
Some Lower Bounds for the Computational 
Complexity of Inductive Logic Programming 

JSrg-Uwe Kietz 

German National Research Center for Computer Science, I3-KI, 
P.O.Box 1316, D-5205 St.Augustin, Germany 

Abs t rac t .  The field of Inductive Logic Programming (ILP), which is 
concerned with the induction of Hornclauses from examples and back- 
ground knowledge, has received increased attention over the last time. 
Recently, some positive results concerning the learnability of restricted 
logic programs have been published. In this paper we review these re- 
strictions and prove some lower-bounds of the computational complex- 
ity of learning. In particular, we show that a learning algorithm for i2- 
determinate Hornclauses (with variable i) could be used to decide the 
PSPACE-complete problem of Finite State Automata Intersection, and 
that a learning algorithm for 12-nondeterminate Hornclauses could be 
used to decide the NP-complete problem of Boolean Clause Satisfiability 
(SAT). This also shows, that these Hornclauses are not PAC-learnable, 
unless RP = NP = PSPACE. 
Keywords: Inductive Logic Programming, PAC-Learning. 

1 I n t r o d u c t i o n  

Most success within the field of Machine Learning has been achieved with sys- 
tems learning in a propositional logic. Also the theory of learnability, e.g. PAC- 
learnability, was mostly concerned with propositional logic. But,  despite their 
successes, propositional learning approaches suffer from the limited expressive- 
ness of their hypothesis languages and the lack of background knowledge. There- 
fore, the field of Inductive Logic Programming (ILP), which is concerned with 
the induction of first-0rder Hornclauses from examples and background knowl- 
edge, has received increased attention recently [13, 2, 6, 7, 8, 9, 12, 14]. The 
problem tackled by these approaches can be described formally as follows. 

D e f i n i t i o n l  L e a r n i n g  P r o b l e m .  
Given: 

- background knowledge B in a language L B  
- positive and negative examples E = E + (3 E -  in a language L E  consistent 

with B (B, E ~= D) and not a consequence of B (B ~ E).  
- a hypothesis language LH.  

Find a hypothesis h E L H  such that: 

(I) (B, h, E ~= D), h is consistent with B and E. 
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(II) (B, h ~ E+), h and B explain E +. 
(III) (B, h V= E- ) ,  h and B do not explain E - .  

The triple (LB, LE, LH) is called the learning problem. Deciding whether there 
exists such an h E LH, is called the consistency problem. An algorithm which 
accepts any B E LB and E E LE as input and computes such an h E LH if it 
exists, or "no" if it does not exist is called a learning algorithm for (LB, LE, LH). 
If LB, LE and LH are subsets of first-order clauses, (LB, LE, LH) is called 
the ILP-problem and a learning algprithm for (LB, LE, LH) is called an ILP- 
algorithm. 

As the ILP problem has been proven to be undecidable in the general case, 
where LE, LB and LH are first-order clauses [10], current research focuses on 
the identification of effective subclasses of first-order logic that are efficiently 
learnable. Recently, some positive results on the PAC-learnability of so called 
constrained Hornclauses [9] and a superset of them called/j-determinate Horn- 
clauses (with fixed i and j) [3] have been obtained. 

In this paper, we show that these hypothesis languages cannot be further 
extended without the loss of the PAC-learnability property. To prove non-PAC- 
learnability, we will use an adaptation of a theorem of Pitt and Valiant, also 
proven as theorem 6.2.1 in [1]. 

Coro l la ry2 .  If a learning problem (LB, LE, LH) is PAC-learnable, then the 
consistency problem for (LB, LE, LH) is in RP, or turning it the other way 
around, if the consistency problem is not in RP, then (LB, LE, LH) is not PAC'- 
learnable. 

In the following we will prove that the ILP problem for determinate Horn- 
clauses is PSPACE-hard, and therefore i2-determinate Hornclauses are not PAC- 
learnable in general (where i is variable), unless RP = PSPACE. We will also 
show that the consistency problem for 12-nondeterminate Hornclauses is NP- 
hard, and therefore 12-nondeterminate Hornclauses are not PAC-learnable, un- 
less RP = NP. But, first let us review the proposed restrictions of the ILP 
problem more formally. 

2 C o m m o n  R e s t r i c t i o n s  o f  t h e  I L P  P r o b l e m  

The background knowledge used in ILP programs must always be restricted, 
otherwise the ILP problem inherits the undecidability of the deduction process. 
A common restriction in ILP programs (e.g.[7, 12]) is the restriction to ground 
background knowledge and ground unit clauses as examples. 

Def in i t ion3 G r o u n d  background  knowledge.  The backgound knowledge B 
is ground if it consists of ground unit clauses only. A clause is ground if it does 
not contain any variables. 
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One way to avoid such a restriction is the use of generative ttornclauses and 
a depth-bounded inference process to generate such finite ground background 
knowledge prior to learning (e.g. [6],[7]). 

Def in i t ion4  Genera t ive  Hornclause .  A Itornclause is generative if every 
variable in the head also occurs in the body of the clause. 

Another common restriction applied not only to B, but also to LH is the 
restriction to function-free clauses (e.g. [6, 12]). 

Def in i t ion  5 Func t ion- f ree  clause. A clause is called function-free if all its 
arguments are either variables, or constants (function symbols of arity 0). 

The restriction to function-free ground unit clauses as examples and function- 
free ground background knowledge enables us to use 0 - subsumption as a com- 
plete inference procedure in the following way: The learning problem (ground B, 
ground unit E,LH) as defined in definition 1, is equivalent to the learning prob- 
lem ({},En~w,LH), where E,,~w is defined as E~+~ := {e ~ B l e e  E+}, and 
EZe w := {e ~-- B I e E E-} .  Clearly, the examples are now ground Hornclauses. 
Between function-free Hornclauses O-subsumption is a correct and complete in- 
ference procedure (h ~ h ~, iff hO C h'). This means the theorems 10 and 16 which 
use ground function-free Hornclauses as examples and O-subsumption as infer- 
ence relation also hold for ground unit clause examples and ground background 
knowledge together with implication as inference. 

Function-free knowledge has another positive effect on deduction. It has been 
proven that inferring ground background knowledge can be done completely in 
time polynomial to the size of B if B consists only of function-free generative 
Hornclauses ([15]) and there is a fixed maximum arity of predicates in the back- 
ground knowledge. 

Def in i t ion6  B o u n d e d - a r i t y  background  knowledge.  
The language for background knowledge LB is of bounded arity if there exist an 
integer j, which is greater than the maximum arity of any of the predicates in 
B. 

This bounded-arity restriction is also used by Page and Frisch [9] to prove the 
PAC-learnability of a special kind of hypothesis language LH called constrained 
clauses. 

Def in i t ion7  Cons t r a ined  clause. A clause is constrained if all variables in 
the body also occur in the head. 

Muggleton and Feng [7], have proposed a restriction of LH to ij-determinate 
Hornclauses. 

Def ini t ion 8 D e t e r m i n a t e  Clauses and  d e t e r m i n a t e  d e p t h  of  t e rms .  
A Hornclause h is determinate with respect to the examples E and the back- 
ground knowledge B if every term t in h is linked by a determinate linking- 
chain. A term occurring in the head is linked by a determinate linking-chain of 
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length 0. Let h = {A,--BI,.. . ,-~Bm,-~Bm+I,.. . ,-~Bn} be ordered. The term 
t found in -~B,,+I is linked by a determinate linking-chain of length d + 1, if 
and only if all terms in {A,-~B1,...,-~Bm} are linked by a determinate linking- 
chain of length at most d and for every substitution 0 such that A0 E E + and 
{{B1},. . . ,  {Br~}}0 C B there is a unique substitution 5 whose domain is the 
variables in t such that {Bm+l }0~ E B. The determinate depth of a term is the 
minimum length of its determinate linking chains. 

A clause with maximum determinate depth of terms i, and maximum arity 
of literals j, is called/j-determinate. 

Muggleton and Feng have used this i j-determinate restriction to prove that 
the ILP-problem (ground background knowledge, ground unit clause examples, 
one/j-determinate Hornclause) is solvable in polynomial time [7]. 

Recently, it has been proven [3] that a k-disjunction of function-free non- 
recursive /j-determinate Hornclauses is PAC-learnable under simple distribu- 
tions. This was proven by showing that this ILP-learning problem can be re- 
duced to an equivalent only polynomially larger propositional learning problem, 
i.e., learning function-free/j-determinate Hornclauses from ground background 
knowledge and ground examples is no more powerful than learning in proposi- 
tional logic. The remaining advantage is that this kind of representation is more 
compact and therefore potentially more user-friendly in the preparation of the 
input. 

So far, there is no answer to the question wether the restriction to ij- 
determinate Hornclauses can be relaxed without the loss of polynomial com- 
putability of the ILP-problem. This paper gives a negative answer to this ques- 
tion by proving that the consistency problem for non depth-bounded determi- 
nate Hornclauses is PSPACE-hard and that the consistency problem for depth 
bounded non-determinate Hornclauses is NP-hard. 

Def in i t ion9  Linked Hornc lause  and  d e p t h  of  t e rms .  
A Hornclause is linked if all its literals are linked. A literal is linked if at least 
one of its terms is linked. A term is linked with linking-chain of length 0 if it 
occurs in the head of the clause. A term in a literal is linked with a linking-chain 
of length d + 1, if another term in the same literal is linked with a linking-chain 
of length d. The depth of a term is the minimum length of its linking-chains. 

A not determinate clause with maximum depth of terms i, and maximum 
arity of literals j, is called ij-nondeterminate. 

Clearly, terms in nondeterminate clauses need not have a determinate linking- 
chain. If a term has a determinate linking-chain, this is also a (nondeterminate) 
linking-chain, but not vice versa. Therefore, the determinate depth of a term is 
always greater than or equal to the (nondeterminate) depth of a term. 

3 N o n - L e a r n a b i l i t y  o f  D e t e r m i n a t e  H o r n c l a u s e s  

T h e o r e m l 0 .  The consistency-problem for non depth bounded 2-determinate 
Horn clauses is PSPA CE-Hard. 
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We will prove this theorem, by reducing the following PSPACE-complete  
problem [4] to the consistency-problem (cf. Def. 1). 

D e f i n i t i o n  l l  F i n i t e  S t a t e  A u t o m a t a  I n t e r s e c t i o n .  Given an alphabet  
and a sequence At �9  An of deterministic finite state au toma ta  with input al- 
phabet  Z,  does there exist a word w E Z* accepted by each of the A/, 1 < i < n? 

First let us recall some basics of deterministic finite state a u t o m a t a  (DFA). 
A DFA A is formally described as a 5-tuple (Q, Z,  5,.s, F) ,  where Q is the set of 
states, E is the input alphabet,  s E Q is the initial state, F C Q is the set of 
final states, and 5 is the transit ion function mapping  Q x Z to Q. The transit ion 
function 5 is extended to words on Z* as follows: 5(q, e) = q, 
5(q, wa) = 5(5(q, w), a) where e is the empty  word, a E Z ,  w E 5~*. A DFA is 

said to accept a word x E L'*, iff 5(s, x) E F.  
Now, we are able to give a useful encoding of DFAs and words as 2-determinate 

Hornclauses. 

D e f i n i t i o n 1 2  E n c o d i n g  o f  D F A ' s  a n d  w o r d s  as H o r n c l a u s e s .  Let F be 
a function f rom Z* U (Q, Z,  6, s, F )  to Hornclauses defined as follows: 

Fword(Xt X2 . . . xn) = h(Qo) ~ xt  (Qo, Qt), x~( Q1, Q~), . . . , xn( Q,~_~, Q,O, f(Q,~ ) 
FDFA(A) = {h(s)} U {-~x(q,p)Ix E ~U,p,q E Q,5(q,x)  = p} u {-~f(q)lq E F}  

As is easily seen, DFAs are encoded as ground 2-determinate Hornclauses, i.e. 
they are suitable as examples. Words are encoded as non-ground 2-determinate 
Hornclauses, i.e. they are suitable as hypotheses. The usefulness of this encoding 
is shown by the following lemma.  

L e m m a l 3 .  A word is recognized by a DFA if and only if  the encoding of the 
word O-subsumes the encoding of the DFA. 

Proof. 5(s, x) E F ~ r ( x )  <0 F(A)  
Let x = x 1 �9 �9 �9 Xrn, then there exist a sequence of states (the computa t ion  of A on 
x) q0 , . . . , qm,  such that  q0 = s, qm E F,  and 5(qi-l ,Xl) = ql. Let 0 be {QJq l ) ,  
for 0 < i < m, from the definition of F it follows that  F(x)O C_ F(A) .  

v(x) <o v(g) x) e F 
Let O be {QJq~}, for 0 < i < m, f rom the definition of F it follows tha t  q0 = 
s, qm E F,  and a(qi_t,xi)  = qi, i.e. the sequence qo... ,qrn is an accepting 
computa t ion  of x by A. [] 

Now we are able to prove that  F is indeed an encoding of the DFA intersection 
problem in terms of the learning problem of determinate Hornclauses. 

L e m m a  14. Let A t .  �9 �9 An be a sequence of deterministic finite state automata. 
There exists a nonempty word x E ,U* accepted by each of the A1 �9 �9 A ,  if  and 
only if  there exists a linked determinate Hornclause consistent with the following 
set of positive and negative examples: E + = {r (A,) [1  < i < n} 
E -  = {h(s) +--- f ( s ) , x t ( a , q ) , . . . , x m ( s , q ) ,  x t (q ,q ) , . . . , xm(q ,q ) ,  
h(s) xt(s, s ) , . . . ,  xm(s, s)), whc  r = xm) 
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Proof. "the if direction" 
Let h be a linked determinate Hornclause consistent with the examples. As h 
is a generalization of all positive examples each of its literals are either of the 
form h(X), -~f(X), or -~x(S1, $2), where x E ~ .  As h is a Hornclause h(Qo) is 
in h. As h is consistent with the second negative example it contains a literal 
f(Q~), and as h is consistent with the first negative example, the variable f(Q~) 
is only unifiable with the head variable Q0 if this unification also unifies a second 
argument of an -~x(S1, 5'2) literal with the head variable. As h is linked the lit- 
eral f(Q~) must be linked by a chain of-~x(S1, $2) literals. The Hornclause C~ 
consisting only of the head literal h(Qo), the final literal f(Qn), and the linking 
chain of -~x(S1, $2) literals is a generalization of h and therefore a generalization 
of all the positive examples. Using the argument above it is not a generalization 
of the negative examples. C~ is by construction the F encoding of a word. By 
Lemma 13 this word is accepted by each of the automata  A1 �9  A~. 
"the only if direction" 
Let x be the non empty word accepted by all the A1 , . . . ,A~ .  By Lemma 13 
F(x) is a generalization of E +. F(x) is not a generalization of the first negative 
example, as x is not empty. F(x) is not a generalization of the second negative 
example as it contains a literal -,f(Q). Therefore F(x) is a consistent general- 
ization of the examples. Clearly, F(x) is linked and determinate. [] 

C o r o l l a r y  15 N o n  P A C - l e a r n a b i l i t y  o f  d e t e r m i n a t e  H o r n c l a u s e s .  Using 
Corollary 2 and Theorem 10 we can conclude that determinate linked Horn- 
clauses are not PAC-learnable, as long as the widely assumed RP  ~ P S P A C E  
conjecture is true. 

4 N o n  Learnabil i ty  of nonde term inate  Hornclauses  

T h e o r e m  16. Consistency of 12-nondeterminate Hornclauses is NP-hard. 

We will prove this theorem, by reducing the well known NP-complete SAT 
problem [4] to the consistency-problem as stated above. The reduction is in- 
spired by a similar proof of Haussler [5] for existentially quantified conjunctive 
expressions. 

D e f i n i t i o n l 7  SAT. Given a set V = { v l , . . . ,  v.} of Boolean variables and a 
set of clauses C = {Ct , . . . ,  Cm} over V, the question is whether there exists a 
truth assignment of V that  satisfies the clauses in C. 

Now, let us prove that  a SAT instance is satisfiable iff a special learning 
problem is solvable. The idea is to construct positive examples, such that  every 
generalisation consists of truth assignements to Boolean variables of the SAT 
problem and to construct the negative examples so that  only hypotheses whose 
truth assignments satisfy the SAT problem are consistent with them. 

L e m m a  18. The SAT instance (V, C) is satisfiable if and only if there exists a 
Hornclause consistent with E = E + U E -  defined as follows: 
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Define a set of 2n 1-place predicates al . . . ,  a2n, each of which are mapped via 
to one of the 2n literals vl, �9 vn, vl,.  �9 ca. The positive examples are then 

coded as following: E + = {p(X) ~-- 
p(X, Xl),  al ( X l ) , . . . ,  ai-l(X1 ), ai+l(Xl),. . ., a2n(Xl), 
p(X, X2), a l ( X 2 ) , . . . ,  a,+i-l(X2), a,+i+l(X2), . . . ,  a2,(X2) ), for all i:  1 < i < 
n 

The negative e~ampl~ is coded ~s foUows. E -  = { {p(X))U{~p(X,  XD, ~a,(XD t 
~t(al) ~ Cj ,1  < i < 2n, 1 < j < m}} 

Proof. "the if direction" 
Let h be a Hornclause that  is consistent with the positive and negative examples. 
As h is a generalization of all positive examples, it is of the form 

p(x)  ~-p(X, Y~), ~l(Yk),. . . ,  a2n(Y~), k: 1 < k < 2" 

and for all i : 1 < i < n, at most one of ai(Yk) or a,+i(Y~) is in h. As h does 
not 0-subsume the negative example, there exists at least one k such that  

h' = p(X) ~ p(X, Y~), al(Yk),. . . ,  a2,(Yk)h' C_ h 

and there is no substitution 0 = X / X ,  Yk/Xj  such that  

h'O C_C_ {{p(X)} U {-~p(X, Xj),-~ai(Xj) 1 ~ ( " ' )  ~ C~, 1 < i < 2n}} 

This means for every Cj E C, h' contains at least one literal ai(Yk), such that  
g'(al) E Cj. This means {~(ai)  I ai(Yk) E h'} is a partial t ruth assignment for 
V that  satisfies all clauses in C. 

"the only if direction" 
Assume, that  (V, C) is satisfiable. Let L be the set of literals true in an assign- 
ment that  satisfies (V, C) such that  either vi or -,vi is in L, but  not both. Let h 
be a Horn clause defined by 

h "- {{p(X)} U {-~p(X, Y),-~ai(Y) I ~(ai)  e L, 1 < i < 2n}} 

h 0-subsumes all positive examples, as for every i : 1 < i < n it contains either 
a~(X1) or an+i(X1), but not both. We now prove by contradiction that  h does 
not 0-subsume the negative example. If h 0-subsumes the negative example, 
there is an 0 = { X / X ,  Y / X j  }, such that  

hO C {{p(X)} U {-~p(X, Xi),-~ai(Xj) I ~(ai)  ~ Cj, 1 < i < 2n}} 

But, this means that  h contains only hi, such that  ~(ai) is not in Cj, which 
contradicts the assumption that  L satisfies all clauses of C. rq 

C o r o l l a r y  I9 .  Using Corollary 2 and Theorem 16 we can conclude that 12- 
nondeterminate linked Hornclauses are not PAC-learnable, as long as the widely 
assumed RP ~ NP conjecture is true. 
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5 C o n c l u s i o n  

In this paper, we have proven some lower bounds of the computational  complex- 
ity of learning within the ILP framework. These results show that  large classes 
of Hornclauses cannot be learned by a complete and efficient learning algorithm. 
This includes e.g. CLINT's [2] languages greater equal L2, and the hypothesis 
space searched by the~inverse resolution approaches e.g. [8, 14]. It also shows 
that  fast heuristic search algorithms like FOIL [11] are necessarily incomplete, 
i.e they may not find a correct definition, even if one exists. Theorem 10 also 
shows that  the extension of FOIL2 [12], which adds determinate literals if no 
good information gain can be achieved by a literal, could lead to an explosion of 
the size of the hypothesis exponential in the number of times this happens. 
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