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Abstract .  This paper presents a computational model that segments 
images based on the textural properties of object surfaces. The proposed 
Coupled-Membrane model applies the weak membrane approach to an im- 
age WI(a ,  0, x, y), derived from the power responses of a family of self- 
similar quadrature Gabor wavelets. While segmentation breaks are allowed 
in x and y only, coupling is introduced to in all 4 dimensions. The result- 
ing spatial and spectral diffusion prevents minor variations in local tex- 
tures from producing segmentation boundaries. Experiments showed that 
the model is adequate in segmenting a class of synthetic and natural texture 
images. 

1 I n t r o d u c t i o n  

This paper presents a computational model that segments images based on the textural 
properties of object surfaces. The proposed model distinguishes itself from the previous 
models in texture segmentation [Turner 1986, Voorhees and Poggio 1988, Malik and 
Perona 1989, Fogel and Sagi 1989, Bovik, Clark and Geisler 1990, Reed and Wechsler 
1990, Geman et al 1990] in the following way. 

Previous models have started with the extraction from the image I(x,  y) of some set of 
texture features which can be viewed as forming auxiliary texture images I~ (x, y). Then 
applying either region growing, boundary detection, or (in the single paper [Geman et al 
1990]) a membrane-like method combining these two, a segmentation is derived. In our 
model, the texture features are the power responses of quadrature Gabor filters. These 
filters form a continuous family depending on two variables ~, 6, and can be derived like 
wavelets from dilation and rotation of a single filter. Thus we think of the texture features 
as combining into a single image "l, VI(tr, O,x, y) depending on ~ continuous variables. 
We apply the weak membrane approach to segmenting this signal, in which coupling is 
introduced in all 4 dimensions, but breaks are allowed in x and y only. We call this the 
Coupled- Membrane model. 

Why is this model useful? Previous methods generally deal only with textures that are 
statistically stationary (i.e. approximately translationally invariant) and not too granular 
(e.g. with widely spaced textons, or large local variations). But natural textures do not 
satisfy either: Firstly, they show considerable texture 'gradients', in which the power dis- 
tribution of the texture among various channels changes slowly but systematically over 
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a region, due for instance to the perspective affine distortion imposed on surface features 
of solid objects in a 3-dimensional world, and to the deformation caused by the non- 
planarity of the objects' body shapes. J. J. Gibson [Gibson 1979] has emphasized how 
these texture gradients are ubiquitous clues to the 3D structure of the world. Secondly, 
they show random local fluctuations, due to the stochasticity in their generation pro- 
ceases, which are often quite large (compare the four subimages in 'Mosaic' below, taken 
from [Brodatz 1966]). The inter-membrane couplings unique to our Coupled-Membrane 
model allow interaction between neighboring components in the spectral vector and pre- 
vent minor local variations from producing segmentation boundaries. At the same time, 
they introduce explicitly the appropriate metric between texture channels so that a shift 
in the peak of the power spectrum to a nearby frequency or orientation is treated differ- 
ently from a shift to a distant frequency or orientation. As we shall see, this allows us to 
begin to solve these problems for natural textures. 

This paper is organized as follows: first, we will discuss how texture is represented in 
our  model and how texture disparity can be computed from this representation. Then, 
we will discuss the Coupled-Membrane model for texture segmentation in its continuous 
formulation and discrete approximation. Finally, we will present our experimental results. 

2 G a b o r - W a v e l e t  R e p r e s e n t a t i o n  o f  T e x t u r e  

Texture segmentation requires a description of local texture properties in an image. Pre- 
vious methods include texton statistics [Voorhees and Poggio 1988], DOG filters [Malik 
and Perona 1989], windowed Fourier transform or Gabor filtering [Turner 1986, Fogel 
and Sagi 1989, Bovik, Clark and Geisler 1990, Reed and Wechsler 1990]. While the first 
two of these methods emphasize feature detection, the Gabor-Fourier method is based 
on power spectrum analysis or autocorrelation. 

In our model, the texture features are the power responses of quadrature Gabor filters. 
These filters form a continuous family depending on two variables or, 8, and can be derived 
like wavelets from dilation and rotation of a single filter. We call this Gabor-Wavelet 
Representation. Physiological evidence suggests that the visual cortex is employing a 
similar representation for encoding visual information. We impose the constraints derived 
from physiological data [Pollen et al. 1989, Dangman 1985] and obtain the following 
family of self-similar Gabor filters centered at (x = 0, y = 0) in the spatial domain. (For 
details, readers are referred to our technical report [Lee, et al 1991].) 

0"2 - 1-i~o2o (4(x cos #-by sin 0 )24 - ( -x  sin 04-y cos 0) ~ e i ( a  cos O:v4-a sin #y) x , y )  = 5-6 e �9 (1) 

where a is the radial frequency, and 0 is the angular orientation of the filter. 
In a manner completely analogous to the generation of wavelet bases from a single 

basic wavelet, this whole family of Gabor filters can be generated by rotation and dilation 
from the following single Gabor filter (as shown in figure 1): 

y) = __1 (2) 
50~r - 

Self-similar Gabor filters from this family serve both as band-pass filters and multi- 
scale matched filters, producing a representational scheme that unifies power-spectrum 
analysis and feature detection. 

The convolution of this family of filters with the image produces a single image 
WI(a ,  0, x, y) which is the normalized power modulus of the filter ensemble as follows, 
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Fig. I .  Rotated and Dilated quadrature Gabor filters 

WI (a ,  0, x, y) = 1 ~l(O: ,0  �9 I)(~, v)l 2 (3) 

where 

(ao,o �9 I)(:o, yo) = / :  ~ ao,0(: - : o , y -  y~ y)~:dy (4) 

and 

r f 
Z = J J I(c:,0, I)(:, y)N:~0 (5) 

Since each Gabor filter has a Gaussian spread in its frequency plane, local power 
spectrum of an image can be sampled in a parsimonious and discrete manner. In our 
implementation, we use Gabor wavelets with a sampling interval of 1-octave in frequency 
and 22.5 ~ in orientation to pave the spatial frequency plane, as shown in figure 2. 

Fig. 2. Tiling of Spatial Frequency Plane by Gabor Wavelets 
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3 Texture Disparity and Spectral Proximity 

Using this sampling scheme, we construct a spectral signature vector of 24 components 
(3 frequencies and 8 orientations) at each point (x, y) in the spatial domain. This vector 
is then normalized, i.e. divided by Z, to discount the luminance effect. As a result, each 
particular texture corresponds to a unit vector within this unit 24-dimensional ball. we 
advocate the use of the L2 norm as the appropriate metric to compute the distance 
between two spectral signature vectors for the following reason. 

The L2 norm is superior to the Loo norm in computing texture disparity because it 
does not discard the proximity information between the spectral signatures of two texture 
patterns. When a Lcr norm is computed, components in a spectral vector are treated 
as independent and their spectral proximity relationships are ignored. For instance, the 
L~ norm induced by rotating a texture by 30 ~ will be the same as that induced by 
a 90 ~ rotational shift. This is true independent of the sampling scheme. Although the 
L~ norm behaves the same way as the L~ norm in a minimal sampling scheme with 
orthogonal bases, its value decreases for spectrally proximal textures when the bases 
become increasingly nonorthogonal in an oversampling scheme. In this case, the L2 norm 
induced by a 30 ~ rotation is smaller than that induced by a 90 ~ rotation, as illustrated 
in figure 3. 

Because the parsimonious scheme we used is not straightly a minimal one with or- 
thogonal bases, it is benefited from the use the L2 norm. The visual cortex, however, 
oversamples the power spectrum by at least two or three times as much in both a and 
0 dimensions [Webster & De Valois 1985, Silverman et al 1989, Hubel and Wiesel 1977]. 
The proximity effect due to the L~ norm would therefore be even more pronounced. 

The parsimonious scheme saves computational effort, hut also decreases the proxim- 
ity effect. To compensate, we introduce smoothing in the spectral domain by coupling 
together the spectrally proximal components in the spectral vector, as will be discussed 
in the next section. 
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Fig. 3. Effect of L2 norm. Fig. 4. Couplings in the 4-D Lattice 
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4 E n e r g y  F u n c t i o n a l  f o r  T e x t u r e  S e g m e n t a t i o n  

The Coupled-Membrane model we developed for texture segmentation is a generalization 
of the Weak-Membrane Model [Blake and Zisserman 1987, Marroquin 1984, and Mumford 
and Shah 1985] or equivalently the Markov Random Field model [Geman and Geman 
1984]. While the Weak-Membrane deals with intensity values in a 2-D image plane, our 
model deals with spectral responses in a 4-D spatial-spectral domain. The continuous 
formulation of the model is defined as follows, 

Given the spectral signature image WI(a, 0, x, y), we are to find a piece-wise con- 
tinuous functional f(a,  0, z, y) that is its smooth estimation, with its texture noise and 
variations removed. Within a texture region, f (a ,  6, x, y) is continuous. Discontinuity in 
f(a, 0, z, y) is allowed at the boundary in spatial domain between two texture regions. 

These objectives are captured by following energy functional that is to be minimized, 

E(f,  B ) =  / / R  / f s  Hf(a' O, x, y ) -  }/VI(a, O, x, y)ll2dlogadOdzdy 

, of,2 ( ~ ) 2 +  +fL_s f f t(7,,~)~ +,7,~, + ()  -y)Z]d(l~ 
+a fn  ds 

where R and S are the finite 2-dimensional spatial and spectral domains respectively; 
boundaries B C R is a finite set of piece-wise C 1 contours which meet OR and meet 
each other only at their endpoints. The contours of B cut R into a a finite set of disjoint 
regions R1, ..., Rm the connected components of R-B. The integration over S is done with 
(d log a)d0 = ~ because the power spectrum is represented in log-polar form. 

The first term of the energy functional forces the smoothed spectral response f(a, 0, x, y) 
to be as close as possible to the measured spectral response YYI(a, 0, z, y). The second 
term asks the spectral response to be as smooth as possible in both spatial and spectral 
domains. These two potentially antagonistic demands are to arrive at a compromise that 
is determined by the A, 7a and 70. 

Since f(a, O, z, y) is required to be smooth only within each Ri but not across B, the 
third integral term is needed to prevent breaks from appearing everywhere. This term 
imposes a penalty a against each break and provides the binding force within a region. 

5 Computer Implementation 

To solve a functional minimization problem computationally, the energy functional is 
discretized as follows, 

E(I ,B)  = E (f(i, j, k, i) - WI(i,  j ,  k, l))':" + 7~ E [f(i '  j' k, l) - f(i, j, k, 1 + 1)]" 
id,k,l i,j,k,I 

+7~ E [f( i , j ,k , i)  - f ( i , j , k  + 1,/)] 2 
i,j,k,l 

+~2 E [f(i , j ,k, l)  - f ( i  + 1,j,k,l)]2(1 - v(i + 2, j )  ) 
i,j,k,I 



170 

1 
+)~2 y ~  [f(g,j,k,l) - f ( i , j  + l ,k , l )]2(1-h(i ,  "3 + -~)) 

i,j,~,l 
1 1 

+ y~[v(i + -~,j) + h(i,j  + 5) 1 
i , j  

where i, j, k, 1 are indexes for x,y,0, log a respectively in the 4-dimensional spatial-spectral 
sampling lattice, v and h are vertical and horizontal breaks between the lattice points in 
the spatial domain. 

Figure 4 illustrates the couplings among the nodes in the 4-D sampling lattice: Each 
membrane corresponds to WI(k, l) for a frequency l, and an orientation k. Within each 
membrane, each node is coupled to the nearest 4 neighboring nodes. At each spatial 
location, a membrane is coupled with 4 other membranes which are its nearest spectral 
neighbors. 

As the segmentation-diffusion process unfolds, spectral response is allowed to diffuse 
from one node to its 4 spatial and 4 spectral nearest neighbors. Breaks, however, can only 
occur in the spatial domain. When the L2 norm of the evolving membranes exceeds the 
texture disparity threshold V~X at a spatial location, a break will occur at that location 
to cut across all the membranes. 

Given a set of values for parameters A, 7a, 70, and a, an optimal compromise among 
the three terms in the energy functional produces a set of segmentation boundaries and 
smoothed spectral responses. Because the energy functional has many local minima due 
to its nonconvexity, the global optimal compromise can be obtained using special math- 
ematical programming methods. This paper presents results obtained using a stochastic 
method called Simulated Annealing [Kirkpatrick 1983], and a deterministic method called 
Graduated Non-Convexity [Blake and Zeisserman 1987]. We implemented both two meth- 
ods on DEC5000 workstation and on a massively parallel computer called MASPAl~. 

6 Experimental Results 

A class of texture images, 256 x 256 pixels in size, are used to test the model. Percep- 
tual boundaries in these images are defined primarily by difference in textures, and not 
by luminance contrast. The segmentation-diffusion is performed on a 64 x 64 spatial 
sampling grid: We use a simple annealing schedule schedule for Simulated Annealing: 
Tn = 0.985Tn-1 at each temperature step, with a starting temperature of 25. It takes 
about 24 hours on DEC 5000 or 6 hours on MASPAR to process each image. For GNC, 
the error resolution ~ needs to be 2 -12 to ensure the solution is close to the optimal one. 
It takes 140 hours on DEC 5000 or 7 hours on MASPAR. Despite the fast annealing 
schedule, the Simulated Annealing performs reasonably well. The answer provided by 
GNC, however, is closer to the global minimum. These algorithms have also been imple- 
mented in 1-D so that their solutions can be compared with the exact optimal solution 
yielded by dynamic programming. 

Three images are presented here as illustrations: 'Vase' (figure 5), 'Mondrian' (figure 
7a), and 'Mosaic ~ (figure 7b). 'Vase' is used to demonstrate the model's tolerance to 
texture 'gradient' due to inter-membrane coupling. When this coupling is disabled, the 
segmentation is not perceptually valid (figure 5d). The initial response and the final 
response of the filters to 'Vase' (figure 6) demonstrate the diffusion effect in both the 
spatial and spectral domains. 

'Mondrian' and 'Mosaic'  both demonstrate that the model's ability in segmenting 
synthetic and natural textures while withstanding significant texture noise, and local 



171 

............................................................................ i ; .................... ..... 

Fig. 5. (a) 'Vase' and its segmentations: (b) Simulated Annealing result 
with a = 0.02,), -- 6, 7e -- 2,7~ = 4; (c) GNC result with a --0.02,)~ -- 6,70 = 2,7,~ -- 4; 
(d) GNC with a -- 1.25, ~ = 6, 70 -- 7~ -- 0 i.e. without inter-membrane coupling. 

Fig. 6. (a) Initial filter response map for 'Vase'. (b) Final filter response map at the end of the 
segmentation-diffusion process (figure 5c). Each small square is the response map of a particular 
filter to the image. The maps are arranged in frequency rows (three frequencies) and orientation 
columns (eight orientations). 

variation in scale and orientation. The initial and final response maps of  'Mondr ian '  
(figure 8) underscore the cooperative effect of  the diffusion and segmentation processes 
in producing Sharp texture boundary from fuzzy input. 

The parameter values used for the segmentation-diffusion process are shown in the 
figure caption. For the series of images we tested, the values needed to produce a seg- 
mentation similar to our perception are fairly close together. 

7 Discuss ion:  

The Coupled-Membrane Model with the Gabor-wavelet representation has produced 
promising results in the segmentation o f  a class of texture images. It combines the several 
sequential steps of filtering, smoothing and boundary detection in the previous texture 
segmentation models into a coherent and unified framework with a simple and elegant 
formalism. The model requires only three parameters (as 7~ and 70 are related) and is 
more parsimonious in many aspects than the model Geman et al [1991] proposed. The 
issue of spectral proximity, ignored by the previous models, is addressed in our model by 
the introduction of spectral smoothing and the use of the L2 norm with oversampling. 

The model needs to be further developed to address to a wider class of natural  images. 
In the form presented in this paper, the model has difficulty at the boundary between 
non-texture regions. This problem can be solved by incorporating into the model the 
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Fig. 7. (a) 'Mondrian' and its segmentation. Parameters: a = 0.02, ), = 6, 70 = 2, 7~ = 4. (b) 
'Mosaic' and its segmentation. Parameters: tr = 0.02, )~ = 12, 7e = 2, 7~ = 4. Top segmentation: 
SA. Bottom segmentation: GNC. 

Fig. 8. (a) Initial filter response map for 'Mondrian'. (b) Final filter response map at the end 
of the segmentation-diffusion process. 

luminance edge information derived from the same Gabor-Wavelet representation, and 
by modifying the domain of integration in the energy functional  This effort will be 
reported in another paper. 

A similar approach can be taken to the problem of speech segmentation: speech seg- 
mentation is presently done with either Hidden Markov models or time-warping. We 
propose that  segmentation of time by a Coupled-String model applied to the power spec- 
t rum of speech, with couplings between adjacent values of time and frequency, provides 
a third approach. The Coupled-String model is amenable to dynamic programming and 
hence fast, and will be effective for all phonemes without the need to model each phoneme 
in details. 

The model uses neurophysiological components as its processing elements, and can 
be implemented in a locally connected parallel network. There is a strong possibility that  
it can he linked to the computational processes in the visual cortex. For instance, the 
segmentation process is related to boundary perception, while the diffusion process can 
be linked to texture grouping or diffusion phenomenon in psychology. Our work suggests 
that  when cortical complex cells are coupled in a particular fashion, a successive gradient 
descent type of algorithms can solve a class of image segmentation problems that  are 
essential to visual perception. 
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