
Recovering Shading from Color Images  * 

Brian V. Funt, Mark S. Drew, and Michael Brockington 

School of Computing Science, Simon Fraser University, Vancouver, B.C., Canada V5A 1S6, 
(604) 291-3126, funt~cs.sfu.ca 

A b s t r a c t .  
Existing shape-from-shading algorithms assume constant reflectance 

across the shaded surface. Multi-colored surfaces are excluded because both 
shading and reflectance affect the measured image intensity. Given a stan- 
dard RGB color image, we describe a method of eliminating the reflectance 
effects in order to calculate a shading field that depends only on the rel- 
ative positions of the illuminant and surface. Of course, shading recovery 
is closely tied to lightness recovery and our method follows from the work 
of Land [10, 9], Horn [7] and Blake [1]. In the luminance image, R+G+B,  
shading and reflectance are confounded. Reflectance changes are located and 
removed from the luminance image by thresholding the gradient of its loga- 
rithm at locations of abrupt chromaticity change. Thresholding can lead to 
gradient fields which are not conservative (do not have zero curl everywhere 
and are not integrable) and therefore do not represent realizable shading 
fields. By applying a new curl-correction technique at the thresholded lo- 
cations, the thresholding is improved and the gradient fields are forced to 
be conservative. The resulting Poisson equation is solved directly by the 
Fourier transform method. Experiments with real images are presented. 

1 I n t r o d u c t i o n  

Color presents a problem for shape-from-shading methods because it affects the apparent 
"shading" and hence the apparent shape as well. Color variation violates one of the 
main assumptions of existing shape-from-shading work, namely, that of constant albedo. 
Pentland [11] and Zheng [16] give examples of the errors that arise in violating this 
assumption. 

We address the problem of recovering (up to an overall multiplicative constant) the 
intrinsic shading field underlying a color image of a multi-colored scene. In the ideal 
case, the recovered shading field would be a graylevel image of the scene as it would have 
appeared had all the objects in the scene been gray. We take as our definition of shading 
that it is the sum of all the processes affecting the image intensity other than changes in 
surface color (hue or brightness). Shading arises from changes in surface orientation and 
illumination intensity. 

It is quite surprising how well some shape-from-shading (SFS) algorithms work when 
they are applied directly to graylevel images of multi-colored scenes [16]. This is encour- 
aging since it means that shading recovery may not need to be perfect for successful 
shape recovery. Nonetheless, the more accurate the shading the more accurate we can 
expect the shape to be. 

Consider the image of Fig. l(a) which is a black and white photograph of a color 
image of a cereal box. The lettering is yellow on a deep blue background. Applying 
Pentland's [11] remarkably simple linear SFS method to the graylevel luminance version 
.(i.e. R + G + B )  of this color image generates the depth map in Fig. l(h). Although the 
image violates Pentland's assumptions somewhat in that the light source was not very 
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distant and the algorithm is known to do poorly on flat surfaces, it is clear that the 
yellow lettering creates serious flaws in the recovered shape. Note also that the errors are 
not confined to the immediate area of the lettering. 

The goal of our algorithm is to create a shaded intensity image in which the effects of 
varying color have been removed in order to improve the performance of SFS algorithms 
such as Pentland's. Similar to previous work on lightness, the idea is to separate intensity 
changes caused by change in color from those caused by change in shape on the basis 
that color-based intensity changes tend to be very abrupt. Most lightness work, however, 
has considered only planar "mondrian" scenes and has processed the color channels sepa- 
rately. In lightness computations, the slowly varying intensity changes are removed from 
each color channel by thresholding on the derivative of the logarithm of the intensity in 
that channel. We instead remove intensity gradients from the logarithm of the luminance 
image by thresholding whenever the chromaticity changes abruptly. Both the luminance 
and the chromaticity combine information from all three color channels. 

Many examples of lightness computation in the literature [13, 14, 1, 8, 4] use only 
synthetic images. A notable exception is in Horn [7] in which he discusses the problem of 
thresholding and the need for appropriate sensor spacing. He conducts experiments on 
a few very simple real images. Choosing an appropriate threshold is notoriously difficult 
and the current problem is no exception. By placing the emphasis on shading rather 
than lightness, however, fewer locations are thresholded because it is the large gradients 
that are set to zero, not the small ones. When a portion of a large gradient change 
remains after thresholding due to the threshold being too high, the curl of the remaining 
luminance gradient becomes non-zero. Locations of non-zero curl are easily identified and 
the threshold modified by a technique called "curl-correction." 

In what follows, we first analyze the case of one-dimensional images before proceeding 
to the two-dimensional case. Then we elaborate on curl-correction and present results of 
tests with real images. 

2 O n e - d i m e n s i o n a l  C a s e  

2.1 Color  Images  wi th  Shading  

Let us consider as a starting point the surface described by the one-dimensional depth 
map shown in Fig. 2(a). If this surface has Lambertian reflectance and is illuminated by 
a point source from an angle of 135 ~ (i.e., from the upper left), the resulting intensity 
distribution will be as shown in Fig. 2(b). So far there is no color variation, so all the 
intensity variation is due to shading. 

If instead, the surface has regions of different color, each described by its own color 
triple (R,G,B) in the absence of shading, (see Fig. 2(c)), then in a color image of the 
surface the RGB values will be these original color triples modulated by the shading 
field, as shown in Fig. 2(d). The combined effect of color edges and shading edges leads 
to discontinuities in the observed RGB values at image locations corresponding to both 
types. Fig. 2(d) has both kinds of edges--there are color discontinuities where there are 
no shape discontinuities, and there are also shape discontinuities without accompanying 
color ones. 

To differentiate between the two kinds of edges, we note that if we form the analog 
of the chromaticity [15] in RGB space, i.e., 

r = R / ( R + G + B ) ,  g = G / ( R + G + B )  
then r and g are independent of the shading (cf. [12, 6, 2]) as can be seen in Fig. 2(e). 
This, of course, must be the case because rg-chromaticity is simply a way of normalizing 
the magnitude of the RGB triple. Both r and g are fixed throughout a region of constant 
color. So long as we can assume that that color edges never coincide with shape edges, 
rg-chromaticity will distinguish between them. 

2.2 Shad ing  R e cove ry  

In a sense, the recovery of shading from color images is the obverse of the recovery 
of lightness from graylevel images [7]. In the case of lightness, it is the sharp intensity 
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changes that are taken to represent reflectance changes and are retained, while the small 
intensity changes are factored out on the basis that the illumination varies smoothly; 
whereas, in the case of shading it is the large reflectance changes that are factored out 
and the small ones retained. A significant difference, however, is that the reflectance 
changes are identified, not by sharp intensity changes, but by sharp chromaticity changes. 
Small chromaticity changes are assumed to be caused by changes in the spectrum of the 
illuminant and are retained as part of the shading. 

We begin by following the usual lightness recovery strategy [7, 1], but to do so we 
first need to transform a color image into graylevel luminance image by forming 

I '  = R + G +  B .  
Under the assumption that the luminance is described well as the product of a shading 
component S and a color component C, the two components are separated by taking 
logarithms: I ( z )  = logI ' (z)  -- logS' (z)  + logC'(z)  

Differentiating, thresholding way all components of the derivative coincident with large 
chromaticity changes, and integrating yields the logarithm of the shading. 

Chromaticity changes (dr, dg) are determined from the derivative of the chromaticity 
tu r, g) where the threshold function locates pixels with high [dr I or [dg I. The threshold 

nction is defined as T ( x )  = 1 at pixels where (dr, dg) is small and T ( z )  = 0 where it is 
large. T will be mostly 1; whereas, for lightness T will be mostly 0. 

Applying T to the derivative of the luminance image eliminates C = iogC', so 
S = logS' can be recovered by integrating the thresholded intensity derivative. In other 

words, dS = T(d I )  , S = f dS  , S'  = expS 

It is easy to see from Figs. 2(a)-(e) that this algorithm will recover the shading 
properly for the case of perfect step edges and the correct result is in fact obtained by 
the algorithm as shown in Fig. 2(f). 

2.3 I n t e g r a t i o n  by  Four ie r  Expans ion  

A fast, direct method of integrating the thresholded derivative of the shading field in 
the two-dimensional case is to apply Fourier transforms. While not efficient in the one- 
dimensional case it is easy to understand how the method works. Firstly, if the discrete 
Fourier transform of dS  is F(dS) ,  the effect of differentiation is given by 

F(dS) = 21riu f(S) 

where the frequency variable is u. This expression no longer holds exactly, however, when 
the derivative is calculated by convolution with a finite-differences mask. For the case of 
convolution by a derivative mask, after both the mask and the image are extended with 
zeroes to avoid wraparound error [5], Frankot and Chellappa [3] show how to write the 
Fourier transform of the derivative operation in terms of u. Call this transform H. H 
is effectively the Fourier transform of the derivative mask, and integration of dS  simply 
involves dividing by H and taking the inverse transform: 

F ( S )  = F ( d S ) / H  

This division will not be carried out at u = 0, of course, so that integration by this 
method does not recover the DC term representing the unknown constant of integration. 

3 T w o - d i m e n s i o n a l  S h a d i n g  R e c o v e r y  

To generalize the method to real, two-dimensional images two main problems need to be 
addressed: how to properly deal with non-step edges and, since in two-dimensions the 
gradient replaces the derivative, how to integrate easily the gradient image? 

As in the one-dimensional case, the procedure is to determine a threshold image T 
from the chromaticity image, apply the threshold to the derivative of the logarithm of the 
luminance image I and integrate the result to obtain the shading field S. The threshold 
function T comes from the chromaticity itself, not its log, and for two-dimensional images 
is based on the gradient of the chromaticity vector field 
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I IV ( r ,  g)l l  = ~ r .  Vr + Vg. Vg. 
For this type of problem, the boundary conditions must be treated appropriately 

as Blake [1] points out. He addresses lightness recovery and uses a threshold based on 
the value of the log-intensity gradient and applies it to the log-intensity gradient. In the 
present case we apply a threshold based on the chromaticity gradient to the log-luminance 
gradient; nevertheless, Blake's results can still be applied. 

Blake proves that given a threshold image T, the (log of) lightness L can be recovered 
from the (log of) intensity I by inverting the Laplacian of I provided correct boundary 
conditions are used and provided the thresholded intensity gradient forms an irrotationai 
field. 

Specifically, he shows that 

{ V~L = V . T V I  
V L  = T V I  ~ n . V L  = n . T W I  

on boundary 

However, the converse holds only if the field T V I  has zero curl: 

V 2L  = V . T V I  ] 
n .  VL = n . T V I [  

on boundary ( ==~ VL = T V I  
V x (TVI)  = 0 J 

Blake argues that in theory T V I  will have zero curl and thus forms a conservative 
field. Furthermore, he points out that if this condition is violated in practice, the best 
solution is robust in the sense that it minimizes a least-squares energy integral for L. 
The demand that the curl be approximately zero is important because it amounts to the 
condition that the recovered lightness (or shading field in our case) be integrable from 
its gradient. 

The fact that we use a threshold T that is not derived from I itself, but is instead 
derived from (r, g), does not make any difference in the proof of Blake's theorem. In fact, 
any T will do-- the formal statement of the theorem follows through no matter  how T 
is chosen. The crucial point is that while the theorem holds for continuous images and 
step edges, in practice the curl may not be zero because of edges that  are not perfect 
steps. With a non-step edge, thresholding may zero out only half the effective edge, say, 
in which case T V I  will not be conservative. 

Another situation that can affect integrability is when some chromaticity edges are 
slightly stronger than others so that some of the weaker edges are missed by the threshold. 
For example, consider the case of a square of a different color in the middle of an otherwise 
uniform image. If for some reason the horizontal edges are slightly stronger than the 
vertical ones, so that only the horizontal ones are thresholded away, then the curl--  
necessarily zero everywhere in the input gradient image---will become non-zero at the 
corners of the square. The non-zero curl indicates that the resulting integrated image 
will not make sense and we cannot hope to recover the correct, flat shading image from 
this thresholded gradient. 

What  should be done to enforce integrability? Blake further differentiates the thresh- 
olded gradient calculating its divergence, which results in the Laplacian of the lightness 
field. In essence, Blake's method enforces integrability by mapping the two components 
of the gradient image back to a single image L. Differentiating L will clearly result in an 
irrotational gradient field. 

In the context of shape-from-shading, Frankot and Chellappa [3] enforce integrability 
of the gradient image (p, q) by projecting in the Fourier domain onto an integrable set. 
This turns out to be equivalent to taking another derivative of (p, q) and assuming the 
resulting sum equals the Laplacian of z [13]. For the lightness problem, then, integrating 
by forming the Laplacian and inverting is a method of enforcing integrability of T V I .  The 
most efficient method for inverting the Laplacian is integration in the Fourier domain, 
as set forward in [13]. 

While these methods of projecting T V I  onto an integrable vector field generate the 
optimal result in the sense that it is closest to the non-integrable original, in the case of 
the thresholded shading gradient "closest" is not necessarily best. For example, consider 
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the luminance edge associate with the color change shown in Fig. 3(a) and its gradient 
image Fig. 3(b) (using one dimension for illustrative purposes). Since the chromaticity 
edge is not a perfect step, we can expect thresholding to eliminate only part of the edge 
as shown in Fig. 3(c). The projection method of integration by forming a Laplacian and 
inverting uses the integrable gradient that is best in the sense that it is closest to Fig. 3(c). 
Fig. 3(d) shows the result after integration. The problem is that while the gradient of 
Fig.3 (d) may be curl-free, a lot of the edge that should have been screened out remains. 
We would prefer a method that enforces integrability while also removing more of the 
unwanted edge. 

3.1 C u r l - C o r r e c t i o n  

If the thresholding step had succeeded in zeroing the entire gradient at the edge, then 
the resulting image would have had zero curl. To accomplish the dual goals of creating 
an integrable field and of eliminating the edge, we propose thresholding out the gradient 
wherever the curl is non-zero. This must be done iteratively, since further thresholding 
may itself generate more pixels with non-zero curl. Iteration continues until the maximum 
curl has become acceptably small. Since the portion of the edge that was missed by the 
initial thresholding created the curl problem, the thresholded region will expand until 
the whole edge has been removed. 

An alternative curl-correction scheme is to distribute the contributions of the x and 
y partial derivatives of the gradient that make the curl non-zero among the pixel and its 
neighboring pixels so that the result has zero curl. As an example of this type of scheme 
one can determine which part of the curl, the x derivative of the y-gradient or the y 
derivative of the x-gradient, is larger in absolute value. Then the larger part is made 
equal to the other by adjusting the larger gradient value contributing to the curl. Tests 
with this method did not show that it worked any better than the simpler scheme of 
simply zeroing the gradient. Although it might work better in some other context, all 
results reported in this paper simply zero the gradient. 

3.2 B o u n d a r y  Cond i t ions  

Blake imposes Neumann boundary conditions in which the derivative at the boundary 
is specified. The process of integration by Fourier expansion is simplified slightly if, 
instead, Dirichelet boundary conditions are used in which the values at the border are 
fixed. Surrounding the image with a black border accomplishes this. 

In the case of lightness, the Dirichelet conditions will not work because the intensity 
variation removed via thresholding does not balance out from one edge of the image to 
another. For shading recovery, however, as long as the color changes are contained within 
the image, what is thresholded does balance across the image. Color changes are generally 
completely contained within the image as, for example, with colored letters on a colored 
background. For convenience, our current implementation uses Dirichelet conditions, but 
could straightforwardly be changed to Neumann conditions if necessary. 

3.3 A l g o r i t h m  

To summarize the above discussion, the shading-recovery algorithm is as follows: 

1. Find color edges. I~l F~176 
Smooth chromaticity images by convolution with a Gaussian. 
Form gradient images Vr, Vg. 
Form threshold image: T = 0 if IIV(r,g)H is larger than a percentage of the 
maximum in the initial image. Else T = I .  

2. Make log-of-luminance image, I = log(R + G + B). 
3. Make thresholded x- and y-gradient images of I. Denote these images by P and Q 

since they are analogous to the gradient (iv, q) in the SFS problem. 
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! /  Surround image I with a border of zeroes. 
Form P = cgI/c~z, Q = cgI/c~y. 
Apply T to both P and Q yielding thresholded gradient images T(P)  and T(Q). 

4. Curl-correction 
(a) Integrability requires c9/c9y (T(P)) - tg/Ox(T(Q)) = 0. For the input log-intensity 

image I, this is precisely true up to numerical accuracy. 
(b) If the maximum curl is not sufficiently small, then set to zero all locations of non- 

zero curl. The locations to be zeroed also include the immediately surrounding 
neighborhood. For example, when a 3 • 1 mask (-0.5,  0, 0.5) is used for the partial 
derivatives, then the horizontal and vertical neighbors of the 3 • 3 surrounding 
square should also be  made zero. 

(c) Repeat curl-correction until the maximum curl value decreases sufficiently--for 
example, until it reaches 50% of the original maximum curl. 

5. Combine the thresholded ga.radient components by taking another derivative. This 
gives the Laplacian of S: VzS = cg/tg~(T(P)) + O/cgy(T(Q)). 

6. Solve this Poisson equation by the method of Fourier expansion [13]. Exponentiate 
to find the actual shading image S'. 

3 .4  Tes t  I m a g e  

Figure 4 illustrates several of the above steps on the synthetic image shown in part (a). 
The actual image is in color but since the colors are not crucial to the argument, it is 
reproduced only in black and white. It consists of a colored square (128 by 128 pixels) on 
a colored background. The color of the square and the background are each uniform, but 
there is a luminance gradient in all three bands increasing from left to right. To generate 
non-step edges, the image has been smoothed by convolution with a Gaussian. Part (b) 
shows a graph of the intensity along the middle row. The red and green chromaticity 
images (scaled for display) are shown in parts (c) and (d). The chromaticities are flat 
within the square and the surround. The thresholded log-luminance image, before curl- 
correction, is shown in part (e). Curl-correction was repeated until the maximum value 
of the curl anywhere in the image decreased to 50% of the maximum value of what it 
was originally. The number of iterations was 13, which is high compared to non-synthetic 
images (see below). The final, curl-corrected threshold image is shown in part (f). Part (g) 
shows the (non-log) recovered shading image. The intensity gradient across this final 
shading image is plotted in part (h). 

4 R e s u l t s  o n  R e a l  I m a g e s  

The luminance image derived from the cereal box, color image of Fig. 1 is shown in 
Fig. 5 (a). The corresponding chromaticity images r, g (scaled) are Figs. 5 (b,c). Apply- 
ing the gradient operator to these chromaticity images and thresholding at 40% of the 
gradient yields the initial threshold image in Fig. 5 (d) Reducing the maximum curl to 
60% of its original maximum via curl correction generates the extended threshold image, 
Fig. 5 (e). The number of curl-correction iterations required was 5. The recovered shading 
image is Fig. 5 (f) with the difference between figures (a) and (f) shown in Fig. 5 (g). 

In order to compare the algorithm's performance with "ground truth," we also con- 
sidered the image of Fig. 6 (a), which was created by Lambertian shading of a laser 

2 range-finder depth map of a plaster bust of Mozart. Fig. 6 (b) overlays this shading 
field with color by multiplication with the colors measured in the cereal box image. Thus, 
both the shading and the color edges come from natural objects, but in a controlled fash- 
ion, so the result is a synthetic image constructed from real shapes and colors including 
noise. The image shown is actually the luminance image derived from the color image. 
To take into account the color and not shape of the box, the colors were extracted from 
the chromaticity images Fig. 5 (a,b), with the b image formed as 1 - r - g, rather than 

2 The laser range data for the bust of Mozart is due to Fridtjof Stein of the USC Institute for 
Robotics and Intelligent Systems. 
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using the I~GB directly. So that the intensity image would not simply equal the original 
shading image, the r, g, b components were multiplied by unequal amounts. 

The chromaticity images of the input color image are thus precisely those of Fig. 5 
(a,b) (because Fig. 6 (a) contains no pixels that are exactly zero). The initial chromaticity- 
derived threshold function, with a threshold level of 30%, is shown in Fig. 6 (c). Requiring 
the maximum curl value to be reduced to 60% of its original value took a single i terat ion--  
lowering the initial threshold further, from 40% in Fig. 5 to 30% substantially speeds up 
the curl-correction step. 

Curl-correction extends the threshold function as in Fig. 6 (d). Applying the algo- 
rithm to the luminance image Fig. 6 (b), results in Fig. 6 (e) Comparing to Fig. 6 (a), 
the shading is recovered well in that the difference between figures (a) and (e) is negligible. 

5 A s s u m p t i o n s  and L imi ta t ions  

Stated explicitly the assumptions and limitations of the algorithm are: 

- Color edges must not coincide with shading edges. 
- All color edges must involve a change of hue/chromaticity, not just brightness (e.g. 

not orange to dark orange, or perfect gray to another shade of perfect gray). 
- Surfaces are Lambertian reflectors. Strong specularities will be mistaken for re- 

flectance changes, while weak specular components will be attributed to shading. 
- The spectral power distribution of the illumination should be constant, but of course 

its intensity can vary. Gradual changes will be attributed to the shading to the 
extent that they affect the luminance image. Abrupt changes in intensity are allowed 
and will be correctly attributed to shading because they will not cause an abrupt 
chromaticity change. This is unlike retinex algorithms, which will be fooled by sharp 
intensity changes because they treat each color channel separately. 

- The shading is recovered up to an overall multiplicative scaling constant. 

6 C on c l u s i on s  

Color creates problems for shape-from-shading algorithms which assume that surfaces 
are of constant albedo. We have implemented and tested on real images an algorithm 
that  recovers shading fields from color images which are equivalent to what they would 
have been had the surfaces been all one color. It uses chromaticity to separate the surface 
reflectance from surface shading and involves thresholding the gradient of the logarithm 
of the image luminance. The resulting Poisson equation is inverted by the direct, Fourier 
transform method. 
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Figure 1. (a) Black and white photograph of a color image of a cereal box--blue background 
with yenow lettering. (b) Recovered depth image using shape from shading algorithm of [11]. 

(a) (b) (c) (d) (e) (f) 

If 
f . .t.. :..: 

Figure 2. One-dimensional case: (a) Initial depth'map. (b) Shading field for (gray) Lambertian 
surface illuminated by a point source from upper left. (c) Same surface with colored stripes 
(red--solid, green--dotted, blue---dashed). (d) Colors in image (c) multiplied by shading field 
of image (b). (el Chromaticities formed from observed camera values. (f) Shading field recovered 
by algorithm. 

(a) (b) (c) (d) 

Figure 3. Thresholding: (a) Smooth step. (b) Derivative. (c) Thresholded derivative. (d) Integra- 
tion of (c)--in 2 dimensions would be integration of gradient images under integrable projection. 
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Figure 4. (a) Black and white photograph of 
synthetic color image: flat square and sur- 
round with illumination gradient, smoothed 
with Gaussian. (b) Intensity across the im- 
age. (c) Red chromaticity image. (d) (2rid 
row) Green chromaticity image. (e) Initial 
threshold. (f) Threshold after curl-correction. 
(g) (3rd row) Output shading image. (h) In- 
tensity across output image. 

Figure 6. Mozart bust overlaid with 
color: (a) Intensity image. (b) Red chro- 
maticity image. (c) Green chromaticity 
image. (d) (2nd row) Initial threshold. 
(e) Threshold after region-growing. (f) 
Output shading image. (g) (3rd row) 
Difference between (a) and (f). 

Figure 5. Cereal box: (a) Intensity image. (b) 
Red Chromaticity image. (c) Green Chro- 
maticity image. (d) (2nd row) Initial thresh- 
old. (e) Threshold after curl-correction. (f) 
Output shading image. (g) (3rd row) Differ- 
ence between (a) and (f). 
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