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Abstract. The problem of finding the internal orientation of a camera
(camera calibration) is extremely important for practical applications. In
this paper a complete method for calibrating a camera is presented. In
contrast with existing methods it does not require a calibration object with
a known 3D shape. The new method requires only point matches from image
sequences. It is shown, using experiments with noisy data, that it is possible
to calibrate a camera just by pointing it at the environment, selecting points
of interest and then tracking them in the image as the camera moves. It is
not necessary to know the camera motion.

The camera calibration is computed in two steps. In the first step the
epipolar transformation is found. Two methods for obtaining the epipoles
are discussed, one due to Sturm is based on projective invariants, the other
is based on a generalisation of the essential matrix. The second step of the
computation uses the so-called Kruppa equations which link the epipolar
transformation to the image of the absolute conic. After the camera has
made three or more movements the Kruppa equations can be solved for the
coefficients of the image of the absolute conic. The solution is found using
a continuation method which is briefly described. The intrinsic parameters
of the camera are obtained from the equation for the image of the absolute
conic.

The results of experiments with synthetic noisy data are reported and
possible enhancements to the method are suggested.

1 Introduction

Camera calibration is an important task in computer vision. The purpose of the camera
calibration is to establish the projection from the 3D world coordinates to the 2D image
coordinates. Once this projection is known, 3D information can be inferred from 2D
information, and vice versa. Thus camera calibration is a prerequisite for any application
where the relation between 2D images and the 3D world is needed. The camera model
considered is the one most widely used. It is the pinhole: the camera is assumed to
perform a perfect perspective transformation. Let [su, sv, s] be the image coordinates,
where s is a non-zero scale factor. The equation of the projection is
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where X, Y, Z are world coordinates, A is a 3 x 3 transformation matrix accounting
for camera sampling and optical characteristics and G is a 4 x 4 displacement matrix
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accounting for camera position and orientation. Projective coordinates are used in (1)
for the image plane and for 3D space. The matrix M is the perspective transformation
matrix, which relates 3D world coordinates and 2D image coordinates. The matrix G
depends on six parameters, called extrinsic: three defining a rotation of the camera and
three defining a translation of the camera. The matrix A depends on a variable number of
parameters, according to the sophistication of the camera model. These are the intrinsic
parameters. There are five of them in the model used here. It is the intrinsic parameters
that are to be computed.

In the usual method of calibration [4] [12] a special object is put in the field of view
of the camera. The 3D shape of the calibration object is known, in other words the 3D
coordinates of some reference points on it are known in a coordinate system attached to
the object. Usually the calibration object is a flat plate with a regular pattern marked
on it. The pattern is chosen such that the image coordinates of the projected reference
points (for example, corners) can be measured with great accuracy. Using a great number
of points, each one yielding an equation of the form (1), the perspective transformation
matrix M can be estimated. This method is widely used. It yields a very accurate de-
termination of the camera parameters, provided the calibration pattern is carefully set.
The drawback of the method is that in many applications a calibration pattern is not
available. Another drawback is that it is not possible to calibrate on-line when the cam-
era is already involved in a visual task. However, even when the camera performs a task,
the intrinsic parameters can change intentionally (for example adjustment of the focal
length), or not (for example mechanical or thermal variations).

The problem of calibrating the extrinsic parameters on-line has already been ad-
dressed [11]. The goal of this paper is to present a calibration method that can be carried
out using the same images required for performing the visual task. The method applies
when the camera undergoes a series of displacements in a rigid scene. The only require-
ment is that the machine vision is capable of establishing correspondences between points
in different images, in other words it can identify pairs of points, one from each image,
that are projections of the same point in the scene.

Many methods for obtaining matching pairs of points in two images are described
in the literature. For example, points of interest can be obtained by corner and vertex
detection [1] [5]. Matching is then done by correlation techniques or by a tracking method
such as the one described in [2].

2 Kruppa’s Equations and Self-Calibration

A brief introduction is given to the theory underlying the calibration method. A longer
and more detailed account is given in [9].

2.1 Derivation of Kruppa’s Equations

Kruppa’s equations link the epipolar transformation to the image w of the absolute conic
£2. The conic w determines the camera calibration, thus the equations provide a way of
deducing the camera calibration from the epipolar transformations associated with a
sequence of camera motions. Three epipolar transformations, arising from three different
camera motions, are enough to determine w and hence the camera calibration uniquely.

The absolute conic is a particular conic in the plane at infinity. It is closely associated
with the Euclidean properties of space. The conic §2 is invariant under rigid motions and
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under uniform changes of scale. In a Cartesian coordinate system [z, z2, 23, Z4] for the
projective space P? the equations of §2 are

=0 22 +zi+2i=0

The invariance of 2 under rigid motions ensures that w is independent of the position
and orientation of the camera. The conic w = M{2) thus depends only on the matrix A
of intrinsic parameters. The converse is also true [9] in that w determines the intrinsic
parameters.

Let the camera undergo a finite displacement and let k be the line joining the optical
centre of the camera prlor to the motion to the optical centre of the camera after the
motion. Let p and p’ be the epipoles assoc1a.ted with the displacement. The epipole p
is the projection of k into the first image and p is the projection of k into the second
image. Let IT be a plane containing k. Then IT projects to lines { and I in the first and
second images respectively. The eplpolar transformation deﬁnes a homography from the
lines through p to the lines through p such that land ! correspond. The symbol A is
used for the homographic correspondence, ! Al

If IT is tangent to £2 then ! is tangent to w and I'is tangent to the projection w' of £
into the second image. The conic w is independent of the camera position thus w = w'. It
follows that the two tangents to w from p correspond under the epipolar transformation
to the two tangents to w from p The condition that the epipolar lines tangent to w
correspond gives two constraints linking the epipolar transformation with w. Kruppa’s
equations are an algebraic version of these constraints.

Projective coordinates [y, y2, ya] are chosen in the first image. Two triples of coordi-
nates {y1, y2, ya] and [u1, uz, u] specify the same image point if and only if there exists
a non-zero scale factor s such that y; = su; for ¢ = 1,2, 3. The epipolar lines are param-
eterised by taking the intersection of each line with the fixed line y3 = 0. Let (p,y) be
the line through the two points p and y. A general point x is on (p,y) if and only if
(p X y).x = 0. Let D be the matrix of the dual conic to w. It follows from the definition
of D that (p,y) is tangent to w if and only if it lies on the dual conie,

(pxy)'D(pxy)=0 (2)

The entries of D are defined to agree in part with the notation of Kruppa,

—623 83 &
D= | é3 -3 6 (3)
6y 81 —b1a

There are six parameters §;, §;; in (3), but D is determined by w only up to a scale factor.
After taking the scale factor into account D has five degrees of freedom. On setting y5 = 0
and on using (3) to substitute for D in (2) it follows that

Any} + 24150192 + Azy; =0 )
where the coefficients Ay1, Az, A2z are defined by

A= —6131)% - 6121)% —261p2ps
Ajp = 612p1p2 - 63p§ + 62P2P3 + 61?11’3
Az = —b23p3 — 61297 — 262P1p3 ()
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An equation similar to (4) is obtained from the condition that the epipolar line (pl, yl)
in the second image is tangent to w,

Alnylz + 2A12y’1y2 + A22y;2 =0 , (6)

The coefficients Au, Alg, An are obtained from (5) on replacing the coordinates p; of
p with the coordinates p; of p The coordinate y3 is set equal to zero.

The eplpolar transformation induces a bllmea.r transformatlon N from the lineys =0
to the line y3 =0.Ify = [yl,lyg, 0] and y = [yl, y2, 0]7 then (p,y) A (p y ) if and only
ify = Ny.Let r =y, Jv1, T =y, /yl Then the transformation N is equivalent to

;= ar+b
T er+d

(M

The parameters a, b, ¢, d can be easily computed up to a scale factor from the two epipoles
p,p’ and a set of pomt matches q; — q;, 1 < i < n. A linear least square procedure
based on (7) is used. The ith image correspondence gives an equation (7) with

P3¢i2 — P24¢i3 Pa‘l.z P2‘123 (8)
P3gi1 — P14;3 ' P3'1,1 P14i3

Once a, b, ¢, d have been found (4), (6) and (7) yield

=

A+ 2A127 + Az =0
Ay (7 + €)% + 2455(bT + ¢)(T + a) + Agy (T + a)!=0 9)

Each equation (9) is quadratic in 7. The two equations have the same roots, namely
the values of 7 for which (p,y) is tangent to w. It follows that one equation is a scalar
multiple of the other. Kruppa’s equations are obtained by equating ratios of coefficients,

A12(Ahya® + Al c? + 24! ,ac) — (Algc + Abga + Al be + Alyab)Ay = 0

2.2 Kruppa’s Equations for Two Camera Motions

Two camera motions yield two epipolar transformations and hence four constraints on
the image w of the absolute conic. The conic w depends on five parameters, thus the
conics compatible with the four constraints form a one dimensional family ¢. The family
¢ is an algebraic curve which parameterises the camera calibrations compatible with the
two epipolar transformations.

An algebraic curve can be mapped from one projective space to another using trans-
formations defined by polynomials. A linear transformation is a special case in which the
defining polynomials have degree one. One approach to the theory of algebraic curves
is to regard each transformed curve as a different representation of the same underlying
algebraic object. For example a conic, a plane cubic with a node and a cubic space curve
can all be obtained by applying polynomial transformatlons to the projective line P
Each curve is a different representation of P! , even though the three curves appear to
be very different.

The properties of ¢ are obtained in [9]. It is shown that ¢ can be represented as an
algebra.lc curve of degree seven in P? or alternatlvely as an algebraic curve of degree six
in P?. The representation of ¢ as a curve in P? is obtained as follows.
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Fig. 1. Construction of the dual curve ¢

Let ps, pl be the two epipoles for the first motion of the camera. The epipolar
transformation is defined by the Steiner conic s; through p; and pl, two epipolar lines
{p1,y) and (p3,y) correspond if and only if y is a point of s;. The two tangents from p;
to w cut s; at points x;, x5 as illustrated in Fig. 1. The chord (x;,x2) of 5; corresponds
to the point x; x x5 in the dual of the image plane. The point x; x x2 lies on a curve
g which is an algebraic transformation of ¢. It is shown in [9] that g is of degree six and
genus four. The point p; x p; of g corresponding to the line (p;, p,) in the image plane
is a singular point of multiplicity three. The curve g has three additional singular points,
each of order two. An algorithm for obtaining these three singular points is described
in [9]. The algorithm produces a cubic polynomial equation in one variable, the roots of
which yield the three singular points.

Three camera displacements yield six conditions on the camera calibration. This is
enough to determine the camera calibration uniquely.

3 Computing the Epipoles

Two different methods for computing the epipoles are described.

3.1 Sturm’s Method

The epipoles and the epipolar transformations can be computed by a method due to
Hesse [6] and nicely summarized by Sturm in [10]. Sturm’s method yields the epipoles
compatible w1th seven image correspondences.

Let q; — q,, 1 € i < n, be a set of image correspondences. Then p, p are possible
epipoles if and only if .
The pencil of lines through p is parameterised by the points of the line (q;,qs). Let
(p, q) be any line through p. Then (p, q) meets {q;, q2) at the point x defined by

x=(p xq) x (a1 X q2)
= [(p x 9)-qz]a1 - [(P X q)-q1]q2

The line (p, q;) is assigned the inhomogeneous coordinate 8; defined by

_(pxa)a: _(qixa)p
(pxqi)a (g xaqi)p
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It follows that #) = oo and #2 = 0. Let 8, be the inhomogeneous coordinate of a fifth line
{p,q). The cross ratio 7 of the four lines through p with inhomogeneous coordinates 6,

02, 03, 0q is
r= 01—03 01—0q
T \9; - 0, 02 — 0,

_ Y
= s

- ((p X q)-qz) ((p x qs)-ql) (an

(px q)a (P X q3).q2
It follows from (10) that 7 is equal to the cross ratio of the lines (p’, q:-), 1<i<3and
(pl, q’) in the second image. On equating the two cross ratios the following equation is

obtained.
((p x q)-qz) ((p x ‘L’s)-‘h) _ (@ xa)a) (0 xa)q (12)
(pxa)a1/ \(p xqs)qz (P’ xq').q1 ) \ (P x q3)-q;

Ifn =6 then (12) yields thrtlse independent equations on replacing q <« q by ea,lch of
Q4 <> 44, g5 <> q5 and q¢ — qg in turn. Equation (12) has the general form a,.p =0
where a, is a vector linear in p that depends on q « q'. The three equations as.p = 0,
as.p' =0and as.p' = 0 constrain p to lie on the cubic plane curve (a4 x as).as = 0.

The image correspondence gqg — q’s is replaced by a new image correspondence
q7 — q:, and a second cubic constraint on p is generated. The two cubic plane curves
intersect in nine points but only three of these intersections yield epipoles p such that (10)
holds. The remaining six intersections do not yield possible epipoles. The six intersections
include the points g; for 1 < i < 5.

The advantage of Sturm’s method is its elegant mathematical form: it gives closed
form solutions for the epipoles. It is also possible to find by an exact algorithm a least
squares solution if many cubic plane curves are available. These two approaches have
been implemented in MAPLE.

However, because of the algebraic manipulations that are involved, both approaches
turned out to be very sensitive to pixel noise. Two methods for reducing the noise sensi-
tivity have been tried. Firstly, the number of manipulations has been reduced by working
numerically using only cross ratios and the equations (12). Secondly, the uncertainties in
the positions of the image points have been taken into account. In a first implementation
without taking uncertainties into account the criterion was very sensitive to pixel noise:
in some examples, 0.1 pixel of noise drastically changed the positions of the epipoles.
Using N correspondances, partitioned in subsets of four correspondances, the idea is to
minimise the criterion

Nf4 (T' _ T,)2
C(p,p') = Z AL VA
i=1

2 2
oy + 0',,.'{

where 7; is the cross ratio of the lines (p,q;;), 1 < j < 4, given by the formula (11), 7{ is
2

the same with primes, and where o2, and 62, are the first order variances on 7; and 7/.
The notation q;; for 1 < j < 4 indicates a sul;sequence of the q;. If the noise distribution
is the same for all image points q;, q; then ol = a:'.ulngrad(n)uz, where grad(r;) is
an eight dimensional gradient computed with respect to the q;; for 1 < j < 4. The effect
of using the uncertainty in the criterion is that pairs of cross-ratios with large variances
will contribute little, whereas others will contribute more.
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The problem is that non-linear minimisation techniques are needed. The results of
non-linear minimisation are often very dependent on the starting point. Another difficulty
is that the position of the minimum is quite sensitive to noise, as will be seen in the
experimental section below.

3.2 The Fundamental Matrix Method

The fundamental matrix F is a generalization of the essential matrix described in [8]. For
a given point m in the first image, the corresponding epipolar line e, in the second image
is linearly related to the projective representation of m. The 3 x 3 matrix F describes
this correspondence. The projective representation e, of the epipolar line e, is given by

en = Fm

Since the point m corresponding to m belongs to the line ey, by definition, it follows
that

m7Fm =0 (13)

If the image is formed by projection onto the unit sphere then F is the product of an
orthogonal matrix and an antisymmetric matrix. It is then an essential matrix and (13)
is the so-called Longuet-Higgins equation in motion analysis [8]. If the image is formed by
a general projection, as described in (1), then F is of rank two. The matrix A of intrinsic
parameters (1) transforms the image to the image that would have been obtained by
projection onto the unit sphere. It follows that F = A~TEA !, where E is an essential
matrix. Unlike the essential matrix, which is characterized by the two constraints found
by Huang and Faugeras [7] which are the nullity of the determinant and the equality of
the two non-zero singular values, the only property of the fundamental matrix is that it
is of rank two. As it is also defined only up to a scale factor, the number of independent
coefficients of F is 7. The essential matrix E is subject to two independent polynomial
constraints in addition to the constraint det(E) = 0. If F is known then it follows from
E = ATFA that the entries of A are subject to two independent polynomial constraints
inherited from E. These are precisely the Kruppa equations. It has also been shown, using
the fundamental matrix, that the Kruppa equations are equivalent to the constraint that
the two non-zero singular values of an essential matrix are equal.

The importance of the fundamental matrix has been neglected in the literature, as
almost all the work on motion has been done under the assumption that intrinsic pa-
rameters are known. But if one wants to proceed only from image measurements, the
fundamental matrix is the key concept, as it contains the all the geometrical information
relating two different images. To illustrate this, it is shown that the fundamental matrix
determines and is determined by the epipolar transformation. The positions of the two
epipoles and any three of the correspondences ! Al between epipolar lines together de-
termine the epipolar transformation. It follows that the epipolar transformation depends
on seven independent parameters. On identifying the equation (13) with the constraint
on epipolar lines obtained by making the substitutions (8) in (7), expressions are ob-
tained for the coefficients of F in terms of the parameters describing the epipoles and
the homography:

Fyy = bpapy
Fia = apapy
Fi3 = —apaps — bp1p
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F3 = —dp3ps

Fay = —cp3ps

Fy3 = cp3p2 + dpsp1

F3, = dpyp3 — bpsp)

F33 = cpyps — apspy

F3 = —cpyps — dpyp1 + ap2py + bp1py (14)
From these relations, it is easy to see that F is defined only up to a scale factor. Let
¢1, ¢2, cg be the columns of F. It follows from (14) that pie; + paea + pscs = 0. The

rank of F is thus at most two. The equations (14), yield the epipolar transformation as
a function of the fundamental matrix:

a= F12
b=Fn
c=—Fy
d=-Fy

p1 = Fy3Fy12 — FaaF13
FoaFyy — For1 Py
P2 = F11F93 — F13F21p3
FyaFyy — Fa1 Py
, _ F33F3 — FosF3 ,
=77 5P
FyoFyy — Fo1 Fro
F11F33 — F31F1
A Al i el ) 15
P2 = FFu— FuFi (1%)

The determinant of the homography is FaaFy; — Fa; F12. In the case of finite epipoles, it
is not null.

A first method to estimate the fundamental matrix takes advantage of the fact that
equation (13) is linear and homogeneous in the nine unknown coefficients of F. Thus if
eight matches are given then in general F is determined up to a scale factor. In practice,
many more than eight matches are given. A linear least squares method is then used to
solve for F. As there is no guarantee, when noise is present, that the matrix F obtained is
exactly a fundamental one, the formulas (15) can not be used, and p has to be determined
by solving the following classical constrained minimization problem

an”Fp”2 subject to ||p||*> = 1

This yields p as the unit norm eigenvector of the matrix F7 F with the smallest eigenvalue.
The same processing applies in reverse to the computation of the epipole p . In contrast
with the Sturm method, this method requires only linear operations. It is therefore more
efficient and it has no initialization problem.

However the minimum turns out to be sensitive to noise, particularly when the
epipoles are far from the centre of the image. Experiments show that this problem is
reduced by using the following criterion for minimization:

min{d(m7 , Fm)? + d(m”, F'm’)?} (16)

where d is a distance in the image plane. The criterion has a better physical significance
in terms of image quantities. It is necessary to minimize on F and on FT simultaneously
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to avoid discrepancies in the epipolar geometry. In doing this non-linear minimization
successfully two constraints are important:

— The solution must be of rank two, as all fundamental matrices have this prop-
erty. Rather than performing a constrained minimization with the cubic constraint
det(F) = 0, it is possible to use, almost without loss of generality, the following
representation for F proposed by Luc Robert:

z z2 x3
F= T4 Ty Te
T7Ty + X8T4 T7Z2 + T3Ts T7x3 + TTs

One unknown is eliminated directly, and then F is found by an unconstrained mini-
mization.

— The matrix F is defined only up to a scale factor. In order to avoid the trivial
solution F = 0 at which the minimization routines fail because the derivatives become
meaningless, one of the first six elements of F is normalised by giving it a fixed
finite value. However, as the minimization is non-linear convergence results can differ,
depending on the element chosen. This feature can be used to escape from bad local
minima during minimization.

This second method for computing the fundamental matrix is more complicated, as it
involves non-linear minimizations. However, it yields more precise results and allows the
direct use of the formulas (15) to obtain the epipolar transformation.

4 Solving Kruppa’s Equations: the Continuation Method

Symbolic methods for solving Kruppa’s equations are described in [9]. These methods
are very sensitive to noise: even ordinary machine precision is not sufficient. Also they
require rational numbers rather than real numbers. In this section Kruppa’s equations
are solved by an alternative method which is suitable for real world use. The current
implementation is as follows,

— Do 3 displacements. For each displacement:

1. Find point matches between the two images

2. Compute the epipoles

3. Compute the homography of epipolar lines

4. Compute the two Kruppa equations
— Solve the six Kruppa equations using the continuation method
— Compute the intrinsic parameters

Three displacements yield six equations in the entries of the matrix D defined in Sect.
2.1. The equations are homogeneous so the solution for D is determined only up to a scale
factor. In effect there are five unknowns. Trying to solve the over-determined problem
with numerical methods usually fails, so five equations are picked from the six and solved
first. As the equations are each of degree two, the number of solutions in the general case
is 32. The remaining equation is used to discard the spurious solutions. In addition to the
six equations, the entries of D satisfy certain inequalities that are discussed later. These
are also useful for ruling out spurious solutions. The problem is that solving a polynomial
system by providing an initial guess and using an iterative numerical method will not
generally give all the solutions: many of the start points will yield trajectories that do
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not converge and many other trajectories will converge to the same solution. However it
is not acceptable to miss solutions, as there is only one good one amongst the 32.

Recently developed methods in numerical continuation can reliably compute all so-
lutions to polynomial systems. These methods have been improved over a decade to
provide reliable solutions to kinematics problems. The details of these improvements are
omitted. The interested reader is referred to [13] for a tutorial presentation. The solu-
tion of a system of nonlinear equations by numerical continuation is suggested by the
idea that small changes in the parameters of the system usually produce small changes
in the solutions. Suppose the solutions to problem A (the start system) are known and
solutions to problem B (the target system) are required. Solutions to the problem are
tracked as the parameters of the system are slowly changed from those of A to those
of B. Although for a general nonlinear system numerous difficulties can arise, such as
divergence or bifurcation of a solution path, for a polynomial system all such difficulties
can be avoided.

Start System. There are three criteria that guide the choice of a start system: all of
its solutions must be known, each solution must be non-singular, and the system must
have the same homogeneous structure as the target system. The use of m-homogeneous
systems reduces the computational load by eliminating some solutions at infinity, so it is
useful to homogenize, but only inhomogeneous systems are discussed here for the sake of
simplicity. Thus an acceptable start system is: :c;j —1=0for 1< j<n where nis the
number of equations and d; is the degree of the equation j of the target system. Each
equation yields d; distinct solutions for z;, and the entire set of H;.'=1 d; solutions are
found by taking all possible combinations of these.

Homotopy. The requirement for the choice of the homotopy (the schedule for transform-
ing the start system into the target system) is that as the transformation proceeds there
should be a constant number of solutions which trace out smooth paths and which are
always nonsingular until the target system is reached. It has been shown by years of
practice that the following homotopy suffices:

H(x,t) = (1 —t)e? G(x) + tF(x)
where G(x) is the start system, and F(x) is the target system.

Path tracking. Path tracking is the process of following the solutions of H(x,t) =0 as ¢
is increased from 0 to 1. These solutions form d continuation paths, where d is the Bezout
number of the system, characterising the number of solutions. To track a path from a
known solution (x°, %), the solution is predicted for ¢ = t®4 At, using a Taylor expansion
for H, to yield Ax = —J;1J,At, where J; and J; are the Jacobians of H with respect
to x and t. The prediction is then corrected using Newton’s method with ¢ fixed at the
new value to give corrections steps of Ax = ~J; 1 H(x,t).

Using an implementation provided by Jean Ponce and colleagues fairly precise so-
lutions can be obtained. The major drawback of this method is that it is expensive in
terms of CPU work. The method is a naturally parallel algorithm, because each contin-
uation path can.be tracked on a separate processor. Running it on a network of 7 Sun-4
workstations takes approximatively one minute for our problem.
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5 Computing the Intrinsic Parameters

In this section the relation between the image of the absolute conic and the intrinsic
parameters is given in detail. The most general matrix A occurring in (1) can be written:

~fky  fkycot(d) wug
A= 0  —fkycosec(0) wo (17)
0 0 1

— ky, ky, are the horizontal and vertical scale factors whose inverses characterize the
size of the pixel in world coordinates units.

— ug and vy are the image center coordinates, resulting from the intersection between
the optical axis and the image plane.

— f is the focal length

— 0 is the angle between the directions of retinal axes. This parameter is introduced to
account for the fact that the pixel grid may not be exactly orthogonal. In practice ¢
is very close to /2.

As f cannot be separated from k, and k, it is convenient to define products o, =
~fky and a, = —fk,. This gives five intrinsic parameters. This is exactly the num-
ber of independent coefficients for the image w of the absolute conic thus the intrinsic
parameters can be obtained from w. The equation of w is [3]:

yTA—lTA—ly =0

It follows that D = AAT. Up to a scale factor the entries 8;; and §; of D are related to
the intrinsic parameters by

61 =Y

62 = Yo

83 = ugvg — ayay, cot(d)cosec(d)
612 =-1

823 = —ul — a’cosec?(0)

613 = —vd — aZcosec?(9)

From these relations it is easy to see that the intrinsic parameters can be uniquely
determined from the Kruppa coefficients, provided the five following conditions hold:

513612 >0
623612 > 0
613612 — 612 >0
623612 — 63 >0

(63812 + 616,)2
<1 18
(613612 — 62)(623612 — 62) — (18)

If one of the conditions (18) doesn’t hold then there is no physically acceptable calibration
compatible with the Kruppa coefficients é;; and §;. This is a strong condition which rules
out many spurious solutions obtained by solving five of the Kruppa equations. It is
interesting to note that if a four-parameter model is used with # = /2 then there is the
additional constraint §3 = —&83/8;2 which replaces the last one of (18). It can be also
verified that the calibration parameters depend only on the ratios of Kruppa coefficients,
so that the scaling of them doesn’t modify their value, as expected.
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6 Experimental Results

The results of experiments with computer generated data are described. The coordinates
of the projections of 3D points are computed using a realistic field of view and realistic
values for the extrinsic and intrinsic parameters. For each displacement 20 point matches
are selected and noise is added.

6.1 Computation of the epipoles

The results for the determination of the epipoles in the first image are presented. The
values obtained by the two algorithms (the Sturm method based on weighted cross-ratios,
and the fundamental matrix method) are given, as well as the relative error with respect
to the exact solution. The results in the second image are always similar to those in the
first image.

pixel motion 1 motion 2 motion 3
noise[ [. 0144 49306 ] [0050] [0T00]
[-335.50 985.39 325.14] [0 0 400] [50 20 20)
Sturm Fund. Matrix Sturm — TFund. Matrix Sturm Fund. Matrix
0 -414.42 3115.64|-414.42 3115.64/246.09 255.64/246.09 255.64/1846.40 1199.34{1846.40 1199.34]
0.01 1-413.96 3113.82|-414.53 3115.571246.06 255.66/246.10 255.57{1847.89 1200.50]1841.39 1195.77,
0.1 0.06 0.02 0.02 | 0.01 0.007] 0.04 0.02 ]| 0.08 0.1 0.27 0.29
0.1 [-410.05 3098.17]-415.47 3114.49(245.69 255.70/246.11 255.00]1864.07 1212.39(1792.52 1161.69
1 0.5 0.2 0.03 [ 0.16 0.02 {0.008§8 0.25 1 1.1 2.9 3.1
0.2 [-406.08 3082.27]-416.27 3112.29]245.58 255.90[246.05 254.47[1889.58 1229.63{1731.60 1120.51
2 1.1 0.4 0.1 0.2 0.1 [0.016 0.45 2.3 2.6 6.2 6.2
0.5 |[-396.32 3043.11|-417.13 3099.29]|244.45 256.36[245.40 253.64|/2045.52 1325.10{1527.21 988.02
4.3 2.3 0.6 0.5 06 03 | 03 08 | 10.7 10.5 17 17
1.0 [-386.10 3001.28|-413.24 3055.80|239.82 256.12]242.62 254.90] 762.82 554.48{1201.05 785.79
6.8 3.6 0.2 1.9 2.5 0.2 1.4 0.3 58 53 35 34
2.0 |-333.19 2772.54|-385.41 2889.29({226.05 284.41]/230.44 267.75[ 801.64 592.33| 785.28 536.30
19 i1 7 72 | 8 11 | 63 47 | 56 50 57 55

From these results, it can be seen that the fundamental matrix method is more
robust. It is also computationally very efficient since it involves only a linear least squares
minimisation and a 3 x 3 eigenvector computation. A second point worth noting is that
the stability of the position of the epipole depends strongly on the displacement that is
chosen.

Other experiments not reported here due to lack of space show that if more matches
are available then the precision of the determination of the epipoles can be improved.

6.2 Intrinsic parameters

The intrinsic parameters that have been computed using two displacement sequences
are presented. The first sequence consists of motion 1, motion 4, motion 2. The second
sequence consists of motion 1, motion 4, motion 3.

Qy Qy Ug Vo -z
0 pixels 1640.125{943.695246.096{255.648| 0O
0.01 pixels|597.355(940.403|248.922|259.196] 0.02
668 | 034 | 1.14 | 1.38
0.1 pixels |520.126[904.744|275.120]280.601] 0.09
18.7 4.1 11.8 9.7
0.2 pixels |175.204{867.2141565.234(291.162| 0.4
72.6 8.1 1206 | 13.8
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ay ay U vo [0-—3%
0.01 pixels{699.815{948.106]174.723(245.112/0.018
9.3 0.46 29.0 4.12
0.1 pixels |687.814]989.538]149.055]257.030[0.004
7.4 4.85 39.4 0.4
0.2 pixels [552.601]993.837]269.278/283.458{0.013
13.6 5.31 9.41 | 10.87
0.5 pixels |433.894/957.018/358.904/308.191{ 0.13
32.2 14 45 20.5
1.0 pixel [477.043|724.909(137.052(258.763] 0.3
25.4 23.2 443 1.2

More precise results are obtained if more than three camera displacements are available.

These results demonstrate the feasibility of the method in real environments, provided
image points can be located with a sufficient precision. This precision is already achievable
using special patterns.

7 Conclusion and Perspectives

A method for the on-line calibration of the intrinsic parameters of a camera has been
described. The method is based on the estimation of the epipolar transformations as-
sociated with camera displacement. Three epipolar transformations arising from three
different displacements are sufficient to determine the camera calibration uniquely. The
epipolar transformations can in principle be obtained by tracking a number of salient
image points while the camera is moving. It is therefore not necessary to interrupt the
action of the vision system in order to point the camera at a special test pattern.

The feasibility of the method is demonstrated by a complete implementation which is
capable of finding the intrinsic parameters provided a sufficient number of point matches
are available with a sufficient precision. However, the precision required to obtain accept-
able calibrations is at the limit of the state-of-art feature detectors.

The next step is thus to find efficient methods to combat noise. The key idea is
to compute the uncertainty explicitly. The results have shown that some displacements
yield epipolar transformations that are very sensitive to pixel noise, whereas, some yield
transformations that are more robust. Methods for characterising “bad” displacements
are currently being investigated. In particular, it has been shown that pure translations
lead to degenerate cases, thus yielding results that are very sensitive to noise. However, it
is not sufficient to know a priori which displacements are best because as the camera is not
yet calibrated they cannot be applied. If the uncertainty in the epipolar transformation
obtained from a given displacement can be computed it can be the basis of a decision
whether to use the transformation for the computations, to discard it and use another one,
or to take it into account only weakly. The final aim is to obtain acceptable calibrations
using real images.
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