
Checking for Language Inclusion Using Simulation Preorders

David b. Dill, Alan J. Hu, and Howard Wong-Toi*
Department of Computer Science

Stanford University

1 Introduction
Systems involving interaction among state machines, such as protocols, concurrent algorithms,
and certain kinds of haxdwarc, often contain subtle design errors that defy detection by con-
ventional means, such as inspection, simulation, and testing a prototype. As a result, formal
verification methods for such systems axe of increasing interest.

We are interested in a.utoma.tic verification using finite-state models of systems, with the
underlying assumption that system behavior can be represented as a set of sequences representing
all the possible histories (or traces) of the system (we assume linear-time). In this model,
verification consists of testing for languagc inclusion: the implementation describes a set of
as traces and the specification gives the set of allowed traces; the implementation meets the
specification if every actual trace is allowed.

In this paper, we consider only the case where both the implementation and the specification
are represented by finite-state automata. The automata used here can describe both safety
properties (which intuitively say that nothing bad happens), and liveness properties (which
intuitively assert that something good eventually happens). More specifically, we deal with
safety automata and Bi'tchi automata.

As specifications beconm more complicated, it becomes less natural to express them with
deterministic automata. This occurs because a complicated specification is more likely to have
invisible internal state that is not a function of the externally visible state. Although such
specifications ca~x be expressed using deterministic automata, this places an unnecessary burden
on the user. Determinization algorithnls may cause exponential blowups ~'nd a~'e also difficult
to program.

Deciding language inclusion for non-deterministic automata is PSPACE-complete. Therefore
it is highly unlikely that a polynomial technique can be used to decide language inclusion.
However, deciding language inclusion tbr deterministic automata is known to be polynomial.
Our main goal is to provide polynomial methods that work not only for deterministic automata,
but also work for non-deterministic automata in cases of practical interest.

The simulation preorder is one of many preorders and equivalences considered by people
studying bra~lching-time models of concurrency. Simulation preorder is decidable in polynomial
time (proportional to the product of the sizes of the two automata) even when the specification
automaton is nondeterministic. However, the simulation preorder is a stronger relation between
automata than language inclusion. So from our perspective (linear time), the simulation preorder
should be regarded as an al)proximation (sufficient condition) for language inclusion that is much
easier to check.

*This work was supported by the NSF under graJit MIP-8858807. The second author is also supported by an
ONR Graduate Fellowship.

256

One automaton precedes another in the simulation preorder if there exists a certain kind
of correspondence, called a simulation relation, between states of the two automata (the corre-
spondence is defined precisely below). Hence, deciding simulation preorder involves finding a
simulation relation or proving that none exists. We consider below some variants on the simu-
lation preorder that are expensive to check directly. In such cases, it may still be useful to do
"semi-automatic verification": a human defines a candidate relation, and uses a computer to
check automatically whether the candidate is a simulation relation. Hence, the computational
complexity of checking a given simulation is also of interest.

The verification methods presented here axe all incomplete, in that they can be used to
prove language inclusion {whenever a simulation relation exists), but cannot decide language
inclusion (that is, an automaton may accept a subset of the language of another without any
simulation relation between them). This deficiency is a necessaxy sacrifice in return for efficiency.
Nevertheless, we provide evidence that the technique is useful in practice through some examples.

1.1 B a c k g r o u n d

State relations in one form or another have been studied for a long time, including the weak ho-
momorphisms and coverings of Ginzburg [Gin68] and the simulations of Milner [Mil71]. Many
verification methods consider (possibly) infinite state automata, and therefore develop proof
methodologies where the human verifier supplies a relation together with a mathematical proof
that it is a simulation relation (for example, Milner's simulations, Lain and Shankar's protocol
projections [LS84], the possibilities mappings of Lynch and Tuttle [LT87], Klaxlund and Schnei-
der's invariants [KS89] and the progress measures of Klarlund [King0]).

The Concurrency Workbench [CPS89] is one of several programs that test for simulation
preorder between automata. However, none of these can handle large state spaces or liveness
properties.

For liveness and fairness properties, we axe interested in defining simulation relations on
Biichi automata (finite automata that accept infinite strings). Park proposed using simulation
relations on Muller automata, which are somewhat similar to Biichi automata. Checking Park's
relations can be done in polynomial time, but automatically finding the relation is NP-complete,
which limits their usefulness in practice (his simulations are similar to the relation called BSR-dlc
below).

Lynch and Tuttle give a manual verification technique similar in spirit to our BSR-aa's
on their IO-automata, which can also express fairness properties. Since they do not consider
finite-state automata, neither testing a given relation nor finding one is decidable.

1.2 N o t a t i o n

Let ~ be a set. Then S* is tile set of all finite sequences over E, and ~w is the set of all infinite
sequences over ~. We will use .yv.o for ~* U ~ . If a is in ~oo, its i-th element, if it exists, will
be denoted ai-1, and o may be identified with the corresponding string with the same elements.
We let len(a) be the length of ally a in ~oo.

Let a be in E "~. The set of prefixes of a, pr(a) is defined as {a t E ~* I for all i < len(a~),a~ =
ai}. Given a set A C_ E*, its closure el(A) is tile set of strings in ~ such that every prefix is in
A, i.e. el(A) = {a I pr(a) C A}. The set B C E w is closed iff B = cl(pr(B)).

257

2 S a f e t y A u t o m a t a

Intuitively, states of an automaton represent states of the system or process being modeled. A
state is made up of an external visible component, and an internal invisible component. A trace
of an automaton is an infinite sequence of external states, aald models what an external agent
could observe of the process. All automata used here are finite-state and define languages of
infinite tr~ces.

A safety automaton A is a tuple (S, E, P, N). S is a finite set of internal state components
and E is a finite set of external slate components. The set of states of the automaton is S x E.
P C_ S • E is a set of inilial slates, and N C (S • E) • (S • E) is the next state relation. A run of
A on the infinite sequence e = eo, e l , . . . E E ~ is all infinite sequence of states (so, e0), (sl, el) . . .
such that (so, e0) E P, and lbr all i _> 0, ((sl, el), (Si+l, el+l)) is in N. The infinite sequence e is
accepted by A if there is a run of A on e. The language L(A) is the set of all infinite sequences
for which there are accepting runs.

A is said to be deterministic if P is a singleton set and if for every state (s, e) E S and every
external component c' E E there is at most one state (s ~, e ~) E 5' • E such that ((s, e), (s', e/)) E
N.

2.1 S i m u l a t i o n R e l a t i o n s fo r S a f e t y A u t o m a t a

We consider first simulation relations between safety automata, A 1 = ($1, E, I1, N1) and A2 =
($2, E, /2 , N2). Intuitively every state in the implementation must be related to a state in the
specification with the same external component. It must be possible for every transition in the
implementation to be simulated by a transition in the specification. The simulation relations
relate each implementation state to several specification states, like those of Park, Lynch and
Tuttle, and Loewenstein and Dill [ParS1, LT87, LD90].

Def in i t ion 1 (SSK) A safety simulation relation between safety automata A1 and A2 is any
relation R C_ $1 • E • $2 that satisfies the following properties:

(SR1) (simulation)Vsl E Sl ,e E E,s2 E S2,s~ E S l ,e I E E,

[a(s~, e, s~) ^ N~ ((~,, e), (sl, e'))] ~ 3sl ~ S2 [~(s l , e', 4) ^ N~((s2, e), (4 , e'))1.

(SR2) (initiality)V.si E SI ,e E E,

(sl ,e) e PL =v qs2 E $2 [(s2,e) E P2 ^ RCsl,e, s2)].

T h e o r e m 1 (S S R soundnes s) If there is an SSR between A1 and A~, then L(A1) C_ L(A2).

As mentioned in the introduction, one way of verifying language inclusion is to check that a
user-supplied relation is actually a simulation relation.

A l g o r i t h m 1 (C h e c k i n g sa fe ty s imula t ion re l a t ions) It is straightforward to verify that a

relation satisfies SRI and SR2 independently. For example, SR1 may be verified by a simple
check that outgoing transitions from implementation states are mimicked in their simulating
specification states. This simple procedure is polynomial in the number of states and edges of
the two automata.

258

2.2 F i n d i n g S i m u l a t i o n R e l a t i o n s

Because simulation relations over safety automata are closed under union, there is a largest
simulation relation that contains all others. The algorithm to find simulation relations finds the
largest candidate relation and then verifies it is indeed a simulation relation. This candidate
relation R is the largest relation satisfying the simulation property, SR.1. Since SR2 (initiality) is
a monotone property (that is, if it is true in a relation R ~, it is true in any larger relation), there
is a simulation relation over $1 • E x 5'~ iff R satisfies SR2. Computing R from the maximum
relation $ I x E x $2 involves repeatedly deleting triples which do not locally satisfy SIti . I t is
then straightforward to check whether SR2 holds. The algorithm is polynomial in the size of
the automata.

While safety simulation relations are in general incomplete, there are special cases where
laJlguage inclusion does imply the existence of a simulation relation. A safety automaton A is
non-deadlocking whenever every tinite string a ~ having a run on A is a prefix of some infinite
string in L(A).

T h e o r e m 2 If L(A1) C_ L(A2), A~ is detel~ministic and At is non-deadlocking, then there is an
SSR between A1 and A2.

2.3 S y m b o l i c I m p l e m e n t a t i o n

One way to contain the state explosion problem is to represent automata and relations "symbol-
ically," using some data structure that does not expand as quickly as an explicit list of states.
One such data structure is the binary decision diagram (BDD), which gives a compact repre-
sentation for a Boolean function [Bry86]. These data structures have proven especially efficient
in many cases. Using the paradigm of symbolic model checking, [BCMDH90, BCMD90] we can
efficiently perform the computations specified below.

An expression for the ma~ximum relation satisfying the simulation condition (SR1 in Defini-
tion 1) on a safety simulation relation is:

,.,Z.,~s,, e, s~ [Z(s,, e, s~) ^ Vs',, e' [~V,r e), (4 , e')) ~. 3s~ [Z(sl, e', s~) ^ ,V~((s~, e), (4 , e'))]]]

where uZ.F[Z] denotes the greatest fixed point of the predicate transformer F. Let Q(sl, e, s2)
be this fixed point.

T h e o r e m 3 A safety simulation relation exists iff Q satisfies the initiality condition (SR2 in
Definition 1).

3 Simulation relations for liveness properties

While safety automata can express many useful properties, they cannot express simple liveness
properties, such as "process A will eventually read the variable x". To handle general liveness
properties, we need automata that can handle general w-regular languages. Many such automata
have been proposed: Biichi automata, Muller automata, R.al)in automata, Streett automata, V-
automata, and L-automata. For simplicity, we choose to work with the conceptually simplest
of these, Biichi automata. The ideas expressed here can be extended to the other types of
automata, as well.

A Biichi automaton A = (S, E, P, N, F I is a safety automaton with an additional fifth com-
ponent F C_ 5' x E, a set of accepting states. An infinite run r over the safety automaton
As = IS, E, P, N) is called a run of the BiicM automaton A. The run r is an accepting run

259

iff an accepting state occurs infinitely often in r. The language accepted by A is the set of all
infinite strings with an accepting run. In the following, it is assumed every state in a Biichi
automaton is reachable. A safety automaton can be considered to be a Biichi automaton in
w h i c h F = S x E .

Our definition of Biichi automata is non-standard: while our automata have external visible
state components, the usual Biichi automata have visible labeled transitions between internal
states. This change makes it easy for us to model our examples. However, there is a simple
correspondence between the two definitions, and the simulations we propose can easily be'applied
to the more conventional (left nition of Biichi automata, also.

We define various simula.tion relations between Biichi automata, as extensions of simulation
relations between safety automata. A Biichi automaton accepts an infinite string iff it has a
run r for that string, and r is an accepting run, i.e. it includes infinitely many accepting states.
Thus Biichi simulation relations must guarantee the existence not only of simulating runs but
of simulating accepting runs.

Throughout the following we assume A1 = ($1, E, P1, N1, F1) and Aa = (Su, E, P~, N2, F2)
are non-deadlocking Biichi automata.

3.1 A c c e p t i n g - a c c e p t i n g B i i ch i s i m u l a t i o n r e l a t i o n s

Here, safety simulation relatibns are augmented with a simple condition that guarantees that
whenever the newly entered sta.te of the implementation is accepting, then so must be its simu-
lating As state.

Def in i t ion 2 (B S R - a a) An accepting-accepting B~chi simulation relation (BSR-aa), is any
relation R C_ Sl x E • 82 that satisfies SRI (simulation), SR2 (initiality) and the additional
property:

(SR-aa) V81 E Sl,e E E, s2 E 5'2,

R(sl,e, s2) ~ [F,((sl,e)) ~ Fa((su, e))].

T h e o r e m 4 (B S R - a a soundness) / f there, is BSR-aa between A1 and As, then L(A1) C_
L(A2).

E x a m p l e 1

" " .X ,

A1 A3

The relation R = {(so,a, to),(so, a, t2),(sl,b, tl)} is a BSR-aa between A1 and As. However,
there is no BSR-aa between A1 and An, since the accepting states of one automaton axe not
"synchronized" with those of the other, even though clearly L(A1) C L(Aa).

3 .2 A l g o r i t h m s

As for safety simulation relations, we demonstrate algorithms for checking and finding each
Biichi simulation relation. Biichi simulation relations are defined as safety simulation relations

260

with an additional fairness property. When this additional property is of a certain form, the
algorithms are trivial extensions of those for the safety case.

Suppose the fairness property determines a priori which pairings of automaton states axe
permitted in a simulation relation, independent of what other pairings appear in the simulation
relation. Then a relation is a simulation relation whenever all pairings of states are permitted,
or "good".. Checking whether a relation is a Biichi simulation relation is then just checking it
is a safety simulation relation and that all state pairings are good. Finding Biichi simulation
relations is simply finding safety simulation relations among the good pairs.

D e f i n i t i o n 3 A property P of relations in 5'1 • E x S2 is locally-determined if P = 2 W for some
W ~_ .5' 1 • E x $2.

Intuitively P is locally-determined -iff R satisfies P whenever all triples in R axe in some
maximum relation W. We may interpret the triples in W as the good triples in 6'1 • E • 5'2.

D e f i n i t i o n 4 Let BSR-P define the class of simulation relations that satisfy the properties
SR1, SR2 and 5 " R - P.

L e m m a 1 I f s'R - P = 2 W is locally-determined, then a relation R is a BSR-P iff it is a safety
simulation relation and contained in 14/'.

T h e o r e m 5 If S R - P = 2 W is locally-determined and W is polynomially decidable, then
checking whether a relation is a BSR-P is polynomial.

L e m m a 2 If 5"R - P is locally-dete~nined, then BS'R-P's are closed under union.

T h e o r e m 6 If 5 " R - P = 2 W is locally-determined, and W is polynomially decidable, then
deciding whether there is a B5`R-P between two automata is polynomial.

The property SR-a~ is locally-determined, with Sll,-a~ = 2 W, where W = {(sl ,e , s2) [
F1 ((sl , e)) =:, F2((s2, c))}. Determining SR-a~ is linear in the sizes of 5'1 and 5`2, so by the above
results there are polynomial algorithms for checking and finding BSR-aa's.

3 .3 L i v e - c y c l e s B i i c h i s i m u l a t i o n r e l a t i o n s

We may relax the condition of having to simulate every F1 state with all F2 state. It is sufficient
to simulate F1 states by some state in $2 from which it is guaranteed every A2-run will later
pass through aa accepting state. Equivalently, it must be impossible to continue simulation of
A1 in a cycle fi'om (s l ,e) E F1 with a cycle of A2 from (s2,e) to (s2,e) which does not pass
through any states in F2. Ill fact the converse is true, and this condition is also sufficient for
laalguage inclusion. Furthermore, it is locally-determined and polynomially decidable.

We first define the psettdo-product machine A12 = (5'12, P12, N12), where 5'1u = 81 • E • Su,
P12 = {(sl ,e , s2) [P l ((s i , e)) and P2((s2,e))}, and the next-state relation N12 _C S12 • o~ is
defined by N12((sl, e, s~), (s i, e..s[)) ifr N, ((sl , e), (sl, d)) and N2((s2, e), (sl, e~)). A product-
state (sl , e, s2) is an F1 state iff (sl , e) E Fl, and likewise an F2 state iff (s2, e) E F2.

D e f i n i t i o n 5 (B S t t - l c) A live-cycles Biiehi simulation relation (BSR-Ic), between A1 and As
is any relation R C_ $1 • E • 5'2 that satisfies SR1 (simulation), Sit2 (initiality) and the axlditional
property:

(SR-lc) Vsl E S l , e E E,s~ E $2,

R(sx,e , s2) ~ [Fl((sl ,e)) ~ LC((s l , e , s2))].

261

where LC((s~, e,s~)) holds if every cycle through (s~, e,~z)'in the pseudo-product machine Az~
passes through an F~ state (the cycle is "live").

T h e o r e m "/ (BSR-Ic s o u n d n e s s) If there is a BSR-lc between A~ and Az, then L(A~) C_
L(A2).

Example 2 Here R = {(~o, a, to), (sa, b, t~)} is a BSR-Ic, because the pseudo-product machine
has the same structure as A~. However, Az and A~ have no BSR.-ma.

Al A~

T h e o r e m 8 (BSR-Ic completeness for de terminis t ic specif icat ions) If L(A1) C_ L(A2)
and A2 is deterministic, the~ there is a BSR-Ic between Az and A2.

3.4 D y n a m i c - l i v e - c y c l e s Bi lchi s i m u l a t i o n r e l a t i o n s

The fairness properties of all tile Biichi simulation relations defined so far have been locally-
determined, and static in the sense that they are given as predetermined safety conditions over
the state-pairings aJlowable. They do not take into consideration exactly which state pairings
appear in the relation, ltowever, ill order to guarantee simulating runs are accepting, we need
only consider runs permitted by R. Co,~sider the pseudo-machine A~2 = (S~2, P~2,/V~2), with
state set S12 = ($1 x E x S2)fqR, initiaJ states P~2 = P12nR, and the next-state relation given by
N~2((sl, e, s2), (s~, e ~, s~)) iff N] ((sl , e), (8~, e')), N~((s2, e), (s'2, e')), and (sl , e, s2), (s t , e, s~) E R.
The machine A~2 is simply A12 restricted to R, so there will be fewer non-live cycles and thus
more simulation relations between the automata. The Sg-dlc condition is merely SIt-lc with
cycles taken with respect to A~2 instead of A12.

Definit ion 6 (BSR-dlc) A dynamic-live-cycles Bf~ehi simulation relation (BSR-dlc), is any
relation R C_ ocl x E x $2 that satisfies SR1 (simulation), SR2 (initiality) and the additional
property:

(S1Ldlc) Vsl E Sl,e E E,s2 E $2,

where LC'((sl,e, s2)) iff every cycle through (s~,e, s2) in the pseudo-product machine A~2 is
live, i.e. it passes through an F2 state.

Theorem 9 (BSR-dlc soundness) If there is a BSR-dle between Al and A2, then L(Az) C_
L(A2).

T h e o r e m 10 (BSR-dlc determinis t ic completeness) If A2 is deterministic and L(A1) C_
L(A2), then there is a B3'R-dlc between A1 and A2.

While SB.-dlc is still polynomiaily decidable, it is not locally-determined. Thus checking
BSR-dlc's is polynomial, and in fact finding BSR-dlc's is NP-complete.

262

Deterministic
completeness Checking Finding

BSR-aa no poly poly
BSI~-lc yes poly poly
BSIt-dlc yes poly exponential

Figure 1: Completeness and Complexity of Biichi simulation relations.

~tp~t~l~ttmLion Speci flcntlon

Figure 2: In the first verification example, a ca~:hed memory (nondeterministic) implements a
memory (deterministic).

3.5 S u m m a r y / C o m p a r a t i v e Exp re s s ivenes s

Figure 1 summarizes the results above. Of the alternatives for Biichi sim~alations here, BSR-
lc is the only one whose prcordcr is complete for deterministic specifications and decidable in
polynomial time. Hence, we bclieve it is'the one most likely to be of practical use in verification.

4 Verification Examples

The first example is adapted fi'om all earlier paper using simulation relations [LD90]. We have
a very general model of a cache (that allows prefetch, concurrent operations, etc.) and would
like to show that a cached memory implements a memory. The cache model is nondeterministic
and the memory model is deterministic. (See Figure 2.) Running on a DecStation 3100, finding
a safety simulation relation took less than 5 seconds.

As CPU speeds have increased, the cache-memory port has become a bottleneck. Many
architectures now incorporate a write buffer between the cache aald the memory to reduce this
problem. The second examplc considers a weaker memory model that allows the memory to
buffer writes (delayed arbitrarily, but preserving the order of the writes) while allowing reads
to bypass the buffer and read directly from memory. While this is not entirely realistic (real
machines do not do it, at least intentionally), but it is similar to some consistency models used
in multi-processor ca~hing. We a.ssutne a finite-length write buffer.

We would likc to show that the santo cache from the first example can be attached to a
write-buffered memory, with the result implementing a write-buffered memory. (See Figure 3.)
Note that both the implementation and the specification are nondeterministic, demonstrating
this important feature of simulation rclations.

In under a minute, the verifier reported that no simulation relation exists. Additional queries
to the system suggested the following scenario that demonstrates that in this case, the imple-
mentation is not correct with respect to the specification:

263

~ p l e a ' ~ m Spoc~l'~ctlaa

Figure 3: In the second example, a cached memory with write buffer (nondeterministic) fails to
implement a memory with write buffer (nondeterministic).

1. Processor writes the value A to location X and receives an acknowledge from the memory
system.

2. Processor performs operations not related to location X.

3. Processor writes a sequence of B's to location X (aaid receives acknowledgements for each).
The number of B's written must be greater than the length of the write buffer.

4. Processor performs opcrations not related to location X.

5. Processor reads location .u

For the specification (a write-buffered memory), step 3 must result in a B being stored at location
X because the write buffer must write B's ~ to location X ill order to keep from overflowing.
Therefore, at step .5, the read must retm'a the value B. For the cached implementation, however,
consider the following possible scenario:

1. During step 1, the cache has a dirty copy of location X equal to the value A.

2. During step 2, the cache writes back its dirty copy. At some point, the write makes its
way through the write buffer, so location X now equals A.

3. During step 3, the cache misses, reads a clean copy of X = A, and modifies its copy to a
dirty copy X = B. Memory location X still holds value A.

4. During step 4, the cache writes back its dirty copy of X = B. This write gets buffered.

5. During step 5, the processor attempts to read location X. The cache misses and gets a
clean copy of X = A from the memory. Tile cache returns X = A.

This trace is possible in the implementation, but not in the specification.
To correct that bug, the third example again verifies that a cached, write-buffered memory

implements a write-buffered memory, but the write buffer is modeled differently. We add an
interlock to the memory to block a read to any location that has a write pending in the write
buffer. (See Figure 4.) With this modification, the cached memory operates correctly. The
verifier found a simulation relation in just over 20 seconds.

The following table summarizes the results. All runs used a DecStation 3100 with 16MB
of memory. The implementation uses Brace, Rudell, and Bryant's package for boolean decision
diagram maafipulation. [B RB90]

264

Figure 4: In the third example, a modified write buffer now blocks reads to locations that
have a write pending in the buffer. Both the specification and the implementation axe still
nondeterministic.

Memory Implementation (w/cache)
Model Det States
Plain No 64K
w/write buf No 500K
w/interlock No 500K

Specification Simulation Time
Det �9 States Relation (in sec)
Yes 64 Yes 5
No 500 No 41
No 500 Yes 22

5 Conclusion

We have implemented an efficient verifier for language inclusion, using simulation relations as a
heuristic. The examples above demonstrate the promise of this approach. Since the method is
incomplete, more examples need to be verified to determine its practical usefulness. Future work
aJong these lines includes development of improved diagnostics during verification, especially to
suggest counterexamples when no simulation relation exists.

We plan to extend the implementation to find Biichi simulation relations. We are also
investigating simulation relations defined over other forms of w-automata.

Our framework deals only with the logical sequencing of events in trace traces. We are
currently working on includiag timing properties in our specifications (cf. [LA89, Bes90]).

6 Acknowledgements
We would like to thank Andrea.s Drexler for his help in implementing the verifier.

R e f e r e n c e s

[BCMD90] J.R. Burch, E.M. Clark, K.L. McMillan, mid David L. Dill, "Sequential Circuit Verification
Using Symbolic Model Checking," 27th ACM/IEEE Design Automation Conference, 1990,
pp. 46-51.

[BCMDH90] J.R. Burch, E.M. Clark, K.L. McMillan, D.L. Dill, and LJ. Hwang, ~Symbolic Model
Checking: 1020 States and Beyond," Proceedings of the Conference on Logic in Compufer
Sciel, ce, 1990, pp. 428-439.

[Bes90] A.A. Bestavros, "The input-output timed automaton: a model for real-time parallel corn-
putation", Presentation at. Workshop on Timing Issues in the Specification and Synthesis
of Digital Systems, 1990.

[BRB90]

[Bry86]

[CPS89]

[Gin68]

Imago]

[KS89]

[Kur90]

[LA89]

[LD90]

[LS84]

[LT87]

[MilT1]

[Par81]

265

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant, "Efficient Implementation of a
BDD Package," 27lh. A CM/IEEE Design Aulomalion Conference, 1990, pp. 40-45.

l~andal E. Bryant, "Graph-Based Algoritlmls for Boolean Function Manipulation," IEEE
Transaclious on Computers, Vol. C-35, No. 8 (August 1986), pp. 677-691.

R. Cleaveland, J. Parrow, B. Steffcn, "Tile Concurrency Workbench", Proceedings of the
International Workshop on Automatic Verification of Finite State Systems, June 1989, LNCS
407, J. Sifakis (ed.), Springer-Verlag 1989, pp. 24-37.

A. Ginzburg, "Algebraic Theory of Automata ' , ACM Monograph Series, Academic Pre~,
1908.

N. Klarlund, "Progress Measures and Finite Arguments for Infinite Computations", Ph.D
Thesis, Cornell U,fiversil, y, TR 90-1153, September 1990.

N. Klarlund and F.B. Schneider, "Verifying safety properties using infinite-state automata ~,
Technical report T1~.-1036, Cornell University, 1989.

R. Kurshan, "Analysis of diseret.e event coordination", in Stepwise Refinement of Distributed
Systems: Models, Formalisms, Correctness, LNCS 430, J.W. deBakker, W.-P. de Roever,
G. Rozenberg (eds.), Springer-Verlag 1990, pp. 414-453.

N.A. Lynch, I1. Attiya, "Using mappings to prove timing properties", MIT-LCS-TM-412.b,
1989.

Paul Loewenstein and David Dill, "Formal Verification of Cache Systems using Refinement
Relations," IEEE International Conference on Computer Design, 1990, pp. 228-233.

S.S. Lain, A.U. Shaakar, "Protocol verification via projections", IEEE Transactions o n

Software Engineering, SE-10(4):325-342, July 1984

N.A. Lynch, M.IL Tattle, "llierarchical correctness proofs for distributed algorithms ~, in
Proceedings of the 6th A ~lnual A CM Symposium on Principles of Distributed Computing,
1987, pp. 137-151.

It. Milner, "An algebraic definition of sinmlation between programs", Proceedings of the 2ud
lnternation.al Joint Conference on Artificial Intelligence, British Computer Society, 1971,
pp. 481-489.

D.M.R, Park, "Concurrency and automata on infinite sequences", in Proc. 5th GI conference
(P. Deussen. ed.), LNCS 104, 1981, pp. 167-183.

