
D a t a  a n d  M o d e l - D r i v e n  S e l e c t i o n  u s i n g  Co lor  
R e g i o n s  * 

Tanveer Fathima Syeda-Mahmood 

Artificial Intelligence Laboratory, M.I.T Cambridge, MA 02139. 

A b s t r a c t .  A key problem in model-based object recognition is selection, 
namely, the problem of determining which regions in an image are likely 
to come from a single object. In this paper we present an approach that 
uses color as a cue to perform selection either based solely on image-data 
(data-driven), or based on the knowledge of the color description of the 
model (model-driven). It presents a method of color specification by color 
categories which are used to desig n a fast segmentation algorithm to extract 
perceptual color regions. Data driven selection is then achieved by selecting 
salient color regions while model~driven selection is achieved by locating 
instances of the model in the image using the color region description of 
the model. The approach presented here tolerates some of the problems of 
occlusion, pose and illumination changes that make a model instance in an 
image appear different from its original description. 

I I n t r o d u c t i o n  
A key problem in object recognition is selection, namely, the problem of isolating 

regions in an image that are likely to come from a single object. This isolation can 
be either based solely on image data (data-driven) or can incorporate the knowledge 
of the model (task-driven or model-driven). It has been shown that the search in the 
matching stage of recognition can be considerably reduced if recognition systems were 
equipped with a selection mechanism thus allowing the search to be focused on those 
matches that are more likely to lead to a correct solution [3]. Even though selection can 
be of help in recognition, it has largely remained unsolved. The lack of knowledge of 
illumination conditions and surface geometries of objects in the scene, and the problems 
of occlusion, shadowing, specularities, and interreflections in the image make it difficult to 
interpret groups of data features as belonging to a single object. Previous approaches to 
selection have focused on the problem of data-driven selection by grouping data features 
such as edges and lines based on constraints such as parallelism, or collinearity, distance 
and orientation, etc.[4][3]. But ensuring the reliability of such grouping has been found 
to be difficult, thus restricting their effectiveness in reducing the search complexity in 
recognition. 

In this paper we present a way of performing data and model-driven selection by 
extracting color regions from an image. A color region almost always comes entirely from 
a single object, giving, therefore, more reliable groups than existing grouping methods 
and this can be useful for data-driven selection. Because objects tend to show color 
constancy under most illumination conditions, color when specified appropriately, can be 
a stable cue for most appearances of objects in scenes, thus making it also suitable for 
model-driven selection. 

* This paper describes research done at the AI Lab., M.I.T. Support for the lab's research is 
provided in part by Office of Naval Research and in part by the Advanced Research Projects 
Agency of the Dept. of Defense. The author is supported by an IBM Fellowship. 



116 

2 Color Specification for Selection 
Existing approaches to color have either tried to recover the surface color, i.e. the 

surface reflectance function,[6] [7] or the image color, i.e., the color of the objects as they 
appear under the present illumination conditions [5]. The recovery of surface color is 
known to be an underconstrained problem and the solutions usually make some assump- 
tions either about the colored surface or the illumination conditions [6][7]. The image 
color, on the other hand, is a very unstable description, changing easily with illumina- 
tion conditions. For the purposes of selection, therefore, we propose that  the color of a 
region be specified by its perceived color. Using the perceptual color, two adjacent color 
regions would be distinguished if their perceived colors were different, and this is suffi- 
cient for data-driven selection. Because objects tend to obey color constancy under most 
changes in illumination, their perceived color remains more or less the same thus making 
it sufficient also for model-driven selection. 

We now present a way of specifying the perceptual color of image regions. The color of 
pixels constituting color regions can be described by a triplet <R,G,B> (called specijqc 
color henceforth), representing the components of image intensity at that point along 
three wavelengths (usually red, green and blue as dominant wavelengths to correspond 
to the filters used in the color cameras). When all possible triples are mapped into a 
3-dimensional color space with axes standing for the pure red, green and blue respec- 
tively, we get a color space that represents the entire spectrum of computer recordable 
colors. Such a color space, must therefore, be partitionable into subspaces where the 
color remains perceptually the same, and is distinctly different from that of neighboring 
subspaces. Such subspaces can be called perceptual color categories. Now the color of each 
pixel maps to a point in this color space, and hence will fall into one of the categories. 
The perceptual color of the pizel can, thereyore, be specified by this color category. To get 
the perceived colors of regions, we note that although the individual pixels of an image 
color region may show considerable variation in their specific colors, the overall color of 
the region is fairly well-determined by the color of the majority of pixels (called dominant 
color henceforth). Therefore, the perceived color of a region can be specified by the color 
category corresponding to the dominant color in the region. 

The category-based specification of perceptual color (of pixels or regions) remains 
fairly stable under changes in illumination conditions and as we show next, can be used 
to give a reliable segmentation of the scene. In addition, since the perceptual categories 
depend on the color space and are independent of the image, they can be found in advance 
and stored. Finally, a category-based description is in keeping with the idea of perceptual 
categorization that has been explored extensively through psychophysical studies [8]. 

To find the perceptual color categories, we performed some rather informal but exten- 
sive psyehophysical experiments that systematically examined a color space and recorded 
the places where qualitative color changes occur, thus determining the number of distinct 
color categories that can be perceived. The details of these experiments will be skipped 
here except to mention the following. The entire spectrum of computer recordable colors 
(224 colors) was quantized into 7200 bins corresponding to a 5 degree resolution in hue, 
and 10 levels of quantization of saturation and intensity values and the color in each such 
bin was then observed to generate the categories. From our studies, we found about 220 
different color categories were sufficient to describe the color space. The color category 
information was then summarized in a color-look-up table. Similarly, the categories that 
can be grouped to give an even rougher description of a particular hue were found and 
stored in a category-look.up table to be indexed using the color categories given by the 
color-look-up table. 
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3 Color  R e g i o n  S e g m e n t a t i o n  
The previous section described how to specify the color of regions, after they have 

been isolated. But the more crucial problem is to identify these regions. If each surface 
in the scene were a mondrian, then all its pixels would belong to single color category, so 
that by grouping spatially close pixels belonging to a category, the desired segmentation 
of the image can be obtained. But even for real surfaces, an analysis assuming a single 
light source and the separability of surface reflectance has shown that the color variations 
over a surface are mostly in intensity [2]. In practice, even when these assumptions are 
not satisfied, the general observation is that the intensity and purity of colors get affected 
but the hue still remains fairly constant. In terms of categories, this means that different 
pixels in a surface belong to compatible categories, i.e. have the same overall hue but vary 
in intensity and saturation. Conversely, if we group pixels belonging to a single category, 
then each physical surface is spanned by multiple overlapping regions belonging to such 
compatible color categories. These were the categories that were grouped in the category- 
look-up-table mentioned earlier. 

The algorithm for color image segmentation performs the following steps. (1) First, 
it maps all pixels to their categories in color space. (2) It then groups pixels belonging 
to the same category, (3) and finally merges overlapping regions in the image that are of 
compatible color categories. The grouping is done by dividing the image into small-sized 
bins and running a connected component algorithm to assemble the groups in linear time. 
Similarly, the overlapping regions of compatible color categories are found and merged 
by using the bin-wise representation of the image, also in linear time. 

Figure 1 demonstrates the color region segmentation algorithm. Figure la shows a 
256 x 256 pixel-size image of a color pattern on a plastic bag. The result of step-2 of the 
algorithm is shown in Figure lb, and there it can be seen that the glossy portions on 
the big blue Y and the red S cause overlapping color regions. These are merged in step 3 
and the result is shown in Figure lc. Similarly, Figure 2 shows another example of color 
region segmentation using the algorithm on an image of a realistic indoor scene. 

4 Color-based  Data -dr iven  Se lec t ion  
We now present an approach to data-driven selection using color regions. The seg- 

mentation algorithm described above gives a large number of color regions, some of which 
may span more than one object, while others may come from the scene clutter rather 
then objects of interest in the scene. It would be useful for the purposes of recognition, 
therefore, to order and consider only some salient color regions. This is based on the 
observation that an object stands out in a scene because of some salient features (such 
as, say, color) that are usually localized to some portion of the object. Therefore isolat- 
ing salient regions is more likely to point to a single object and hence to a more reliable 
grouping strategy. The next section describes how such salient color regions can be found. 

4.1 Find ing  Salient Color Regions in Images  
In finding salient color regions, we focus on the sensory components of their dis- 

tinctiveness and propose that the saliency be a linear combination of two components, 
namely, self-saliency and relative saliency. Self-saliency determines how conspicuous a 
region is on its own and measures some intrinsic properties of the region, while relative 
saliency measures how distinctive the region appears when there are regions of com- 
peting distinctiveness in the neighborhood. To determine these components some region 
features were selected and weighting functions were designed to appropriately reflect sen- 
sory judgments of saliency. Specifically, the color of a region and its size were used as 
features for determining self-saliency and were measured as follows. The color was given 
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by (s(R),v(R)), where s(R) = saturation or purity of  the color of region R, and v(R) = 
brightness, and 0 < s(R),v(R) _< 1.0. And the size is simply the normalized size given by 
r(R) : Size(R)/Image-size. Similarly, the color and size contrast  were chosen as features 
for determining relative saliency. The color contrast measure chosen enhances a region 
R's contrast if it is surrounded by a region T of different hue and is given by c(R,T) 
below: 

( k t d ( C R ,  CT) if R and T are of same hue 
c ( R ,  T) k2 + kld(CR, CT) otherwise (1) 

% 

where kx = ~ and k2 = 0.5, so that  0 _ < c(R,T) _ < 1.0, and d(CR,CT) is the cie-distance 

between the two regions R and T with specific colors as CR = (ro,go, bo) T and CT = 

__._s_a____,. +go +bo ( ~  ,+g+b) " The (r, 9, b) T and is given by d(CR, CT) = L/( ,+~__~); 2 + _ o 2 

size contrast is simply the relative size and is given by t (R,  T) = rain \ s i z e ( T ) '  s ize(R)/"  

In both cases the neighboring region T is the rival neighbor that  ranks highest when all 
neighbors are sorted first by size, then by extent of surround, and finally by contrast (size 
or color contrast as the ease may be), and will be left implicit here. 

The weighting functions for these features were chosen both from the point of data- 
driven selection and the extent to which they reflect our sensory judgments.  Thus for 
example, the functions for weighting intrinsic color and color contrast,  f~(s(R)) and 
f2(v(R)) and fa(c(R)) were chosen to be linear (f~(s(R)) : 0.5s(R), and f2(v(R)) = 
0.5v(R), and f4(c(R)) = c(R) respectively) to emphasize brighter and purer colors and 
higher contrast respectively. The size of a region is given a non-linear weight to deem- 
phasize both very small and very large regions. Very small regions are usually spurious 
while very large regions tend to span more than one object, making both unsuitable for 
selection. The corresponding weighting function f3(r(R)) was found by performing some 
informal psychophysical experiments and is given by 

__ I n ( I - n )  0 < n < t 1 
cl 

1 -  e -~'~ tl  < n <_ ~2 
h ( n )  = s2 - c d n ( 1  - n + t2) ~2 < n _< ~ 

s 3 e  - e ~ ( n - t s )  ~3 < n < 7~ 4 

0 t4 < n < 1.0 

(2) 

where tt  = 0.1, t2 = 0.4, t3 : 0.5, t4 : 0.75, sl : 0.8, s2 : 1.0, s3 = 0.7, s4 = 10 - s  and 
Zn(1-tl) c In(l-,1) - ( '2- ,s )  and n 

e l  = --  Jl , 2 : - -  tx , c  a : - - l n ( l + t 2 _ t s ) , C 4  : - -  : size of  region R 

= r ( R ) .  A f u n c t i o n  f s ( t ( R ) )  = 1 - e -t2t(R) for relative size was similarly designed. 
The color saliency of region R was obtained by combining all these features as 

Color-saliency(R) = fx(s(R))  + f~.(v(R)) + fa ( r (R))  + f4(c(R))  + f s ( t (R) )  (3) 

Figure l d - l f  and 2c-2f show the four most distinctive regions found by applying the 
color-saliency measure to all the color regions extracted from the scene shown in Figure 
l a  and 2a respectively. In the experiments done so far, the color-saliency measure was 
found to select fairly large bright-colored regions that  showed good contrast with their 
neighbors, and appeared perceptually significant. 

4.2 Use  o f  Sa l ien t  C o l o r - b a s e d  Se lec t ion  in  R e c o g n i t i o n  
Data-driven selection based on salient color regions is primarily useful when the object 

of interest has at least one of its regions appearing salient in the given scene, since the 
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search for data features that match model features can be restricted to these regions. 
Selecting salient regions gives a small number of large-sized groups which were shown to 
be very useful for indexing into the library of models [1]. But to recognize a single object, 
it is desirable to have small-sized groups. For this, existing grouping techniques can be 
applied to the data features found within the color regions to obtain reliable small-sized 
groups. 

To estimate the search reduction that can be achieved with such a selection mecha- 
nism, let (M,N) : total number of features (such as edges, lines, etc.) in the model and 
image respectively. Let (MR, NR) : total number of color regions in the model and image 
respectively. Let Ns : number of salient regions that are retained in an image. Let g 
= average size of a group of data features, within a model or image. Let (GM, G.v) = 
number of groups formed (using any existing grouping scheme) in the model and image 
respectively. Finally, let GNI be the number of groups in the salient image region i. Using 
the alignment method of recognition [3], at least three corresponding data features are 
needed to solve for the pose (appearance) of the model in the image. If no selection of 
the data features is done, then the brute-force search required to try all possible triples 
is O(MSN3). If selection is done by only grouping methods (i.e., without color region 
selection), then the number of matches that need to be tried is O(GMGNgSg 3) since only 
triples within groups need to be tried. When grouping is done within color regions, the 
groups obtained are even smaller in number and are more reliable, so that the overall 
effect is to reduce search (by as much as a factor of 107). When grouping is restricted to 

Ns salient color regions, the number of matches further reduces to O ( ~ j =  1 GNjGMgSgs). 
To get an estimate of the number of matches and time taken for matching in real 

scenes when color-based selection is used, we recorded the number of color regions, 
and the number of data features within regions in some selected models and scenes 
(Figure 2 and 3 show typical examples of models and scenes tried). The regions were 
ordered using the color saliency measure and the four most salient regions were re- 
tained. Then search estimates were obtained using the above formulas, and assuming 
a grouping scheme that gives a number of groups within regions that is bounded by 

the number of features in a region (which is a good bound using simple grouping 
average size of the groups in a region 
schemes such as grouping 'g' closely-spaced parallel lines in a region). The result of 
such studies is shown in Table I. As can be seen from this table, the number of matches 
is always smaller when salient color regions are used for selection. 

5 C o l o r - b a s e d  M o d e l - d r i v e n  S e l e c t i o n  

When the object of interest is not salient in color, saliency-based data-driven selection 
will no longer be useful. In such cases, the color description of the model can be used 
to perform selection. Previous approaches to using model color information to search 
for instances of objects have used histogram matching techniques [9] that cause a lot of 
false positive identifications since they do not explicitly address some of the problems 
such as pose changes, occlusions, or illumination conditions that make a model instance 
appear different from its original description. Our approach to color-based model-driven 
selection handles some of these problems by using a rich description of model color regions 
and a location strategy that exploits global relational information about the regions 
provided in this description. In addition, it provides correspondence between model and 
image regions, which can help reduce the search in recognition as matching can now be 
restricted to the corresponding regions. Since the model description affects the design of 
the location strategy, it is described first. 
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5.1 Model  Description 
The color region information in the model (an image or view of the model, that  is) is 

represented as a region adjacency graph (RAG) MG --- < Vra , Era, Cra, R.m , Sra, B~ra , B,m >, 
where Vra = color regions in the model, Era = adjaeencies between color regions, Cra(u) 
-- color of region u E Vra, Rm(u,v) -- relative size of region 'v '  w.r.t region u. Sra(u) = 
size of region u, and B, ra = a bound on the relative size of regions given by R.m, and 
B,ra = a bound on the absolute size of  regions given by Sra. 

This description exploits features of regions such as color and adjacency information 
that  tend to remain more or less invaxiant in most scenes where the model appears. 
Also, the bounds B~ra and B,ra indicate the extent of pose changes and occlusions that 
a selection mechanism is expected to tolerate. The description therefore, is fairly rich 
and has some structural information about color regions that  can be used to restrict 
the number of  false positives, and some constraints on the relative and absolute size 
changes that  can be used to restrict the number of false negatives made by the selection 
mechanism. 

Finally, the color region information in the image is similarly organized as an image 
region adjacency graph as I a  = <  VI, El, CI, RI, SI > where each term has a meaning 
analogous to < Vra, Era, Cra, P~ ,  Sra > respectively. 

5.2 Location Strategy 
Given the image region adjacency graph IG, the model object if present in the scene 

will form a subgraph in IG. The location strategy, therefore, regards the problem of selec- 
tion as the problem of searching for suitable subgraphs that  satisfy the model description. 
Although the number of subgraphs is exponential, a set of unary and binary constraints 
supplied in the model description restrict the subgraphs to a small number of feasible 
subgraphs. The perceptual color of a region and its absolute size bound (Bara) were used 
as the unary constraints, while region adjacency and relative size were used as the binary 
constraints. Specifically, the lack of adjacency between two model regions was used to 
prune false matches to two adjacent image regions. The bound Btra in the model was 
used to discard matches when the relative size exceeded this bound. 

The location strategy searched among the feasible subgraphs for a subgraph (or 
subgraphs) that  in some sense best matches the given model description. Such a sub- 
graph Ig = <  Vg,Eg, Cg, Rg, Sg > such that [IVg[[ _< [[Vrall,[[Egl[ _< [IEra[[, has as- 
sociated with it a node correspondence vector T = {(ura,ug)[Vura E Vra,ug E Vg U 
{_k}, {_k} is a null match} and is chosen to be the one that  minimizes the following mea- 
sure: 

SCORE(Ig)  = ( 1 -  I]Vgll ) +  . (4) 
IIVrall IIErall 

where R~rag(ura, vra, ug, vg) expresses the change in the relative size when adjacent model 
regions (ura,v,~) are paired to corresponding image regions (ug, vg) and is given by 

[R.,(~,..,,.,)-R,(,,,,~,)I SCORE(Ig)  emphasizes rewards for R~g(ura, vra, ug, vg) = m a x ( R . (  . . . . .  ),R,(~,,,,))" 
making as many correspondences as possible as indicated by the first term, and penalties 
for a mismatch of the relative size, as indicated by the second term which accounts for 
occlusions and pose changes in a more refined way than the binary constraints alone. A 
branch and bound version of interpretation tree search [3] was then used to search for 
the best subgraph. 

The result of using color-based model-driven selection is illustrated in Figure 3. Figure 
3a and 3b show a model object, and its color description obtained by using the color- 
region segmentation algorithm of Section 3. Figure 3c shows a scene in which the model 
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object  occurs. The scene shown has several other objects  with one or more of the model  
colors. Also, the model appears  in a different pose, being ro ta ted  to the left abou t  the 
vertical  axis. Figure 3d shows the result of  applying the unary color constraints ,  and 
Figure 3e, the subsequent use of the absolute size constraint .  Finally,  the subgraph with 
the lowest value of SCORE is shown in Figure 3f. As can be seen from this figure, a 
region containing most of the model  object  has been identified even with an imperfect  
color image segmentat ion.  

5.3 Search  R e d u c t i o n  us ing  Co lor -based  M o d e l - d r i v e n  S e l e c t i o n  
The color-based model-driven selection mechanism provides a correspondence of  model  

regions to some image regions. The matching of  model  features to image features can 
be restr ic ted to within corresponding regions, and when this is combined with grouping 
within regions as described in Section 4.2, the number of matches  to be tr ied for recogni- 
t ion reduces further.  To es t imate  the search reduction in this case, let Nz be the number 
of  solution subgraphs given by the selection mechanism, and let Ik represent  one such 
subgraph with the number  of  nodes = Nk. Let (G,,i ,G~) = the number  of groups in 
region uj of  the solution subgraph Ih, and region vi of the model  R A G  tha t  corresponds 
to uj  as implied by the correspondence vector T associated with Ik. Then assuming, as 
before, the average size of the group = g, the number  of matches  tha t  need to be t r ied are 
0 ( ~ = 1  ~~1~ 1 G~,#G~,.ga.g3). By trying several models and images of  scenes where they 
occurred, we recorded the average number of  subgraphs generated by the model-dr iven 
selection mechanism. The search est imates were obtained using the above formula for 
model-driven selection with grouping, and the formulas for other methods  ment ioned in 
Section 4.2. The  results are shown in Table II. The bound on the number  of groups in a 
region was the same as used in Section 4.2. As can be seen from the table,  the number  of 
matches using correspondence between model and image color regions is always lower. 

6. Conc lus ions  
In this paper  we have shown how color can be used as a cue to perform both d a t a  and 

model-driven selection. Unlike other approaches to color, we have used the in tended task 
to constrain the kind of color information to be ext rac ted  from images. This  led to a fast 
color image segmentat ion algori thm based on perceptual  categorizat ion of  colors which 
la ter  formed the basis of d a t a  and model-driven selection. Future  work will be directed 
towards in tegrat ing the selection mechanism with a 3D from 2D recognition sys tem to 
obta in  s tat is t ics  of  false positives and negatives and the ac tual  search reduction due to 
selection. 

R e f e r e n c e s  

I. D.T. Clemens and D.W. Jacobs, "Space and time bounds on indexing 3D models from 2D 
images," IEEE Trans. Pattern Anal. and Machine Intelligence, vol. 13, Oct. 1991. 

2. T. F. Syeda-Mahmood, "Data and model-driven selection using color regions," AI-Memo 
I~70, Artificial Intelligence Lab., M.I.T., 1992. 

3. W.E.L.Grimson., Object Recognition by Computer: The Role of Geometric Constraints, 
MIT Press: Cambridge, 1990. 

4. D.G. Lowe, Perceptual Organization and Visual Recognition, Kluwer Academic: Boston, 
1985. 

5. G.J. Klinker, S.A. Sharer, and T. Kanade, "A physical approach to color image understand- 
ing," Intl. J1. Computer Vision, vol.4, no.1,  pp.7-38, Jan. 1990. 

6. E. Land, " Recent advances in retinex theory," in Central and Peripheral Mechanisms of 
color Vision, T. Ottoson and S. Zekl Ed., pp. 5-17, London:McMillan, 1985. 



122 

7. L,T. Maloney and B. Wandel, "Color constancy: A method for recovering surface spectral 
reflectance," Jl. Optical Society of America, vol.3, 1986, pp.29-33. 

8. E. Sternheim and R. Boynton, "Uniqueness of perceived hues investigated with a continuous 
judgemental technique," Jl. of Experimental Psychology, voi.72, pp.770-776, 1966. 

9. M.J. Swain and D. Ballard, "Indexing via color histograms," Third Int. ConL Computer 
Vision, 1990. 

Fig.  I .  Illustration of color region segmentation and color-sallency. (a) Input image consisting 
of regions of 3 different colors: red, green and blue against an almost white background. (b) 
Result of Step 2 of algorithm with regions colored differently from the original image. (c) Final 
segmentation of the image of Fig.3a. (d) m (f) The three most distinctive regions found using 
the color saliency measure. 

T a b l e  1. Search reduction using color-bared data-driven selection. The last column shows the 
match time when color-based data-driven selection is combined with grouping. The color-based 
selection is done by choosing the four most  salient regions. Here g = 7, Time per match = 1 
microsecond, and the gzouplng method is as described in text.  

MR NR No selection Only grouping Salient color + grouping I 
S.No M N Num. Time N u m .  Time Num. Time 

matches matches matches 
I. 229 I1701 181.92xi0  ze 610yts 6.52xi0 s 11rmn 3.37xi0 s 5rmn 
2. 5072655220202.4xi01877,341yzs 3.22xI0 ~ 54rain 1.32xI0 Q 22rmn 
3. 12426552 3.57xI0 te 1131yrs 8.05xi0 s 13rain 3.3x10 s ,rain 
4. 50722472 [141.48xI01846,884yts 2.72xi0 ~ 46rain 7.8x10 e 13min 

T a b l e  2. Search reduction using color-based model-driven selection, The last column shows the 
match time when model-color-based selection is combined with grouping. Here g -- 7, Time per 
match = 1 microsecond, and the grouping method is as described in text.  

No selection Only grouping Model-driven selection, 
~.No M N MR NR:Objects Ni N~ iNum.  Time Num. Time Num. Time, 

matches matches matches 
il. 786 3268 5 30 20 1 I(3) 1.69x10 j 530000y~s 5.15x10 s 103ram 4.55x107 45secl 
2. 83 30781 20 14 3 II,l,1) 1.67x10Zs528yrs 5.2x10 e llmin 1.7x10 s 3min 
3. 507 2655 2 20 114 2 12,1) 2.4xi0 Is 77,34lyre 3.22xi0 ~ 54mJn 3.72xi0 s 6rain 
i. 507 2247 2 14 i6 1 12) 1.48xi0 Is 46,884yrs 2.72xi09 46rain 3.16xi0 j 5mir 
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Fig. 2. Mustration of color region segmentation and color-saliency. (a) Input image depicting a 
scene of objects of different materials and having occlusions and inter-reflections. (b) Segmented 
image using the color region segmentation algorithm. (c)-(f) The four most distinctive regions 
detected using the color-sallency measure. The white portion in the red book appears so because 
of the white background. (a) (b) 

Fig. 3. mustration of color-based model-driven selection. (a) The object serving as the model. 
(b) Its color description produced by the segmentation algorithm of Section 3. (c) A cluttered 
scene in which the object appears. (d) Regions selected based on unary color constraint. (e) 
Regions of (d) pruned after using the unary size constraint. (f) Regions corresponding to the 
best subgraph that matched the model specifications. 
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