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A b s t r a c t .  This paper presents an edge finder for textured images. Using 
rough constraints on the size of image regions, it estimates the local amount 
of variation in image values. These estimates are constructed so that they 
do not rise at boundaries. This enables subsequent smoothing and edge de- 
tection to find coarse-scale boundaries to the full available resolution, while 
ignoring changes within uniformly textured regions. This method extends 
easily to vector valued images, e.g. 3-color images or texture features. Signif- 
icant groups of outlier values are also identified, enabling the edge finder to 
detect cracks separating regions as well as certain changes in texture phase. 

1 Introduction 

The input to an edge finding algorithm consists of a 2D array of values for one or more 
properties, e.g. raw intensities, color, texture features (e.g. striping orientation), or stereo 
disparities. Its goal is to model these property values as a set of underlying property 
values, plus a pattern of fast variation in these values (e.g. camera noise, fine texture) 
(Fig. 1). The underlying property values are reconstructed as varying "smoothly," i.e. 
obeying bounds on their higher derivatives, except at a sparse set of locations. These 
locations are the boundaries in the input. 

Fig. 1. A sequence of input property values (left) is modelled as a sequence of underlying values 
plus a pattern of fine variation (right). 

Currently-available edge finders work robustly only when the fast variation has a 
known distribution that is constant across the image. This assumption is roughly correct 
for "blocks world" type images, in which all fast variation is due to camera noise, but it 

* The research described in this paper was done at the Department of Engineering Science, 
Oxford University. The author was supported by a Junior Research Fellowship funded by 
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fails when there is non-trivial surface texture within each region, because the amount of 
fast variation depends on the particular surface being viewed. The amount of variation in 
texture feature values (i.e. the amount of mismatch between the texture and the feature 
model) also varies from surface to surface, as does the amount of error in stereo disparity 
estimates. 

There have been many previous attempts to extend edge finders to these more general 
conditions, but none can produce output of the quality needed by later processing on the 
wide range of inputs encountered in typical vision applications. Some make implausible 
assumptions about their inputs: [2] assumes that each image contains only two textures, 
[8] and [9] require that the number of textures in the image be known and small, [13] 
and [15] provide their algorithms with training samples for all images present. Others 
produce poor quality or blurred boundaries [2, 20, 31, 33] or seem difficult to extend to 
2D [16, 17]. 

This paper presents a new algorithm which estimates the scale of variation, i.e. the 
amplitude of the fine variation, within image regions. It depends on two key ideas: 

1. Minimize the scale estimate over all neighborhoods of the target location, to prevent 
corruption of scale estimates near boundaries, and 

2. Use a robust estimate for each neighborhood, to prevent scale estimates from being 
corrupted by outliers or boundary blur. 

Given reliable scale estimates, underlying values can be reconstructed using a standard 
iterative edge-preserving smoother. Boundaries are trivial to extract from its output. The 
method extends easily to multi-dimensional inputs, such as color images (Fig. 2) and sets 
of texture features (Fig. 3), producing good-quality preliminary output. 2 The iterative 
smoother is also used to detect outliers, values which differ from those in all nearby 
regions. Previous texture boundary finders have looked only for differences in average 
value between adjacent regions. The phase change and contrast reversal images in Fig. 4 
have traditionally proved difficult to segment [2, 20, 19] because the two regions have the 
same average values for most proposed texture features. However, as Fig. 4 illustrates, 
these boundaries show up clearly as lines of outliers. 

2 Est imat ing  the scale of variation 

The basic ideas behind the scale estimator are best presented in 1D. Consider estimating 
the scale of variation for the slice shown in Fig. 1. Let Nw (x) be the neighborhood of 
width •  pixels centered about the location x. The most obvious estimate for the scale 
at x is the standard deviation of the (2w + 1) values in Nw(x). The spatial scale of the 
edge finder output is then determined by the choice of w: output boundaries can be no 
closer than about 2w + 1. Unfortunately, if x lies near a boundary, Nw (x) will contain 
values from both sides of the boundary, so the standard deviation computed for Nw(x) 
will be far higher than the true scale of the fine variation. This will cause later processing 
(iterative smoothing and boundary detection) to conclude that there is no significant 
boundary near x. 

Therefore, the scale estimate at x should be computed from some neighborhood Nw (y) 
containing x that does not cross a boundary. Such a neighborhood must exist because, by 
definition, output boundaries are not spaced closer than about 2w+1. Neighborhoods that 
do not cross boundaries generate much lower scale estimates than neighborhoods which 

2 See appendix for details of texture features. 
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Fig. 2. A 300 by 300 color image and boundaries extracted from it (w = 8). Log intensity is at 
the top left, red vs. green at the top right, and blue vs. yellow at the bottom left. 

cross boundaries. Therefore, we can obtain a scale est imate from a neighborhood entirely 
within one region by taking the min imum scale est imate from all neighborhoods Nw (y) 
which contain ;v (where w is held fixed and y is varied). 3 Several authors [16, 17, 31] 
use this minimizat ion idea, but embedded in complex statistical tests. Choosing the 
average value from the neighborhood with min imum scale [13, 24, 30] is not equivalent: 
the min imum scale is well-defined but  the neighborhood with min imum scale is not. 

Even the best neighborhood containing x may, however, be corrupted: it may  overlap 
the blur region of the boundary  or it may  contain extreme outlier values (e.g. spots, 
highlights, stereo mismatches,  see Fig. 1). Since these outliers can significantly inflate 
the scale estimates,  the s tandard deviation should be replaced by a method f rom robust 
statistics [11, 10, 12, 26] which can ignore small numbers of outliers. Simple robust  filters 
(e.g. the median) have been used extensively in computer  vision and more sophist icated 
methods  have recently been introduced [14, 25, 27]. Because I expect only a small number  
of outliers per neighborhood, the new scale es t imator  uses a simple a - t r i m m e d  s tandard  
deviation: remove the 3 lowest and 3 highest values and then compute  the s tandard  
deviation. The combination of this es t imator  with choosing the min imum es t imate  over 
all neighborhoods seems to work well and is, I believe, entirely new. 

3 This also biases the estimates downwards: calculating the amount of bias is a topic of on-going 
research. 
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Fig. 3. Boundaries from texture features: a natural textured image (256 by 256, w = 8), a pair 
of textures from Brodatz's volume [3] normalized to the' same mean log intensity (200 by 200, 
w = 12), and a synthetic test image containing sine waves and step edges (250 by 150, w = 8). 

[ ]I 
Fig. 4. The thin bar generates outliers in intensities. The change in phase and the contrast 
reversal generate outliers in various texture features. White and black occupy equal percentages 
of the contrast-reversal image. The images are 200 by 100 and were analyzed with W -- 8. 

There are robust estimators which can tolerate neighborhoods containing up to 50% 
outlier values [10, 11]. However, despite some recent suggestions [22, 29], it is not pos- 
sible to el iminate the minimizat ion step by using such an estimator. The neighborhood 
centered about a location very close to a boundary  typically has more than 50% "bad" 
values: values from the wrong region, values from the blur area, and random wild outliers. 
This effect becomes worse in 2D: the neighborhood of a point inside a sharp corner can 
contain over 75% "bad" values. Furthermore, real pat terns of variation have bimodal or 
even binary distributions (e.g. a sine wave of period 4 can digitize as binary).  Robust es- 
t imators  tolerating high percentages of outliers are all based on medians, which perform 
very poorly on such distributions [1, 32]. 
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3 E x t e n d i n g  t h e  s c a l e  e s t i m a t o r  t o  2 D  

I am currently exploring three possible ways of extending this scale estimator to 2D. In 
2D, it is not practical to enumerate all neighborhoods containing the target location z, so 
the estimator must consider only a selection. Which neighborhoods are considered deter- 
mines which region shapes the edge detector can represent accurately. At each location 
x, the current implementation computes 1D estimates along lines passing through x in 8 
directions. The estimate at x is then the median of these 8 estimates. Although its results 
(see Fig 2-4) are promising, it cannot match human ability to segment narrow regions 
containing coarse-ish texture. This suggests it is not making full use of the information 
contained in the locations near x. Furthermore, it rounds corners sharper than 90 degrees 
and makes some mistakes inside other corners. 

Another option would be to compute scale estimates for a large range of neighborhood 
Shapes, e.g. the pie-wedge neighborhoods proposed in [17]. Such an algorithm would be 
reliable but very slow, unless tricks can be found to speed up computation. Finally, one 
might compute scale only for a small number of neighborhoods, e.g. the round neigh- 
borhood centered about each location x, and then propagate good scale estimates to 
nearby locations in the spirit of [18]. The difficulty here is to avoid growing very jagged 
neighborhoods and, thus, hypothesizing jagged region boundaries. 

4 T h e  e d g e  d e t e c t i o n  a l g o r i t h m  

Boundaries and outliers are detected using a modification of iterative edge-preserving 
smoothing [7, 21, 28]. Edge-preserving smoothing differs from standard Gaussian smooth- 
ing in that it is gradually inhibited as nearby values become sufficiently different from 
one another. The current implementation prohibits interactions entirely, i.e. becomes 
committed to placing a boundary, between two adjacent values if they differ by more 
than 6S, where S is the scale estimate from Sect. 2 - 3 .  I f  the distributions of values were 
Gaussian and S the standard deviation, 6S would produce an expected rate of about 
five false positives per 512 by 512 image. This threshold may need to be adjusted, be- 
cause the actual scale estimates are biased downwards and the shape of actual empirical 
distributions has not yet been measured. 

Specifically, to start each iteration, the algorithm first estimates the scale of variation 
as in Sect. 2-3. A minimum scale (currently 1 intensity unit) is imposed to suppress very 
low amplitude boundaries and effects of quantization. The value at each location is then 
replaced by a weighted average of values at locations in a 4-3 by 4-3 cell neighborhood.4 
Suppose that the value and scale at the center location are V and S. The weight for a 
value vi is then 

5 if I v i -  V I <_ 3S; 
w i =  1 0 , ( 1 -  I ~ ' - V l ~  i f 3 S < [ v i - V ] < 6 S ;  6 S  J - -  - -  

0 ,  otherwise. 

This is a one-step W-estimate, a convenient way of approximating an M-estimate.(The 
multi-step versions are asymptotically equivalent.) [10]. 5 A wide variety of weighting 

4 This is the smallest smoothing neighborhood that still allows smoothing to "jump over" a 
thin (one cell wide) streak of outliers. 

5 Note that in this method of repeatedly applying the estimator and smoothing, the scale 
estimates converge to zero, because information is diffused across the image. A traditional 
multi-step estimator [10, 11, 14] is very different: scale estimates converge to a non-zero value. 
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functions are possible (e.g. see [10, 11]). This  one has a shape s imilar  to the  bet ter  
behaved ones (e.g. a smooth cutoff) but  is easy to compute.  

In order to eventual ly identify outliers, the smoother  also computes  a second field 
which measures how much each value resembles the neighboring ones. Init ial ly,  these 
s t rengths  are set to a constant  value (currently 200). In each i t e ra t ion ,  the s t rength at  
locat ion x is replaced by a weighted sum of the s trengths in a =1:3 by -t-3 of x: 

~-~ 8 i w i 
4 9 •  

where st is the input  s trength at  locat ion i in the neighborhood and the wi are the same 
weights used in smoothing.  

In the current implementa t ion,  smoothing is repeated 3 t imes. 6 Boundaries 7 are then 
detected by locat ing sharp changes and outl ier  values. Firs t ,  scale is re-es t imated at all 
locations.  Two values are then considered significantly different if they differ by more 
than  6 t imes the smaller  of their  associated scales. If the values at  two adjacent  cells are 
s ignif icant ly  different, a boundary  is marked between the cells. I f  there is a significant 
difference between two opposi te  neighbors of some cell A, but  not  between A and either 
one of them, the whole cell A is marked as par t  of the boundaries.  Any cell with strength 
less than  20 is marked as an outlier.  This outl ier  map  is then pruned to remove all outliers 
t ha t  are not  either (a) in the middle  of a sharp change or (b) in a band of outliers at 
least 2 cells wide. Any cell still  marked as an outlier after pruning is marked as part  of 
the boundaries.  

5 E x t e n s i o n  t o  v e c t o r - v a l u e d  i m a g e s  

The  new edge finder extends easily to vector-valued images, e.g. color images or sets of 
tex ture  features. I assume tha t  the pa t te rn  of variat ion in the vectors can be accurately 
represented by the scale of variat ion in each individual  dimension.  This  assumpt ion seems 
plausible for most  computer  vision appl icat ions and removing it seems to be very difficult 
(cf. [26]). The  current implementa t ion  uses an L ~176 metr ic  ( m a x i m u m  distance in any 
component) ,  because it simplifies coding. 

Specifically, in the vector a lgori thm, scale is es t imated  separa te ly  for each feature, s In 
each smoothing i terat ion,  the weighted average is computed  separa te ly  for each feature, 
bu t  using a set of weights common to all features. Specifically, the  weights are first 
computed  for each feature map  individual ly  and the min imum of  these values is used 
as the common weight. The common weights are also used to compute  a single strength 
map ,  so only one common set ofout l iers  is detected. Sharp changes, however, are detected 
in each map  individual ly  and AND-ed into the common boundary  map .  

It  is essential to use a common set of weights for outl ier  detect ion if boundaries  in 
different features may  not be exact ly  aligned. Suppose tha t  a change from A to A ~ in 
one map  occurs, rapidly  followed by a change from B to B '  in another .  Cells in the two 
regions have value A B  or A ' B  ~, but  cells in a t iny s t r ip  between the regions have value 

s This seems empirically to be sufficient, but more detailed theoretical and practical study of 
convergence is needed. 
See the theoretical model in [4, 5, 6]. The boundaries are a closed set of vertices, edges between 
cells, and entire cells. An arbitrary set of boundary markings can be made closed by ensuring 
that all edges of a boundary cell are in the boundaries and all vertices of a boundary edge are 
in the boundaries. 

s Note that the minimum scale for different features can be different. 
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A~B. These cells will not appear to be outliers in either map individually, but they stand 
out clearly when the maps are considered jointly. 

Interesting issues arise when one feature is available at higher resolution than another. 
For example, people see intensities at much higher resolution than hue or saturation of 
color. As it stands, the algorithm may not localize a boundary to the full resolution 
available from the highest resolution feature, but may report that other locations near 
the boundary also have outlier values (i.e. due to the blurring in the low-resolution 
features). In a sense, this is correct, because values at these locations are genuinely 
inaccurate and should not be averaged into estimates of region properties. However, it 
might be useful to add further algorithms that would refine boundary locations using 
the more reliable feature values, making appropriate corrections to the corrupted values 
from other features as cells are removed from the boundaries. 

6 C o n c l u s i o n s  

This paper has presented a new method for estimating the scale of variation in values 
within image regions. These estimates were used to extract boundaries at high resolution 
from both color images and textured images. Compared to previous edge finders for tex- 
tured data, these results are very promising. In particular, because it can detect outliers 
as well as step changes in values, the new algorithm can segment a new class of examples 
(as in Fig 4). This poses an interesting problem for studies of human preattentive texture 
discrimination: if the human segmentation algorithm also detects outliers then being able 
to preattentively segment a pair of textures does not automatically imply that some fea- 
ture assigns different values to them. This implies that traditional texture discrimination 
experiments may require additional controls, but it also opens up possibilities for new 
types of experiments that would examine which sorts of texture mis-matches do, and do 
not, generate visible outliers. 

My ultimate goal is to bring the new edge finder's performance up to the standards 
of conventional edge finders. By this yardstick its performance is far from perfect and 
barely approaching the point where it would be suitable for later applications, such as 
shape analysis and object recognition. It is quite slow. Many of the algorithm details, 
particularly parameter settings and the 2D extension of the scale estimator, need further 
tuning. Many theoretical issues (e.g. bias in the scale estimator, convergence) still need 
to be examined. I believe that there is much scope for further work in this area. 

A c k n o w l e d g e m e n t s  

Mike Brady and Max Mintz supplied useful comments and/or pointers. 

Appendix: Details of T e x t u r e  F e a t u r e s  

The features used for the texture examples are a new set currently under development. 
The new features were chosen because they have small support and reasonable noise 
resistence, and they return a constant output field on their ideal input patterns. The 
closely related features proposed in [2, 20, 23] have either much larger support or large 
fluctuations in value even on ideal input patterns. Comparative testing of texture features 
is well beyond the scope of this paper and I make no claims that these features are the 
best available. 
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This method  models  the texture  as a sine wave and the five features measure its mean 
intensity, orientat ion,  frequency, and ampl i tude .  The first feature is log intensi ty L: 

L = 1791og10(I + 10) - 179 

where I is the original input  intensity. The  log intensities are smoothed with the edge 
finder 's  i terat ive smoother ,  blurred with a a = 0.5 Gaussian,  and then subtrac ted  from 
the original log intensities to yield a difference image D containing texture  but  no inten- 
si ty boundaries.  The image D is then smoothed with a Gaussian of s tandard  deviat ion 
1 cell and the first four finite differences D 1, D 2, D 3, and D 4 are taken in each of four 
directions. 

In each direction 0, compute:  

Eo = x /D2D 2 + D1D 3, Fo = ~/D3D 3 + D~D 4 

When D contains a perfect sine wave with ampl i tude  A and frequency w, E = Aw 2 and 
F = Aw 3. The four texture  features are then: 

E = Eo + E45 + E9o + E135, F : F0 + F45 + F90 + F135 

X = E o - E 9 0 ,  Y = E 4 ~ - E 1 3 5  
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