypotheses during the first 
occurrence of concept 3, which caused it to go astray in subsequent occurrences 
of this same concept. As the context-tracking mechanisms of FLORA3 are very 
heuristic in nature, irregularities like this are unavoidable. 

Note that  at the beginning (during the first occurrence of each concept, i.e, 
when no context recurrence happens), FLORA3, with its explicit reconsidera- 
tion of saved hypotheses, actually seems to perform a bit worse than the simpler 
FLORA2 (see the first plot in Figure 3). This has happened quite frequently 
in our experiments. There is a simple explanation for this. The availability of 
stored contexts may in fact sometimes lead the learning process astray: due to 
the heuristic nature of the context retrieval decisions, some context may erro- 
neously be selected because it seems to be better  than the current hypothesis. 
So the context tracking mechanism adds another degree of freedom - or source 
of potential  errors, if you will - to the learning algorithm. However, when old 
contexts actually do reappear, the advantages of the context tracking approach 
begin to outweigh the disadvantages, as can be seen from the following phases 
in the experiment. 

In a second set of experiments, we started from a fictitious scenario of an 
autonomous agent by the name of FLORA3 exploring some unknown territory 
(planet), searching for food and trying to predict where food might be found. On 
this planet, food can be found in containers distributed throughout the country, 
and these containers are characterized by many attributes (such as thei r shape, 
color, size, weight, material, whether they hang from trees or bushes, . . . ) .  Some 
containers do contain food, others don't .  Now this particular planet is divided 
into several kingdoms, and the rules determining whether a container holds food 
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are different in every kingdom. ~ 6 Again, training da ta  for this set of experiments  
were generated r a n d o m l y -  in this case, not only the descriptions of the training 
instances, but also FLORA's path through the various kingdoms. 

This  learning problem is more difficult not only because it deals with a larger 
description space, but also because we introduced two sources of noise into this 
world: the borders of the kingdoms were designed to be imprecise, tha t  is, in the 
vicinity of the border between two kingdoms, the instance generator assumed 
tha t  with a certain probability, Goncepts (food containers) from both kingdoms 
could occur. And the second source of noise was the fact tha t  FLORA3's pa th  
(as a sequence of moves in arbi t rary direction) was also generated randomly, so 
there was, in most  cases, no clear transition from one context to another; rather,  
FLORA3 would sometimes wander back and forth between two kingdoms before 
finally venturing more deeply into one of them. 

As an example of FLORA3's performance in this domain,  Figure 5 shows 
the result of one random run. The planet in this experiment had 6 different 
kingdoms arranged in a circle, and FLORA3 wandered through this circle twice. 
Note that  in this figure there are no vertical lines to indicate the precise points 
where the underlying context changes, because the two types of noise mentioned 
above make it difficult to determine precisely when FLORA3 is in a new context. 
(However, the reader is encouraged to examine the plot and try to guess where 
FLORA3 is deeply in a particular kingdom.) 
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Fig. 5. Predictive accuracy on strange planet (experiment 2). 

5 Miroslav Kubat has a more elaborate story around this scenario, but space does not 
permit us to repeat it here. 

6 Readers less inclined towards fairytales might simply imagine a robot in a complex 
building with different types of rooms, where each room presents the robot with 
different operating conditions. 
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Basically, the results in this set of experiments confirmed our expectations. 
The systems' behaviour is again characterized by quite flexible adjustment to 
new contexts, with FLORA3 markedly better in situations where old contexts 
reoccur. Due to the noise in the training data and the larger hypothesis space, 
convergence was, of course, slower than in the first type of experiments, and not 
always perfect, but our preliminary experience is that FLORA3 seems to handle 
limited amounts of noise quite well. 

6 D i s c u s s i o n  a n d  r e l a t e d  w o r k  

To recapitulate briefly, the two basic ideas that contributed to the success of 
FLORA3 are (1) recognizing and 'forgetting' old, harmful knowledge, and (2) 
explicitly storing old concepts and re-using them when a context transition seems 
to take place. 

The idea of using forgetting to improve learning may seem counter-intuitive 
at first sight, but it has been suggested in the literature by a number of au- 
thors. Indeed, a kind of forgetting was implemented already in (Samuel, 1959) 
with the objective of avoiding the danger of storing prohibitively many pieces 
of experience in the memory. Samuel used refreshing (reinforcement) when a de- 
scription item was utilized. The algorithm is very simple: After regular intervals, 
the item's age is incremented by 1. If the age exceeds a prespecified threshold, 
the item is deleted--forgotten. Reinforcement, in turn, consists in decrementing 
the age. Also Fikes, Hart, and Nilsson (1972) suggested that some sort of forget- 
ting should be considered to prevent an unmanageably large store of experience. 
For some other considerations on forgetting, see Markovitch and Scott (1988), 
Torgo and Kubat (1991), or Kubat and Krizakova (1992). 

In the above references, forgetting was understood mainly as a measure to 
prevent uncontrolled growth of the occupied memory, with the subsequent prob- 
lem of computational tractability. Another motivation can be selection or filter- 
ing of the most useful knowledge to get rid of noise--this is the rationale behind 
pruning mechanisms in decision trees (Niblett, 1987), which also represent a kind 
of forgetting. 

To a limited extent, the idea of tracking concept drift in the incremental 
learning paradigm has been studied in the context of unsupervised learning, 
especially in concept formation. In the systems COBWEB (Fisher, 1987) and 
CLASSIT (Gennari et al., 1989), the dynamic modification of the concept de- 
scription is facilitated by two complementary operators merge and spliL These 
perform generalization of two existing concepts into one (merge) and special- 
ization of a concept into two subconcepts (split). Similar recovery operators are 
available also in UNIMEM (Lebowitz, 1987). But none of these systems can actu- 
ally discard old, harmful information, and none of them explicitly stores previous 
concept descriptions. However, recent work on modified versions of COBWEB 
(Kilander & Jansson, 1993) is very mush related to our approach and seems to 
yield very promising results. 



242 

The closest relative to our program is perhaps STAGGER (Schlimmer & 
Granger, 1986), because that  system was designed explicitly to deal with con- 
cept drift. We showed already in (Widmer & Kubat, 1992) that  FLORA2 com- 
pared very favourably with STAGGER in ~erms of adjustment to concept drift. 
FLORA3's added capability to use experience from past learning in new contexts 
leads to even more effective learning in environments with recurring contexts. 

Schlimmer and Granger mention as one of STAGGER's assets that  it is 
sensitive to the amount of previous training, that  is, the longer it has been 
trained on some concept, the more deeply ingrained will the concept be, and the 
more hesitant will STAGGER be to abandon it and adjust to a new context. 
This seems to mirror some results from the psychology of learning. 

FLORA3 does not exhibit this type of behaviour: once a concept is deemed 
stable, FLORA3 freezes the window size, which prevents the concept from be- 
coming too deeply ingrained. This allows the system to quickly follow radical 
concept shifts, no matter  how stable the previous hypothesis was thought to 
be. We regard this as an advantage of our approach. FLORA3 is not meant 
to be a psychologically valid model of learning. Our interests are in practical 
applications, such as robotics and control in dynamic environments with lim- 
ited information. There flexibility seems to be of prime importance. The system 
should be quick in adjusting to changes in the world. A related requirement 
is that  the learning algorithm be efficient. And that  is clearly the case. The 
basic learning and forgetting operators are very simple, and also the method 
for reassessing old concepts has been designed so as to keep the computational 
overhead small (see section 4.2). 

One of the goals of our future work is a better formalization of the method and 
a more thorough theoretical analysis of its convergence properties. For simplicity 
reasons, we have so far relied on a very simple representation language. Once we 
have a better theoretical framework, we hope to be able to extend the system 
so that  it can deal also with more complicated description languages, e.g., some 
subset of first order logic as it is used in systems like FOIL (Quinlan, 1990) or 
LINUS (Lavra~ et al, 1991). 
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