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A b s t r a c t .  The problem of finding the internal orientation of a camera 
(camera calibration) is extremely important for practical applications. In 
this paper a complete method for calibrating a camera is presented. In 
contrast with existing methods it does not require a calibration object with 
a known 3D shape. The new method requires only point matches from image 
sequences. It is shown, using experiments with noisy data, that it is possible 
to calibrate a camera just by pointing it at the environment, selecting points 
of interest and then tracking them in the image as the camera moves. It is 
not necessary to know the camera motion. 

The camera calibration is computed in two steps. In the first step the 
epipolar transformation is found. Two methods for obtaining the epipoles 
are discussed, one due to Sturm is based on projective invariants, the other 
is based on a generalisation of the essential matrix. The second step of the 
computation uses the so-called Kruppa equations which link the epipolar 
transformation to the image of the absolute conic. After the camera has 
made three or more movements the Kruppa equations can be solved for the 
coefficients of the image of the absolute conic. The solution is found using 
a continuation method which is briefly described. The intrinsic parameters 
of the camera are obtained from the equation for the image of the absolute 
conic. 

The results of experiments with synthetic noisy data are reported and 
possible enhancements to the method are suggested. 

1 Introduction 

Camera calibration is an important task in computer vision. The purpose of the camera 
calibration is to establish the projection from the 3D world coordinates to the 2D image 
coordinates. Once this projection is known, 3D information can be inferred from 2D 
information, and vice versa. Thus camera calibration is a prerequisite for any application 
where the relation between 2D images and the 3D world is needed. The camera model 
considered is the one most widely used. It is the pinhole: the camera is assumed to 
perform a perfect perspective transformation. Let [su, sv, s] be the image coordinates, 
where s is a non-zero scale factor. The equation of the projection is 

[i] [i] = A  0 1 0  G = M  (1) 
0 0 1  

where X, Y, Z are world coordinates, A is a 3 x 3 transformation matrix accounting 
for camera sampling and optical characteristics and G is a 4 x 4 displacement matrix 
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accounting for camera position and orientation. Projective coordinates are used in (1) 
for the image plane and for 3D space. The matrix M is the perspective transformation 
matrix, which relates 3D world coordinates and 2D image coordinates. The matrix G 
depends on six parameters, called extrinsic: three defining a rotation of the camera and 
three defining a translation of the camera. The matrix A depends on a variable number of 
parameters, according to the sophistication of the camera model. These are the intrinsic 
parameters. There are five of them in the model used here. It is the intrinsic parameters 
that are to be computed. 

In the usual method of calibration [4] [12] a special object is put in the field of view 
of the camera. The 3D shape of the calibration object is known, in other words the 3D 
coordinates of some reference points on it are known in a coordinate system attached to 
the object. Usually the calibration object is a fiat plate with a regular pattern marked 
on it. The pattern is chosen such that the image coordinates of the projected reference 
points (for example, corners) can be measured with great accuracy. Using a great number 
of points, each one yielding an equation of the form (1), the perspective transformation 
matrix M can be estimated. This method is widely used. It  yields a very accurate de- 
termination of the camera parameters, provided the calibration pattern is carefully set. 
The drawback of the method is that in many applications a calibration pattern is not 
available. Another drawback is that it is not possible to calibrate on-line when the cam- 
era is already involved in a visual task. However, even when the camera performs a task, 
the intrinsic parameters can change intentionally (for example adjustment of the focal 
length), or not (for example mechanical or thermal variations). 

The problem of calibrating the extrinsic parameters on-line has already been ad- 
dressed [11]. The goal of this paper is to present a calibration method that can be carricd 
out using the same images required for performing the visual task. The method applies 
when the camera undergoes a series of displacements in a rigid scene. The only require- 
ment is that the machine vision is capable of establishing correspondences between points 
in different images, in other words it can identify pairs of points, one from each image, 
that are projections of the same point in the scene. 

Many methods for obtaining matching pairs of points in two images are described 
in the literature. For example, points of interest can be obtained by corner and vertex 
detection [1] [5]. Matching is then done by correlation techniques or by a tracking method 
such as the one described in [2]. 

2 K r u p p a ' s  E q u a t i o n s  a n d  S e l f - C a l i b r a t i o n  

A brief introduction is given to the theory underlying the calibration method. A longer 
and more detailed account is given in [9]. 

2.1 Derivation of  Kruppa's Equations 

Kruppa's equations link the epipolar transformation to the image w of the absolute conic 
Y2. The conic w determines the camera calibration, thus the equations provide a way of 
deducing the camera calibration from the epipolar transformations associated with a 
sequence of camera motions. Three epipolar transformations, arising from three different 
camera motions, are enough to determine w and hence the camera calibration uniquely. 

The absolute conic is a particular conic in the plane at infinity. It is closely associated 
with the Euclidean properties of space. The conic ~2 is invariant under rigid motions and 
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under uniform changes of scale. In a Cartesian coordinate system [zl, x2, x3, x4] for the 
projective space p a  the equations of 12 are 

�9 .=o + , i + , i = o  

The invariance of 12 under rigid motions ensures tha t  w is independent of  the position 
and orientation of the camera.  The conic w = M(/2)  thus depends only on the ma t r ix  A 
of intrinsic parameters .  The  converse is also true [9] in tha t  w determines the intrinsic 
parameters .  

Let the camera  undergo a finite displacement and let k be the line joining the optical 
centre of the camera  prior t o  the mot ion to the optical centre of  the camera  after the 

�9 i . , 
motion.  Let p and p be the eplpoles associated with the displacement. The  epipole p 
is the projection of k into the first image and p '  is the projection of/r into the second 
image. L e t / / b e  a plane containing k. T h e n / / p r o j e c t s  to lines I and l' in the first and 
second images respectively. The  epipolar t ransformation defines a homography  from the 
lines through p to the lines through p '  such tha t  I and I' correspond. The  symbol  ~ is 
used for the homographic correspondence, l-~l'. 

I f / / i s  tangent t o / 2  then I is tangent to w and l' is tangent to the projection w' o f /2  
into the second image�9 The  conic w is independent of the camera  position thus w = w'.  It  
follows tha t  the two tangents to w from p correspond under the epipolar t ransformat ion 
to the two tangents to w from p ' .  The  condition tha t  the epipolar lines tangent  to w 
correspond gives two constraints linking the epipolar t ransformation with w. Kruppa ' s  
equations are an algebraic version of these constraints�9 

Projective coordinates [Yl, Y2, Y3] are chosen in the first image. Two triples of coordi- 
nates [Yl, Y2, Y3] and [Ul, u2, ua] specify the same image point if and only if there exists 
a non-zero scale factor s such that  Yi = sui for i = 1, 2, 3. The epipolar lines are param-  
eterised by taking the intersection of each line with the fixed line y3 = 0. Let (p, y)  be 
the line through the two points p and y.  A general point x is on (p, y)  if and only if 
(p  x y ) . x  = 0. Let D be the matr ix  of the dual conic to w. It  follows from the definition 
of D tha t  (p, y)  is tangent to w if and only if it lies on the dual conic, 

(p x y ) T D ( p  x y)  = 0 (2) 

The entries of D are defined to agree in par t  with the notat ion of Kruppa,  

[-623 6a 67 ] 
D =  | 63 -613 61 J L 62  61  - - 6 1 7  

(3) 

There are six parameters  6i, 6q in (3), but  D is determined by w only up to a scale factor. 
After taking the scale factor into account D has five degrees of freedom. On sett ing Y3 = 0 
and on using (3) to substi tute for D in (2) it follows tha t  

A 2 A11Y~ "}- 2A12yly2 "}" 22Y2 -- 0 (4) 

where the coefficients Art ,  A12, A22 are defined by 

A l t =  -6taP2a - 612p~ - 261p2pa 

A12 = 612PIP2 - 6apa 2 + 62p2p3 -4r 61PlP3 

A22 = -62apa ~ - 61~pi ~ - 262plpa (5) 
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An equation similar to (4) is obtained from the condition tha t  the epipolar line (p ' ,  y ' )  
in the second image is tangent to w, 

A '  '2 A'llY'I 2 + 2Ai2Y'lY'2 + 22Y2 = 0 (6) 
�9 t n u . 

The coefficnents All  , Alg, A22 ' are obtained from (5) on replacing the coordinates Pi of 
p with the coordinates p~ of p .  The  coordinate V'3 is set equal to zero�9 

The  epipolar t ransformation induces a bilinear t ransformat ion N from the line V3 = 0 
.to the line Y'3 = 0. If y = [Vt, ]/2, 0] f and y '  = [Y'I, V'2, 0] T then .(p, y)  ~ (p ' ,  .y') if and only 
if y = N y .  Let r = V2/Vl, r = V2/Vl. Then the t ransformation N is eqmvalent to 

, a r + b  
r = e r  + d (7) 

The  parameters  a, b, c, d can be easily computed up to a scale factor from the two epipoles 
p,p0 and a set of point matches qi ~ q~, 1 < i < n. A linear least square procedure 
based on (7) is used. The  i th image correspondence gives an equation (7) with 

u s o t 

ri = P3qi2 - P2qi3 7. I __ PS, q$2 - P2, qi3 (8) 
Psql l -- Pl qi3 Psql l -- Pl qi3 

Once a, b, c, d have been found (4), (6) and (7) yield 

AII+ 2At2r  + A 2 2 r  2 = 0 
I n I 

All(b~" + c) ~ + 2A12(bl"  + c)('/" + a )  + A 2 2 ( ' r  + a )  2 : 0 (9)  

Each equation (9) is quadratic in I". The  two equations have the same roots, namely 
the values of ~" for which (p, y)  is tangent to w. I t  follows tha t  one equation is a scalar 
multiple of the other. Kruppa ' s  equations are obtained by equating ratios of coefficients, 

Ax2(A'~sa ~ + A'll c2 + 2A'x2ac) - (A'l~c + A~2a + A~libc + A'12ab)All = 0 

A22(A'22a 2 + A'xlc 2 + 2A'xzac) - (2A'12b + A'22 + A' l lbZ)Al l  = 0 

2.2 Kruppa's Equations for Two Camera Motions 

Two camera motions yield two epipolar t ransformations and hence four constraints on 
the image w of the absolute conic�9 The conic w depends on five parameters ,  thus the 
conics compatible with the four constraints form a one dimensional family c. The family 
c is an algebraic curve which parameterises the camera  calibrations compatible with the 
two epipolar transformations�9 

An algebraic curve can be mapped  from one projective space to another  using trans- 
formations defined by polynomials. A linear t ransformation is a special case in which the 
defining polynomials have degree one. One approach to the theory of algebraic curves 
is to regard each transformed curve as a different representation of the same underlying 
algebraic object. For example a conic, a plane cubic with a node and a cubic space curve 
can all be obtained by applying polynomial  t ransformations to the projective line ]p1. 
Each curve is a different representation of p1 ,  even though the three curves appear  to 
be very different�9 

The  properties of c are obtained in [9]�9 It is shown tha t  c can be represented as an 
�9 �9 3 �9 algebraic curve of degree seven in P or alternatively as an algebraic curve of degree six 

�9 2 �9 �9 2 .  �9 m P . The representation of c as a curve in P Is obtained as follows�9 
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Fig. 1. Construction of the dual curve g 

/ 

Let Pl, Pl be the two epipoles for the first motion of the camera. The epipolar 
a 

transformation is defined by the Steiner conic sl through Pl and Pl; two epipolar lines 
(Pl, Y) and (P2, Y) correspond if and only i f y  is a point of sl. The two tangents from pl 
to w cut sl at points Xl, x2 as illustrated in Fig. 1. The chord (xl, x2) of sl corresponds 
to the point Xl • x2 in the dual of the image plane. The point xl x x2 lies on a curve 
g which is an algebraic transformation of c. It is shown in [9] that ~? is of degree six and 
genus four. The point Pl • P'I of g corresponding to the line (Pl, Pl) in the image plane 
is a singular point of multiplicity three. The curve g has three additional singular points, 
each of order two. An algorithm for obtaining these three singular points is described 
in [9]. The algorithm produces a cubic polynomial equation in one variable, the roots of 
which yield the three singular points. 

Three camera displacements yield six conditions on the camera calibration. This is 
enough to determine the camera calibration uniquely. 

3 C o m p u t i n g  t h e  Epipoles 

Two different methods for computing the epipoles are described. 

3.1 S tu r r a ' s  M e t h o d  

The epipoles and the epipolar transformations can be computed by a method due to 
Hesse [6] and nicely summarized by Sturm in [10]. Sturm's method yields the epipoles 
compatible with seven image correspondences. 

Let qi *-* ql, 1 < i < n, be a set of image correspondences. Then p, p'  are possible 
epipoles if and only if 

a # 

(P, ql) ~ ( P  ,ql) 1 < i <  n (10) 

The pencil of lines through p is parameterised by the points of the line (ql, q2). Let 
(p, q) be any line through p. Then (p, q) meets (ql, q2) at the point x defined by 

X:(p•  X(ql xq2) 
---- [(P • q).q2]ql -- [(P X q).ql]q2 

The line (p, q~) is assigned the inhomogeneous coordinate 0i defined by 

01 -- (p • qi).q2 -_ (qi x q2)-P 
(p x ql).ql (ql • ql) .P 
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It follows that 01 = 00 and 02 = 0. Let 0q be the inhomogeneous coordinate of a fifth line 
(p, q). The cross ratio 7" of the four lines through p with inhomogeneous coordinates 01, 
02, 03, Oq is 

(01--03~ /(01--Oq'~ 
r = k 0 2 - 0 3 ) / \ 0 2 - O q )  

Oq 

Os 

= (P • q ) . q l )  x qa).q2 
(11) 

It follows from (10) that r is equal to the cross ratio of the lines (p', q'~), 1 < i < 3 and 
(p', q') in the second image. On equating the two cross ratios the following equation is 
obtained. 

( -pxq) .q l  ( pxq3 ) . q2  -- ~(p  x ~ )  \ ( p  ~ )  

If n = 6 then ~12) yields thr,ee independent equations on replacing q ~ q' by each of 
t 

q4 ~ q4, q5 ~ q5 and qs ~ qs in turn�9 Equation (12) has the general form aq .p = 0 
i 

where aq is a vector linear in p that depends on q ~ q .  The three equations a4.p = 0, 
e i 

as.p = 0 and as.p = 0 constrain p to lie on the cubic plane curve (a4 x as).as = 0. 
i 

The image correspondence qs ~ qr is replaced by a new image correspondence 
i 

q7 ~ q7 and a second cubic constraint on p is generated. The two cubic plane curves 
intersect in nine points but only three of these intersections yield epipoles p such that (10) 
holds. The remaining six intersections do not yield possible epipoles. The six intersections 
include the points qi for 1 < i < 5. 

The advantage of Sturm's method is its elegant mathematical form: it gives closed 
form solutions for the epipoles. It is also possible to find by an exact algorithm a least 
squares solution if many cubic plane curves are available. These two approaches have 
been implemented in MAPLE. 

However, because of the algebraic manipulations that are involved, both approaches 
turned out to be very sensitive to pixel noise. Two methods for reducing the noise sensi- 
tivity have been tried. Firstly, the number of manipulations has been reduced by working 
numerically using only cross ratios and the equations (12). Secondly, the uncertainties in 
the positions of the image points have been taken into account. In a first implementation 
without taking uncertainties into account the criterion was very sensitive to pixel noise: 
in some examples, 0.1 pixel of noise drastically changed the positions of the epipoles. 
Using N correspondanees, partitioned in subsets of four correspondances, the idea is to 
minimise the criterion 

N/4X_. - , . ,)2 
C(p, p') 

where ~'i is the cross ratio of the lines (p, q~), 1 _< j _< 4, given by the formula (11), r '  is 
the same with primes, and where try, and ~r~ are the first order variances on 7"/and v/. 
The notation qlj for 1 _< j < 4 indicates a subsequence of the qi. If the noise distribution 
is the same for all image points ql, ~ then q~, 2 2 = ~ixell[grad(r/)l[ , where grad(rl)  is 
an eight dimensional gradient computed with respect to the qij for 1 < j < 4. The effect 
of using the uncertainty in the criterion is that pairs of cross-ratios with large variances 
will contribute little, whereas others will contribute more. 
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The problem is that non-linear minimisation techniques are needed. The results of 
non-linear minimisation are often very dependent on the starting point. Another difficulty 
is that the position of the minimum is quite sensitive to noise, as will be seen in the 
experimental section below. 

3.2 T h e  F u n d a m e n t a l  M a t r i x  M e t h o d  

The fundamental matrix F is a generalization of the essential matrix described in [8]. For 
a given point m in the first image, the corresponding epipolar line era in the second image 
is linearly related to the projective representation of m. The 3 • 3 matrix F describes 
this correspondence. The projective representation era of the epipolar line em is given by 

era = F m  

Since the point m corresponding to m belongs to the line era by definition, it follows 
that 

m'TFm -- 0 (13) 

If the image is formed by projection onto the unit sphere then F is the product of an 
orthogonal matrix and an antisymmetric matrix. It is then an essential matrix and (13) 
is the so-called Longuet-Higgins equation in motion analysis [8]. If the image is formed by 
a general projection, as described in (1), then F is of rank two. The matrix A of intrinsic 
parameters (1) transforms the image to the image that would have been obtained by 
projection onto the unit sphere. It follows that F = A - I T E A  -1, where E is an essential 
matrix. Unlike the essential matrix, which is characterized by the two constraints found 
by Huang and Faugeras [7] which are the nullity of the determinant and the equality of 
the two non-zero singular values, the only property of the fundamental matrix is that it 
is of rank two. As it is also defined only up to a scale factor, the number of independent 
coefficients of F is 7. The essential matrix E is subject to two independent polynomial 
constraints in addition to the constraint det(E) = 0. If F is known then it follows from 
E = ATFA that the entries of A are subject to two independent polynomial constraints 
inherited from E. These are precisely the Kruppa equations. It has also been shown, using 
the fundamental matrix, that the Kruppa equations are equivalent to the constraint that 
the two non-zero singular values of an essential matrix are equal. 

The importance of the fundamental matrix has been neglected in the literature, as 
almost all the work on motion has been done under the assumption that intrinsic pa- 
rameters are known. But if one wants to proceed only from image measurements, the 
fundamental matrix is the key concept, as it contains the all the geometrical information 
relating two different images. To illustrate this, it is shown that the fundamental matrix 
determines and is determined by the epipolar transformation. The positions of the two 
epipoles and any three of the correspondences l ~ l '  between epipolar lines together de- 
termine the epipolar transformation. It follows that the epipolar transformation depends 
on seven independent parameters. On identifying the equation (13) with the constraint 
on epipolar lines obtained by making the substitutions (8) in (7), expressions are ob- 
tained for the coefficients of F in terms of the parameters describing the epipoles and 
the homography: 

Fll -- bp3pl3 

F12 "- ap3Pl3 

F13 = -ap2p '3  - bplp'~ 
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F21 = --dPl3P3 
F~2 = -cp~p3 

F23 : cp~p2 + dp~pl 
F~I = dp'~m - bpsp'~ 

F32 = cp'~p~ - ~p3p'~ 

F ~  = -cp'~p2 - dp'~pl + .p2p'~ + bp~p'~ (14)  

From these relations, it is easy to see that F is defined only up to a scale factor. Let 
cl,  c2, c3 be the columns of F. It follows from (14) that p lc l  + p2c2 + p3c3 = 0. The 
rank of F is thus at most two. The equations (14), yield the epipolar transformation as 
a function of the fundamental matrix: 

a - - f 1 2  

b = F l l  

c : --1;'22 
d = -F21 

F23F12 - F22F1s 
pl = F22F11 - F21F12 ~ 

F11F23 - FieF21 
P2 = 

p~= 

p~ = 

The determinant of the homography 
is not null. 

F22F11 - F21F12 p3 

F32F21 - F22F31 i 
~ P 3  F22Fll F21F12 

FllF32 - F 3 1 F 1 2  , 

~ P 3  (15) 
F22Fll F21 12 

is F22Fll -F21F12. In the case of finite epipoles, it 

A first method to estimate the fundamental matrix takes advantage of the fact that 
equation (13) is linear and homogeneous in the nine unknown coefficients of F. Thus if 
eight matches are given then in general F is determined up to a scale factor. In practice, 
many more than eight matches are given. A linear least squares method is then used to 
solve for F. As there is no guarantee, when noise is present, that  the matrix F obtained is 
exactly a fundamental one, the formulas (15) can not be used, and p has to be determined 
by solving the following classical constrained minimization problem 

minHFpH 2 subject to [IpH 2 = 1 
P 

This yields p as the unit norm eigenvector of the matrix F r F with the smallest eigenvalue. 
The same processing applies in reverse to the computation of the epipole p ' .  In contrast 
with the Sturm method, this method requires only linear operations. It is therefore more 
efficient and it has no initialization problem. 

However the minimum turns out to be sensitive to noise, particularly when the 
epipoles are far from the centre of the image. Experiments show that this problem is 
reduced by using the following criterion for minimization: 

min{d(m ' r  , Fro) 2 + d(m T, FTm' )  2 } (16) 

where d is a distance in the image plane. The criterion has a better physical significance 
in terms of image quantities. It is necessary to minimize on F and on F T simultaneously 
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to avoid discrepancies in the epipolar geometry. In doing this non-linear minimization 
successfully two constraints are important: 

- The solution must be of rank two, as all fundamental matrices have this prop- 
erty. Rather than performing a constrained minimization with the cubic constraint 
det(F) = 0, it is possible to use, almost without loss of generality, the following 
representation for F proposed by Luc Robert: 

( Xl z~ z3 ) 
F = z 4  x 5  x6  

xTxl ~- xsx4 xTx2 -k xsX5 xTx3 ~- xsX6 

One unknown is eliminated directly, and then F is found by an unconstrained mini- 
mization. 

- The matrix F is defined only up to a scale factor. In order to avoid the trivial 
solution F = 0 at which the minimization routines fail because the derivatives become 
meaningless, one of the first six elements of F is normalised by giving it a fixed 
finite value. However, as the minimization is non-linear convergence results can differ, 
depending on the element chosen. This feature can he used to escape from bad local 
minima during minimization. 

This second method for computing the fundamental matrix is more complicated, as it 
involves non-linear minimizations. However, it yields more precise results and allows the 
direct use of the formulas (15) to obtain the epipolar transformation. 

4 S o l v i n g  K r u p p a ' s  E q u a t i o n s :  t h e  C o n t i n u a t i o n  M e t h o d  

Symbolic methods for solving Kruppa's equations are described in [9]. These methods 
are very sensitive to noise: even ordinary machine precision is not sufficient. Also they 
require rational numbers rather than real numbers. In this section Kruppa's equations 
are solved by an alternative method which is suitable for real world use. The current 
implementation is as follows, 

- Do 3 displacements. For each displacement: 
1. Find point matches between the two images 
2. Compute the epipoles 
3. Compute the homography of epipolar lines 
4. Compute the two Kruppa equations 

- Solve the six Kruppa equations using the continuation method 
- Compute the intrinsic parameters 

Three displacements yield six equations in the entries of the matrix D defined in Sect. 
2.1. The equations are homogeneous so the solution for D is determined only up to a scale 
factor. In effect there are five unknowns. Trying to solve the over-determined problem 
with numerical methods usually fails, so five equations are picked from the six and solved 
first. As the equations are each of degree two, the number of solutions in the general case 
is 32. The remaining equation is used to discard the spurious solutions. In addition to the 
six equations, the entries of D satisfy certain inequalities that  are ,discussed later. These 
are also useful for ruling out spurious solutions. The problem is that solving a polynomial 
system by providing an initial guess and using an iterative numerical method will not 
generally give all the solutions: many of the start  points will yield trajectories that do 
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not converge and many other trajectories will converge to the same solution. However it 
is not acceptable to miss solutions, as there is only one good one amongst the 32. 

Recently developed methods in numerical continuation can reliably compute all so- 
lutions to polynomial systems. These methods have been improved over a decade to 
provide reliable solutions to kinematics problems. The details of these improvements are 
omitted. The interested reader is referred to [13] for a tutorial presentation. The solu- 
tion of a system of nonlinear equations by numerical continuation is suggested by the 
idea that small changes in the parameters of the system usually produce small changes 
in the solutions. Suppose the solutions to problem A (the start system) are known and 
solutions to problem B (the target system) are required. Solutions to the problem are 
tracked as the parameters of the system are slowly changed from those of A to those 
of B. Although for a general nonlinear system numerous difficulties can arise, such as 
divergence or bifurcation of a solution path, for a polynomial system all such difficulties 
can be avoided. 

Start System. There are three criteria that guide the choice of a start system: all of 
its solutions must be known, each solution must be non-singular, and the system must 
have the same homogeneous structure as the target system. The use of m-homogeneous 
systems reduces the computational load by eliminating some solutions at infinity, so it is 
useful to homogenize, but only inhomogeneous systems are discussed here for the sake of 
simplicity. Thus an acceptable start  system is: x~ j - 1 = 0 for 1 < j < n where n is the 
number of equations and dj is the degree of the equation j of the target system. Each 
equation yields dj distinct solutions for xj, and the entire set of YI~'=I dj solutions are 
found by taking all possible combinations of these. 

Homotopy. The requirement for the choice of the homotopy (the schedule for transform- 
ing the start system into the target system) is that  as the transformation proceeds there 
should be a constant number of solutions which trace out smooth paths and which are 
always nonsingular until the target system is reached. It  has been shown by years of 
practice that the following homotopy suffices: 

H(x,  t) = (1 - t)ei~ + tF(x)  

where G(x) is the start system, and F(x)  is the target system. 

Path tracking. Path tracking is the process of following the solutions of H(x ,  t) = 0 as t 
is increased from 0 to 1. These solutions form d continuation paths, where d is the Bezout 
number of the system, characterising the number of solutions. To track a path from a 
known solution (x ~ to), the solution is predicted for t = t o +At ,  using a Taylor expansion 
for H,  to yield Ax = - J ; l j t A t  , where J~ and Jt are the Jacobians of H with respect 
to x and t. The prediction is then corrected using Newton's method with t fixed at the 
new value to give corrections steps of zJx = -J ;XH(x ,  t). 

Using an implementation provided by Jean Ponce and colleagues fairly precise so- 
lutions can be obtained. The major drawback of this method is that  it is expensive in 
terms of CPU work. The method is a naturally parallel algorithm, because each contin- 
uation path can be  tracked on a separate processor. Running it on a network of 7 Sun-4 
workstations takes approximatively one minute for our problem. 
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5 C o m p u t i n g  t h e  I n t r i n s i c  P a r a m e t e r s  

In this section the relation between the image of the absolute conic and the intrinsic 
parameters is given in detail. The most general matrix A occurring in (1) can be written: 

A = -fk~cosec(o) (1T) 
0 

- ku, kv, are the horizontal and vertical scale factors whose inverses characterize the 
size of the pixel in world coordinates units. 

- u0 and v0 are the image center coordinates, resulting from the intersection between 
the optical axis and the image plane. 

- f is the focal length 
- 9 is the angle between the directions of retinal axes. This parameter is introduced to 

account for the fact that the pixel grid may not be exactly orthogonal. In practice 0 
is very close to ~r/2. 

As f cannot be separated from k, and kv it is convenient to define products c~, = 
- f k ,  and av = - f k v .  This gives five intrinsic parameters. This is exactly the num- 
ber of independent coefficients for the image w of the absolute conic thus the intrinsic 
parameters can be obtained from w. The equation of w is [3]: 

y T A - 1 T A - l y  = 0 

It follows that D = A A  T. Up to a scale factor the entries 5ij and 6i of D are related to 
the intrinsic parameters by 

61 -- v0 

62 ---- uo 

h = UoVo - a u a v  cot(0)cosec(0) 

512 = - 1  

6 =  = - . o  ~ - ~.~ c o ~ c  ~(0)  

~13 = - ~ 0  ~ - ~ c ~ c ~ ( 0 )  

From these relations it is easy to see that the intrinsic parameters can be uniquely 
determined from the Kruppa coefficients, provided the five following conditions hold: 

~13~12 > 0 

~23~12 > 0 

613612 - 6~ > 0 

~23~12 -- &~ > 0 

(~3612 + 6162) 2 
( 6 ~ 1 ~  - 6~)(62~6~2 - 6~) -< I ( i s )  

If one of the conditions (18) doesn't hold then there is no physically acceptable calibration 
compatible with the Kruppa coefficients 6ij and ~.  This is a strong condition which rules 
out many spurious solutions obtained by solving five of the Kruppa equations. It is 
interesting to note that if a four-parameter model is used with 0 = lr/2 then there is the 
additional constraint 6s = -6162/612 which replaces the last one of (18). It can be also 
verified that the calibration parameters depend only on the ratios of Kruppa coefficients, 
so that the scaling of them doesn't modify their value, as expected. 
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6 E x p e r i m e n t a l  R e s u l t s  

The results of experiments with computer generated data are described. The coordinates 
of the projections of 3D points are computed using a realistic field of view and realistic 
values for the extrinsic and intrinsic parameters. For each displacement 20 point matches 
are selected and noise is added. 

6.1 C o m p u t a t i o n  o f  t h e  ep ipo le8  

The results for the determination of the epipoles in the first image are presented. The 
values obtained by the two algorithms (the Sturm method based on weighted cross-ratios, 
and the fundamental matrix method) are given, as well as the relative error with respect 
to the exact solution. The results in the second image are always similar to those in the 
first image. 

pixel motion 1 
noise [ . 4 9 7 5 7 8 . 0 1 4 4 3 3 6 3 . 4 9 3 0 6  ] 

1-335.50 985.39 325.14] 
Sturm Fund. Matrix 

0 
0.01 

0.1 

0.2 

0.5 

1.0 

2.0 

motion 3 
[0.1 0 O] 

tso 20 201 
Sturm Fund. Matrix 

-414.42 3 1 1 5 . 6 4 - 4 1 4 . 4 2  3115.64  1846.40 1199.34 1846.40 1199.34 
-413.96 3113.82 1847.89 1200.50 1841.39 1195,77 

0.1 0.06 
-414 .53  3115 .67  

0.02 0.02 
-415 .47  3114.49  

0,2 0.03 
-410.05 3098.17  

1 0.5 

0 .08 0.1 
1864.07 1212.39 

I 1.1 

0.27 0.29 
1792.52 1161.6~ 

2.9 3.1 
-406.08 3082.27  -416 .27  3112.29  1889.58 1229.63 1731.60 1120.51 

2 1.1 0.4 0,1 2.3 2.5 6.2 6.2 
-417 .13  3099.29 

0.6 0.6 
-413 .24  3055.80 

motion 2 
[ o .os o l 

SturmI0 0 4001 
Fund.  Matrix 

246.09 255.64 246.09 255.64 
246.06 255.66 246.10 255.57 

0.01 0.007 0.04 0.02 
245.69 255.7(~ 246.11 255.00 

0.16 0.02 0.008 0.25 
245.58 255.9C 246.05 254.47 

0.2 0 . I  0 .016 0.45 
244.45 256.3(  245.40 253.64 

0.6 0.3 0.3 0.8 
239.82 256.11 242.62 254.90 

2.5 0.2 1.4 0.3 
226.05 284.41 230,44 267.72 

8 11 6.3 4.7 

-396.32 3043.11 
4.3  2.3 

-386.10 3001.28 
6.8 3.6 

2045.52 1325.10 
10.7 10.5 

762.82 554.48 

1527.21 988.02 
17 17 

1201.05 785.79 

-333.19 2772.54 
19 11 

0.2 1.9 
- ~ 5 . 4 1 2 8 8 9 . 2 9  

7 7.2 

58 53 35 34 
801.64 592.33 785.28 536.30 

56 50 57 55 

From these results, it can be seen that the fundamental matrix method is more 
robust. It is also computationally very efficient since it involves only a linear least squares 
minimisation and a 3 x 3 eigenvector computation. A second point worth noting is that 
the stability of the position of the epipole depends strongly on the displacement that is 
chosen. 

Other experiments not reported here due to lack of space show that if more matches 
are available then the precision of the determination of the epipoles can be improved. 

6.2 Intr ins ic  p a r a m e t e r s  

The intrinsic parameters that have been computed using two displacement sequences 
are presented. The first sequence consists of motion 1, motion 4, motion 2. The second 
sequence consists of motion 1, motion 4, motion 3. 

0 pixels 
0.01 pixels 

0.1 pixel8 

0.2 pixels 

~u ~v UO '~0 ~ 

640.125 ~)43.695 246.096 255.648 0 
597.355 940.403 248.922 259.196 0.02 

6,68 0.34 1.14 1.38 
520.126 904.744 275,120 280.601 0.09 

18.7 4.1 11.8 9.7 
175.204 ~67.214 565,234 291.162 0.4 

72.6 8.1 129.6 13.8 
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otu O~v UO 'VO ~ -  ~" 
0.01 pixels 699.815 948.1061174.723 245.112 0.018 

9.3 0.46 29.0 4.12 
0.1 pixels 687.814 989.538 149.055 257.030 0.004 

7.4 4.85 39.4 0.54 
0.2 pixels 552.601 993.837!269.278 283.458 0.013 

13.6 5.31 9.41 10.87 
0.5 pixels 433.894 957.018!358.904 308.191 0.13 

32.2 1.4 45 20.5 
1.0 pixel 477.043 724.909 137.052 258.763 0.3 

25.4 23.2 44.3 1.2 

More precise results are obtained if more than three camera displacements are available. 
These results demonstrate the feasibility of the method in real environments, provided 

image points can be located with a sufficient precision. This precision is already achievable 
using special patterns. 

7 Conclusion and Perspectives 

A method for the on-line calibration of the intrinsic parameters of a camera has been 
described. The method is based on the estimation of the epipolar transformations as- 
sociated with camera displacement. Three epipolar transformations arising from three 
different displacements are sufficient to determine the camera calibration uniquely. The 
epipolar transformations can in principle be obtained by tracking a number of salient 
image points while the camera is moving. It is therefore not necessary to interrupt the 
action of the vision system in order to point the camera at a special test pattern. 

The feasibility of the method is demonstrated by a complete implementation which is 
capable of finding the intrinsic parameters provided a sufficient number of point matches 
are available with a sufficient precision. However, the precision required to obtain accept- 
able calibrations is at the limit of the state-of-art feature detectors. 

The next step is thus to find efficient methods to combat noise. The key idea is 
to compute the uncertainty explicitly. The results have shown that some displacements 
yield epipolar transformations that are very sensitive to pixel noise, whereas, some yield 
transformations that are more robust. Methods for charaeterising "bad" displacements 
are currently being investigated. In particular, it has been shown that pure translations 
lead to degenerate cases, thus yielding results that are very sensitive to noise. However, it 
is not sufficient to know a priori which displacements are best because as the camera is not 
yet calibrated they cannot be applied. If the uncertainty in the epipolar transformation 
obtained from a given displacement can be computed it can be the basis of a decision 
whether to use the transformation for the computations, to discard it and use another one, 
or to take it into account only weakly. The final aim is to obtain acceptable calibrations 
using real images. 
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