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A b s t r a c t .  
We propose a formalism for deriving parametrised ensembles of local 

neighbourhood operators on the basis of a complete family of scale-space 
kernels, which are apt for the measurement of a specific physical observable. 
The parameters are introduced in order to associate a continuum of a priori 
equivalent kernels with each scale-space kernel, each of which is tuned to a 
particular parameter value. 

Ensemble averages, or other functional operations in parameter space, 
may provide robust information about the physical observable of interest. 
The approach gives a possible handle on incorporating multi-valuedness 
(transparancy) and visual coherence into a single model. 

We consider the case of velocity tuning to illustrate the method. The 
emphasis, however, is on the formalism, which is more generally applicable. 

1 Introduction 

The problem of finding a robust operational scheme for determining an image's differ- 
entiM structure is intimately related to the concept of resolution or scale. The concept 
of resolution has been given a well-defined meaning by the introduction of a scale-space. 
This is a 1-parameter family of images, derived from a given image by convolution with 
a gaussian kernel, which defines a spatial aperture for measurements carried out on the 
image and thus sets the "inner scale" (i.e. inverse resolution). 

The gaussian emerges as the unique smooth solution from the requirement of absence 
of spurious detail, as well as some additional constraints [1, 2, 3]. Alternatively, it is 
uniquely fixed by the requirement of linearity and a set of basic symmetry assumptions, 
i.c. translation, rotation and scale invariance [4, 5]. These symmetries express the absence 
of a priori knowledge concerning the spatial location, orientation and scale of image 
features that might be of interest. 

Although several fundamental problems are yet to be solved, the crucial role of res- 
olution in any front end vision system cannot be ignored. Indeed, scale-space theory is 
gaining more and more appreciation in computer vision and image analysis. Neurophys- 
iological evidence obtained from mammalian striate cortex also bears witness of its vital 
importance [6]. There is also psychophysical support for the gaussian model [7]. 

Once the role of scale in a physical observable has been appreciated and a smooth 
scale-space kernel has been established, the problem of finding derivatives that depend 
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continuously on the image (i.e. are well-posed in the sense of Hadamard), has a trivial 
solution [4, 5, 8, 9]: just note that i fD is any linear differential operator, f is a given image 
and gr is the scale-space kernel on a sc~e ~ (fairly within the available scale-range), then 
the convolution f .  Dgr precisely yields the derivative of f on scale a, i.e. D ( f  * ga). The 
1-parameter family containing the scaled gaussian and its linear derivatives constitutes 
a complete family of scaled differential operators or local neighbourhood operators [10]. 

Despite its completeness, however, the gaussian family is not always the most conve- 
nient one. For example, local optic flow in a time varying image can be obtained directly 
from the output of a gaussian family of space-time filters, at least in principle [11], but it 
may be more convenient to first tune these filters to the physical parameter of interest, 
i.c. a velocity vector field. This way, the filters have a more direct relation to the quantity 
one wishes to extract. 

To illustrate the formalism we will present an example of filter tuning, i.c. velocity 
tuning [12, 13, 14, 15]. The emphasis, however, is on the formalism based on (Lie-group) 
symmetries, expressing the a priori equivalence of parameter values, i.e. velocities. The 
formalism is readily applicable to a more general class of physical tuning parameters, e.g. 
frequency, stereo disparity, etc. 

2 F i l t e r  T u n i n g  

Fourier's powerful method of dimensional analysis has received a solid mathematical 
formulation in the So-called Pi theorem. This theorem, together with the introduction 
of the physical tuning parameter of interest and the symmetry assumptions mentioned 
in the introduction, provides the main ingredients for the derivation of a family of lo- 
cal neighbourhood operators tuned to that observable. Basically, this theorem states 
that, given a physical relation f ( x l , . . . ,  a:/)) = 0, there exists an equivalent relation 
] (7r l , . . . ,  ~ro-R) = 0 in terms of dimensionless variables, which can be found by solving 
a linear equation. For more details, the reader is referred to [16]. 

In order to illustrate the tuning procedure, we will now turn to the case of velocity 
tuning. Our starting point will be a complete family of scaled spacetime differential 
operators Fm...u, ( X ): 

Def in i t ion  I ( T h e  Gauss ian  Space t ime  Fami ly) .  The gaussian spacetime family is 
defined as: 

(Ftt,,.,#~ (X__) d:~f f--(D+I)~ }nvr (1) Va" ot~l...~, exp {-X_.. X__} 0 

in which X is a (D+ 1)-vector in spacetime, whose components are given by X0 = t/2~2~r2r 2 
and Xi = xl/2v/2-~ 2 for i = 1 . . .  D and in which am...v, denotes the n-th order differential 
operator O" /OX m .. .  OXo,. 

We have the following relationship between the kernels/'m...~," (X), given in dimen- 
sionless, scale-invariant coordinates, and the scMe-parametrised kernels Gm...~,,(x, t; o', r): 

~%//~T2ra ~V~ff2 n-mel~,. .IJ. (x, t; o', "f ) dxdt deaf F#I. .Ij. (X) dX__ (2) 

in which m is the number of zero-valued indices among Pl .../~n. Although the temporal 
part of (1) obviously violates temporal causality, it can be considered as a limiting case 
of a causal family in some precise sense [17]. Sofar for the basic, non-tuned gaussian 
spaeetime family. 
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The tuning parameter of interest will be a spacetime vector ~_ = (~0; ~). Apart from 
this, the following variables are relevant: the scale parameters ~ and r,  the frequency 
variables ~ and o~0 for addressing the fourier domain, and the variables s and s rep- 
resenting the scaled and original input image values in fourier space. According to the 
Pi theorem, we may replace these by: A de_f ~//'~'0, ~ = (~'~0; ~e~) de_f (~0 ~ - ' ~ ; r  ~ " ~ )  ' 

-~ = (~0; ~') de__f (~0/2X/~;~/2Vt~-~). Moreover we will use the conjugate, dimension- 

less variables X = (X0; X) d~__f ( t / ~ ;  x/2X/~) .  Their dependency is expressed by 
A = g (/2, ~) ,  in which g is some unknown, scalar function. 

In the ~, -~ 0 limit, the ~'--tuned kernels should converge to (1). Reversely, by applying 
a spacetime tuning operation to this underlying family, we may obtain a complete family 
of spacetime-tuned kernels and, more specifically, of velocity-tuned kernels: 

Definition 2 (Spaeetime Tuning). A spacetime quantity Q (X__, ~) is called spacetime- 
tuned with respect to a given point ~ if V~ ~ the following symmetry holds: Q (X, ~) = 
Q (x__- __-%__--- __--') de=, T:_-,Q (x__, __--) 

Applying the operator T=- on a given operand, we obtain a spacetime-tuned version of 
it: TgQ (X__) = Q (X - ~) .  In this way the gaussian family can be tuned so as to yield: 

Result 3 (Family of Spacetime Tuned Kernels). A complete family of spacetime- 
tuned kernels is given by: 

(3) 

The construction of velocity-tuned kernels from the basic gaussian family is a special 
case of spacetime tuning, viz. one in which the tuning point is the result of a galilean 
boost applied to the origin of a cartesian coordinate frame. This is a transvection in 
spacetime, i.e. a linear, hypervolume preserving, unit eigenvalue transformation of the 
following type: 

Def in i t i on4  (Gal i lean  Boos t ) .  A galilean boost T~ is a spacetime transvection of the 
type T~: (60;~i) ~ (60 + "rk6k ; ~i), in which the ~ constitute an orthonormal basis in 
spacetime and "r is an arbitrary D-vector. 

T~ transforms static stimuli (straight curves of "events" parallel to the T-axis) into 
dynamic stimuli, moving with a constant velocity "/. Note that T O is the identity and 
T~ -1 = T_~ is the inverse boost. Since a galilean boost is just a special type of spacetime 
tuning, we immediately arrive at the following result: 

Resu l t  5 (Fami ly  of  Ve loc i ty -Tuned  Kerne l s ) .  A complete family of velocity-tuned 
kernels is obtained by applying a galilean boost T~ Tx_(-O, with ~(-/)  def = = t o  
the gaussian spacetime family: 

(F/~ (X; 'y )  def Fp (X  ~.~(,.~)))oo 
t --.~n ~ 1 .../a ~ , n.--O ( 4 )  

The relevance of using a (seemingly redundant) parametrised ensemble of local oper- 
ators is best illustrated by means of an example. 
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Example 1. Consider a point stimulus L0(x, t) = AS(x - et), moving at fixed velocity e. 
According to (4), the lowest order velocity-tuned filter is given in by: 

1 1 { ( x - v t ) . ( x - v t )  t2 ~ 
G(x,t; a, r, v) = 

2V/~"~ ~ 2 D 2V/~ ~ exp 2cr2 2r2 
(5) 

d e f  
in which the velocity v is related to the parameter vector "7 in (4) by v = ~ / r .  
Convolving the above input with this kernel yields the following result: 

L v , , , r ( x , t ) -  A e x p {  ( x -  ct)2 } (6) 

with A ~f  lie-vii and o'~ d=cr ~x/T+ 32. This shows an ensemble of fuzzy blobs centered IJ 

at the expecte~ location of the stimulus, the most pronounced member of which is indeed 
the one for which the tuning velocity coincides with the stimulus velocity (A = 0). 
However, it is the velocity ensemble rather than any individual member that carries the 
information about stimulus velocity and that allows us to extract this in a way that is 
both robust and independent of contrast A. In order to appreciate the kind of ensemble 
operations one can think of, consider for example the average < v >. A straightforward 
symmetry argument shows that this equals: 

< v >  (x, t)def f dvvLv ,a , r (X , t )  
= fdvLv,~ ,~(x , t )  = e 

V(x,t) (z) 

(just note that < v - c > vanishes identically). In our example, this average turns out to 
be a global constant, which, of course, is due to the uniform motion of the input stimulus. 
A similar, though non-trivial ensemble integral can be evaluated to obtain the variance 
Av = X/< ]Iv -- c IP >. It is important to realise, however, that by proceeding in this way 
we enforce a singlue-valued "cross-section" of the observable, i.e. velocity field. It is clear 
that this is by no means necessary: one could think of segmenting parameter space into 
subdomains and applying similar operations on each subdomain independently, leading 
to a multi-valued result (transparency). This is a conceivable thing to do especially if such 
a segmentation is apparent, as in the case of a superposition of two point stimuli for two 
clearly distinct values of c. In that case we can use (7) for each component of transparent 
motion by restricting the integrations to the respective velocity segments. Although an 
N-valued representation is certainly plausible in the limiting case when a segmentation 
of parameter space into N segments is "obvious", it remains an intriguing problem of 
how to deal with transient regions, occuring e.g. when there is an apparent jump in the 
velocity field of the input stimulus. Clearly, our representation entails all these cases. 
The problem as such is one of pattern extraction from the output of the tuned local 
neighbourhood operators in the product space of locations and tuning parameters [18]. 

3 C o n c l u s i o n  a n d  D i s c u s s i o n  

In this paper we have shown how the basic family of local scale-space operators may 
give rise to a gamut of other families, each of which is characterised, apart from scale, 
by some physical tuning parameter. We have presented a formalism for generating such 
families from the underlying gaussian scale-space family in a way that makes the a priori 
equivalence of all tuning parameter values manifest. We have illustrated the formalism 
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by an example  of velocity tuning,  incorporat ing all possible gali lean boosts  so as to yield 
ensembles of  veloci ty-tuned local scale-space opera tors  (of. Reichardt  operators) .  

We have argued tha t  ensemble averages, or other  functional  operat ions  in pa rame te r  
space, ra ther  than the ou tput  of individual  kernels as such, may  provide a robust ,  oper- 
a t ional  me thod  for extract ing valuable informat ion about  the observable of interest .  The  
appeal ing aspect  of this method  is tha t  it  does not  a im for a single-valued "expecta t ion 
value" for the observable right from the beginning and tha t  single-valuedness is t rea ted  
on equal foot with multi-valuedness. 

The  formal ism should be readily appl icable to other  parameters  of physical  interest ,  
such as frequency, stereo disparity, etc., yielding ensembles of frequency- or d ispar i ty-  
tuned local neighbourhood operators ,  etc. 

References  

1. A. Witkin, "Scale space filtering," in Proc. International Joint Conference on Artificial 
Intelligence, (Karlsruhe, W. Germany), pp. 1019-1023, 1983. 

2. J. J. Koenderink, "The structure of images," Biol. Cybern., vol. 50, pp. 363-370, 1984. 
3. T. Lindeberg, "Scale-space for discrete signals," 1EEE Trans. Pattern Analysis and Ma- 

chine Intelligence, vol. 12, no. 3, pp. 234-245, 1990. 
4. B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. A. Viergever, "Scale- 

space: Its natural operators and differential invariants," in International Conf. on Informa- 
tion Processing in Medical Imaging, vol. 511 of Lecture Notes in Computer Science, (Berlin), 
pp. 239-255, Springer-Verlag, July 1991. 

5. L. Florack, B. ter Haar Romeny, J. Koenderink, and M. Viergever, "Scale-space." Submit- 
ted to IEEE PAMI, November 1991. 

6. R. A. Young, "The gaussian derivative model for machine vision: I. retinal mechanisms," 
Spatial Vision, vol. 2, no. 4, pp. 273-293, 1987. 

7. P. Bijl, Aspects of Visual Contrast Detection. PhD thesis, University of Utrecht, University 
of Utrecht, Dept. of Med. Phys., Princetonplein 5, Utrecht, the Netherlands, May 1991. 

8. J. J. Koenderink and A. J. van Doom, "Representation of local geometry in the visual 
system," Biol. Cybern., vol. 55, pp. 367-375, 1987. 

9. J. J. Koenderink and A. J. Van Doorn, "Operational significance of receptive field assem- 
blies," Biol. Cybern., vol. 58, pp. 163-171, 1988. 

10. J. J. Koenderink and A. J. van Doom, "Receptive field families," Biol. Cybern., vol. 63, 
pp. 291-298, 1990. 

11. P. Werkhoven, Visual Perception of Successive Order. PhD thesis, University of Utrecht, 
University of Utrecht, Dept. of Med. Phys., Princetonplein 5, Utrecht, the Netherlands, 
May 1990. 

12. D. J. Heeger, "Model for the extraction of image flow," Journal of the Optical Society o] 
America.A, vol. 4, no. 8, pp. 1455-1471, 1987. 

13. D. Heeger, "Optical flow using spatiotemporal filters," International Journal of Computer 
Vision, vol. 1, pp. 279-302, 1988. 

14. E. H. Adelson and J. R. Bergen, "Spatiotemporal energy models for the perception of 
motion," Journal o] the Optical Society of America-A, vol. 2, no. 2, pp. 284-299, 1985. 

15. W. E. Reichardt and R. W. SchSgl, "A two dimensional field theory for motion computa- 
tion," Biol. Cybern., vol. 60, pp. 23-35, 1988. 

16. P. J. Olver, Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts 
in Mathematics. Springer-Verlag, 1986. 

17. J. J. Koenderink, "Scale-time," Biol. Cybern., vol. 58, pp. 159-162, 1988. 
18. A. J. Noest and J. J. Koenderink, "Visual coherence despite transparency or partial occlu- 

sion," Perception, vol. 19, p. 384, 1990. Abstract of poster presented at the ECVP 1990, 
Paris. 


