
Compilation of Pattern Matching
with Associative-Commutative Functions

E. Kounalis D. Lugiez *
C R I N - I N R I A

N a n c y - F R A N C E

Abstract

This paper deals with the problem of compiling pattern-matching of associative-
commutative function definitions in a functional-like language where the evaluation
is performed by head-rewriting. We propose an effective algorithm (i.e which does
not rely on some -unknown- procedure for computing complements of terms modulo
AC-axioms) to compile the pattern-matching process. For this purpose, we intro-
duce the concept of pattern trees. We also get for free a test of the completeness of
such definitions (with respect to head-rewriting), provided some linearity condition
is met. Our method will ensure an efficient pattern-matching process at evaluation
time.

1 I n t r o d u c t i o n

Functional languages allow to define functions by a set of rules such as:

0 + y ' -~y
x+~(y) - ~ (x + y)

together with a priority on this set of rules (here: apply first applicable rule first) to deal
with ambiguous patterns (a pattern is the left-hand side of a rule). When an expression is
to be evaluated, it is matched against the patterns (according to the given priority) and
when the matching succeeds the evaluator returns the right-hand side expression (which
can be evaluated again). However, for efficiency purpose, the above definition should be
compiled into a piece of code which is more suited to machine like:

(x + y) = if x = 0 then y
elsif y=s(y') t hen let y=s(y')
else n o - m a t c h

in s(x + y')

*author's address: CRIN, BP 239, 54506 Vandoeuvre les Nancy Cedex, FRANCE. e-mail
kounalis,lugiez@loria.crin.fr

58

Nowadays, many algorithms for compiling definition by pattern matching exist see
[Aug85, P J87, Sch88]. Unfortunately many functions arising in practice are defined with
equations which cannot be oriented into rewrite rules as above. The most important case
is that of Associative-Commutative functions (in short AC-functions), i.e functions f such
that f (x ,y) = f(y, x) and f (x , f (y , z)) = f (f (x , y), z) which are very common (the +
operator, union operator in sets,...). For example, the definition of the + operator above
should be extended by the declaration that + is AC (otherwise it does not define the usual
+ over the integers: the definition is not complete since no rule applies to +(s(x),0)). No
present compilation algorithm for pattern-matching handles the case of AC-functions.
Since ~0 formulae built on the equality predicate are undecidable when AC-functions
are involved [Tre90], and since the quasi-reducibility property with AC-functions is also
undecidable [KNRZ87], the problem appears to be of an intrinsic complexity.

We give a new algorithm to compile pattern-matching definitions into if then else
expressions in a functional-like language using head-rewriting. Moreover, our algorithm
provides a decision procedure for the completeness of left-linear definitions. We also have
sufficient conditions for completeness in the general case.

The key concept in compiling functions defined through pattern-matching is that a
term (with variables) is a representation of the (infinite) set of its ground-instances.
Therefore, the main problem to deal with is "how do the ground instances of a given
term behave with respect to a finite set of patterns?". The concept of quasi-instance that
we introduce for solving this question, is similar to that of quasi-reducibility, studied in
[JK86, Kou90]). Pattern trees (as defined in section 4) whose nodes characterize the be-
haviour of the ground instances of a term, will provide the simple tool to investigate this
notion. In addition, they tell us which position(s) and which symbol(s) must be checked
to know which rule to apply. Section 2 presents informally the method on a simple exam-
ple, section 3 introduces the main notations and concepts on terms and pattern-matching
definitions. Section 4 presents pattern trees and the most significant theorems, whereas
section 5 describes the pattern matching algorithm.

2 A n E x a m p l e

In this section, we describe informally the problem and our solution on an example.
Missing definitions can be found in section 3.

When defining the multiplication operator • on the natural numbers, constructed from
zero, denoted by 0, and the successor operator, denoted by s, provided with the sum op-
erator +, one may write the following case definition:

*(x,o) ~ 0
• (x , 8 (0)) --+

. , (s (x) , y) --+ + (, (x , y) , x)

together with the declaration that * is Associative-Commutative. Since the patterns (a
pattern is a left-hand side of a rule) are ambiguous (the term *(8(0), 0) is matched modulo
AC by the three patterns *(0, x), *(s(0), x), *(s(x), y) a priority rule is necessary and we
choose the textual ordering which is more suitable in our case (this is the usual priority in

59

functional programming 1). The requirement that the patterns are non-ambiguous would
add an unnecessary burden to the programmer's task.

Two main issues must be addressed now: is the definition complete, and how to select
a pattern?

The first question means that any ground term -i.e without variables- with * as root-
symbol, can be evaluated (using head-rewriting) to a term containing only 0 and s. That
is the same as proving that any ground instance of *(x, y) is a ground instance of some
pattern. 2

The second quest!on (find the right pattern) is a key-one since pattern matching is
a basic operation for evaluation. A naive answer would be: use a matching algorithm
modulo AC, match the term to evaluate against the first pattern, if it fails match against
the second one, and so on... Unfortunately, this is not realistic since pat tern matching
modulo AC is NP complete (see [BKN87]) and many repeated invocations of this al-
gorithm at evaluation time will cause the process to be unefficient (even when no AC
function are involved, pattern matching compilation algorithms have been designed to
avoid redundant calculations [Aug85, P J87, Sch88]). Let us detail this solution with the
term ,(s(s(O)), 8(8(0))).

match *(s(s(0)), 8(8(0))) against *(x, 0). Matching fails, as well as unification, there-
fore the first rule can be dropped. This step requires to solve the diophantine equa-
tion xl + x2 = xs + x4.

match *(~(s(0)), 8(s(0))) against .(x, 8(0)). Both matching and unification fail,
therefore the .second rule is discarded. Again the above diophantine equation must
be solved and its four minimal solutions must be computed and combined.

eventually the third rule matches and *(s(s(0)), s(s(0))) is rewritten to
+(s(s(0)) , *(s(0), s(s(0)))). (other rewriting are possible since several matching sub-
stitutions exist)

Our approach gives a better solution since most of the computations modulo AC are
rejected at compile-time. Firstly, the compiler computes a minimal complete pattern tree
(see section 4 for definition) which is a tree whose nodes are instances of the term *(x, y).
The successors of a node are computed by instantiating a variable by all possible elemen-
tary constructions 0 and a(z), z being a new variable (for simplicity we assume 0 and s
as constructors, + being completely defined, in section 5 , the same example is treated
without the assumption that 0 and s are constructors). A minimal complete tree, com-
puted by the compilation algorithm, is:

1the textual ordering is not always the more relevant one, see [Lav88] for a comparison of priorities
2Functional definitions often ends with a rule like *(x, y) --* undefined, but this does not really answer

the completeness issue

60

• (0,y) /(~(~'),y)

,(~(~,),0) (*(~(*'),~(y'))
/

• (~(~'),~(0)) .(s(~'),~(~(y")))

/
• (~(0),~(~(~'))) ,(~(~(~')),~(~(~')))

Since each leaf of the tree is a term matched by some pattern, the definition is com-
plete (no case have been missed) which answers the first question. From this tree, the
compiler will produce some code which is called whenever a term of the form *(x, y) must
be evaluated. The compiler will generate a piece of code which looks liken:

if x=0 t hen apply-rule 1
else let x =s(x') in if y=0 then apply-rule 1

else let y = s(y') in i f x '= 0 then apply-rule 2
else let x' = s(x") in if y '=0 t h e n apply-rule 2

else apply-rule 3

The evaluation of this code is obviously much more efficient than the painful naive ap-
proach. The compiler has replaced the initial set of patterns {*(x, 0), , (x , s(0)), . (s (x) , y)}
by the new one {*(0, y), *(8(x'), 0), . (s (x ') , s(0)), *(2(0), s(y')), , (s(8(x")) , s(s(y")))}.

3 T h e F r a m e w o r k

3.1 Terms, Subst i tut ions , Match ing and Unif icat ion

We need some definitions on terms and substitutions. The term algebra Ts (X) is con-
structed from a finite set Z of function symbols and from a denumerable set X of variables
(denoted by x, y, z . . .) . We do not require that Z is partitioned into constructors and non-
constructors. When such a partit ion exists, our algorithm can be simplified, but this paper
deals with the general case. We will assume that some of the functions are associative
and commutative. These functions are called AC-functions.

Agrouudterm is a term without variables, a linearterm is a term where a variable may
occur only once. Var(t) is the set of variables of a term t. The notat ion ~ denotes the
vector x l , . . . , x~,. Substitutions are the morphisms on terms, the domain of a substitution
c is the set Dora(c~) = {x e X; x~ ~ x} where xct denotes the application of cr to x. A
substitution will be described by {xl ~- t l , x2 ~ t 2 , . . .) with Dam(a) = {xl, x2 , . . .) .

The smallest equivalence relation generated by the equations f (f (x , y), z) = f (x , f (y , z))
and f (x , y) = f (y , z) is denoted by =AC. A term t is AC-unifiable with another term s
if there exists a substitution ~ such that ~o ~ =AC s~. If t ~ =AC tc with a a substitution,

3because we must deal with flattened terms and not terms~ the actual code is different, but has the
same flavor

61

we say that t ~ is an AC-instance of t, and that t is an AC-match of t ~. A substitution
unifying t and t' (resp matching) is called a unifier of t and t' (resp. match).

The basic notion in our approach is that of quas i - ins t ance : a term t is a quasi-
instance of a set of terms 11,.. . , l~ iff for each ground substitution cr there exists a sub-
stitution ~, an index i s.t. t~r =AC l~.

For instance, the terms +(0 ,+(s (0) ,y)) and +(s(0) ,z) are AC-unifiable with a =
{z ~-- +(0, y)}, the term +(0, +(s(O), x)) is an AC-instance of the term +(x, y), with a
matching substitution cr = {y ~- +(0, s(0))} and +(0, x) is a quasi-instance of {+(0, 0),
+ (0 , + (y , z)) , + (s (y) , 0)) if = { 0 , s , + } .

We recall that matching modulo AC as well as unifiability modulo AC are decidable,
finitary i.e there exists a finite set -which can very large- of (most general) matching
substitutions -resp unifiers-, but both problems are NP-complete [BKN87]. Therefore any
computation with AC-axioms will be costly except if more specific cases are considered.

3 . 2 F l a t t e n e d t e r m s a n d P a t h s

An AC function can be seen as a function of arbitrary arity and we consider flattened
terms, i.e terms such that no argument of an AC function f has f as top-symbol. For
example, f lat(t) , the flattened term corresponding to t = +(+(a, b), c) is +(a, b, c) if + is
declared to be AC. The permutative class of a flattened term t, denoted by It], is the set
of flattened t e rms such that t =AC s. For instance [+(a, b, c)] = {+(a, b, c), +(a, c, b),
+(b, a, c), +(c, a, b), +(b, c, a), +(c, b, a)}. All previous definitions for terms hold for flat-
tened terms. The number of arguments of a flattened term is defined by a r g (f (t l , . . . , t~)) =
n. For instance, arg(f(s(x) , s(0))) = 2, and arg(O) = 0. The depth of a term is defined
by depth(f (t l , . . . , t~)) = 1 + Max,=l,...,~(depth(t,)), and depth(x) = depth(c) = 1 if x is
a variable and c a constant.

The successors of a flattened term t (with respect to x E Vat(t)) are the element of
Sue(x,t) = {s f lat tened term; s =AC ta), a = {x + - - f (x l , . . . , x,~)},x~ f resh distinct
variables where f ranges over E}. For example, if E = {0,s, +} and t = +(x ,y) then
S?$C(X, t) = {-~(0, y),-~'(S(Xl) , y), "[-(X2, X3, y)}

One problem to solve is to travel through a flattened term (independently of what
representant of the permutative class is given). For this purpose, we use sequences of
symbols which we call paths, defined as follows:

• e the empty sequence is a path,

* f . c is a path if c is a path and f is an AC-function symbol,

• f . i .c is a path if c is a path and f a function symbol which is not AC, of arity n
with n > i > 0.

In general several different subterms can be reached following a path (i.e a sequence of
symbols), for example following the path +.s.1 in +(s(O), s(s(x))), one can reach either 0
or s(x). We define Iltllc the set of subterms of t reachable at e by:

62

H o = {t},

Htll/.c= if t = f (t l , . . . , t ,) where f is an AC-symbol then udltdlc else undefined,

Iltlls,c= if t = f(t l , . . . , t~) where S is not an AC-symbol and where n > i > 0 then
Ilt, llc else undef ined

For example II + (s(0), s(s(x)))lI+.8.1 = {0, 8(x)},]I + (s(0), 8(s(x)))lI+.~.l.8.1 = {x}, and
II + (8(0),s(~(x)))ll+.~.l.+ is undefined.

We define path(t) to be the mnltiset of paths from the root to the leaves in t. For
example path(+(s(s(x)), ~(y))) = {+.s.l.s.1, +.s.1}.

3.3 Def in i t ion by P a t t e r n M a t c h i n g

Let £ be a functional language. In £, a term represents the set of its ground instances.
Moreover, the evaluation is restricted to ground terms only, and the operational semantics
of the language follows an outermost reduction scheme, not a call by value one. This
approach is better tailored for lazy languages but this paper does not intend to discuss
lasy-evaluation in presence of AC-function at full length. Anyway, this question appears
to be a difficult one since the classical algorithms do not generalize fairly. For example, if
the strategy of evaluation is "look at the first argument first", the evaluation of f(_[-, 0)
with f being AC and with a rule f (x , 0) --+ 0, will give _k, while one expect 0. Changing
the strategy to "look at the second occurrence" will not clear the situation, since the same
problem happens with f(0, 3_). The problem is that the matching is not sequential, see
[HL79, Lay87, Psg0] for a definition of this notion. A possible solution is to have a set
of unavoidable positions (and not a single one), which will provide some kind of minimM
laziness [SK90]. In this paper, we stick to head-rewriting, without discussing the lazyness
iSSUe.

We suppose that £ allows the definition of a function by pattern matching. A definition
I1 ~ e x p l

12 --+ exp2
of a function f by pattern matching is a set of rules: "l --+ expn

where the Ii (also called patterns in the following) axe terms with f as top-symbol and
expi axe expressions of the functional language £. The definition is called left-linear when
all the li are linear. To avoid]unl~ when the same term matchs two (or more) patterns, one
must give a priority on the set of rules. Our priority rule is the textual ordering, as usual
in functional languages [PJ87]. A definition of an AC-function f by pattern matching is
an usual definition by pattern matching augmented with the two equations:

f (x , y) = f (y , x)
f (x , f (y , z)) = f (f (x , y) , z)

and the semantics of the pattern matching is modified in the following way: matching is
replaced by matching modulo AC.

63

4 P a t t e r n t r e e s

4 .1 C o m p l e t e P a t t e r n T r e e s

The key notion of our approach is that of pattern trees. Given a term t and a set of
terms R = {/1,. . . , /~} (the l~ are also called patterns in the following), a pattern tree will
help us describing how the ground instances of t behave (modulo AC) with respect to the
ground instances of the patterns. For simplicity we do not distinguish a node of a tree
and its label.

Definit ion 1 Given a flattened term t, a pattern tree associated to t is a tree T such
that:

• the root of T is t.

• if s is an internal node n, the successor nodes of n are the terms of Suc(x, s) with
x E Var(s) .

ExaxnpleApattern tree of the term t = * (x , y) is

*(i,~)
• (o,y) .(~(~),~)

• (.(~),o) .(.(~),~(y~)) .(~(~),y~,y~)

*(~l,x2,y)

Pattern trees enjoy the following fundamental property:

Propos i t ion 1 Let T be a pattern tree of a term t,

* each node is an instance of t

* the set of ground instances o f t is equal to the set of ground instances of leaves, more
precisely for any ground substitution 0 there exist a leafs, and a ground substitution
cr such that tO = sa.

Pattern trees allow us to split the set of instances of t but we still do not know which
are the useful ones. The notion of extensibIe node permits to choose which nodes must
be expanded.

Definit ion 2 Let t be a variable of t, we say that the flattened term t is extensible in x
with respect to the flattened term t ~ iff:

• t and t' are AC-unifiabIe, and

• there ~xists a path c such that x C lltllc and lit'lie ~ defined 5.e there is a path leading
to x in t, which also exists in t'),

64

• if c = d . f with f an AC-symbol, there are some s = f (. . .) e [[t[[c, and some
.s' = f (. . .) e l i t ' l ie such that x e Var(s) and arg(s) <_ arg(s').

One must remark that the path d occurring in the third condition may be empty.
Roughly speaking, this means that the position of x in t corresponds to either a position
of a function symbol in if, or to the position of a variable argument of an AC-symbol in
t' (this AC-symbol having less (or the same number of) arguments in t than in t'). For
instance, t = *(x, s(y)) is extensible in x but not in y with respect to t' = *(x', O) (since
*.s.1 cannot be the prefix of any path of tO, t = *(x, y, z, w) is not extensible with respect
to t' = *(0,x') nor to t" = . (s (x ') ,y ') in any variable x or y~or z or w.

From now f is an AC-function and R = { l l , . . . , l~} is a list of flattened terms with f
as top-sylribol (the patterns). We classify the terms occurring in a pattern tree:

Def in i t ion 3 Let T be a pattern tree of t = f (x , y) with respect to R, a node s of T is
said to be of:

• type I i f s is an instance of some li modulo A C and is not AC-unifiable with any lj
for l < j < i.

• type 2 i f s is not AC-unifiable with li for 1 < i < n

* type 3 i f s is not a ground term, s is neither of type 1 nor 2, and s is not extensible
in any variable with respect to { l l , . . . , ln}

A pattern tree is complete for R iff each leaf has type 1,2 or 3. A complete pattern
tree is minimal iff it does not contain a complete proper subtree.

Example Let us consider the pattern tree given for *(x, y). It is not complete for R =
{/1 = *(0, x), /2 = *(s(0),y)} since *(s(xl) ,s(yl)) in extensible in Xl and y~ (while
• (0,y), , (s (x l) , 0) are instances of and and are of type
3).

A minimal complete pattern tree is obtained by extending first *(*(xl), s(y~)), getting
• (s(O),S(yl)) of type 1, *(s(s(xl)) ,s(y l)) and *(s(*(xs, x4)), s(yl)) which are extensible
in yl. Extending these nodes yields *(s(s(xl)), s(0)) and *(s(*(x3, x4)), ~(0)) of type 1,
• (s(,(x3, x4)), y3))) , of type 2.

The next point is to prove that complete pattern trees exist (therefore minimal com-
plete trees).

T h e o r e m 1 Given a flattened term t = f (x , y) and a set R = { l l , . . . , l ~ } of flattened
terms, there exists a f n i t e pattern tree of t complete for R.

Sketch of the proof: when one extends a node, its sons have subterms either deeper
or wider, therefore eventually one gets nodes of type I 2 or 3 []

In the following, the complete patterns trees that we consider are minimal ones.

65

4.2 Quasi-instances a n d P a t t e r n Trees

Now we extract the information provided by the leaves of a minimal complete pattern
tree. We deal with types 1, 2 and 3 respectively.

L e m m a 1 Let R = {11,... , l,~}, and let T be a pattern tree o f t = f (x , y) complete for R.
Then a node of type I is a quasi-instance of R and a node of type 2 is not a quasi-instance
of R.

The proof is straightforward. Let us now deal with the more complicated situation:
terms of type 3. We divide this class into two subclasses: type 3a and type 3b. Roughly
speaking, terms of type 3a are the terms which are deep but not too wide, and a term of
type 3b has a subterm wider than a corresponding subterm in some l~.

D e f i n i t i o n 4 A node t of type 3 is of type 3a iff for each AC-function symboI g, for each
c = d.g such that I]tldl is defined, for each I, AC-unifiable with t, one has Maz{arg(s) , s =
g(. . .) e Iltl~,ll} < Min{arg(1) , l = g(. . .) e Ill, t~,ll}. Otherwise t is said to be of type 3b.

An example of type 3a is given by +(s(x), s(y)) when R = {+(x, x)}.

T h e o r e m 2 Let T be a pattern tree of a term t complete with respect to R, then a node
of type 3a is not a quasi-instance of {11,-.-, l~}.

P roof . We show that a term of type 3a which is a quasi-instance of 11,.. . , l= must be
an instance of some Ii, which contradicts the definition of type 3a.

The first point to notice is that, since there is a term of type 3a, there are terms of
any depth: a term of type 3a has a depth greater or equal to 3, therefore there are at
least two symbols of functions of arity greater than 0. Let f and g denotes these symbols,
then one may consider terms like f (. . . g (. . . , f (. . .))) , which have depth n + 1 where n is
the number of alternances.

Let t be of type 3a, and R' = {li, i E I} be the set of dements of R AC-unifiable with
t. We construct 0 = 01.. . 0= as follows: let {x l , . . . ,x~} be the set of variables of t, and
0~ such that

• depth(x101) > Max(depth(l i)) + depth(t) ÷ 1

• depth(x~O~) > depth(trY1... 0~_~) for i > 1.

Let l such that tO =AC lp. Since t is of type 3% for any variable y o:f l

• either yp is equal to a ground subterm of t

• o1" yp is the instantiation of st a subterm of t which contains a variable x~

• or yp = g (. . . , sg , . . .) with g AC and where sg is the instantiation of st, a subterm
of t which contains a variable x~.

66

Let y~ be the variable of l such that YnP contains stnO where st~ is a subterm of t
containing x~. Because of the condition on x~O, y must be linear in l (remember that
t is linear). Let O1 be the product of the t~j for the zj ~ Var(st~) and let ~r~ be the
substitution such that y~ ~ sty. By construction one has ton = tc~.

Now we repeat the process with xn~ E ton such that depth(x~O) is maximal and so
on with x ~ , . . , until all the variables of t have been treated. Therefore we end with a
substitution c~ such that t = lc% yielding a contradiction (t is of type 3a and cannot be
an instance of any l E R).

The difficult problem is to deal with a term of type 3b. The solution will be to test
if some terms (which are instances of the given term) are AC-instances of tile left-hand
side of the rules. These terms will form a test-set TS(t) of a term t of type 3b.

De f in i t i on 5 TS(t) is the set of flattened terms ~ = f la t (ta) such that:

• s is not too deep, i.e depth(s) < Max{depth(l) , l E R} + 1

• no variable position in s can be a position in some l, more precisely for each x E
Var(s), for each path c such that x e IIsHo, then tltHc is undefined for aU l e R
unifiable with s.

• s is not too wide, i .e for each path c . f in ~ where f is an AC-symbol, then

- either HlHc.s is undefined for all I E R unifiable with s, in this case we require
that Max{arg(u); u E Ilsllo and u = f (. . .)) <_ 2

- or [l/tic./ is defined for some l E R unifiable with s, and we require that
Max{arg(u) ,u E tIsltc and u = f (. . .) } < Max{arg(v) , v = f (. . .) and v E
[[l[[~ when][li[~.] is defined} +1.

From the definition, one sees that a test-set is finite. For instance, a test-set for
t = +(0, y, z) and R = {+(x, 0)} is T,S(t) = {+(0, 0, 0), +(0, 0, 4 z ')) , +(0, s(y'), s(z')),
+(0, s(y'), 0)} (from which we may remove one of the two AC-equivMent terms + (0, s(y'), O)
and +(0, 0, s(z'))).

Two theorems fix the case of type 3b. From now, we suppose that one can build terms
of an arbitrary depth. 4

T h e o r e m 3 If t of type 3b is a quasi-instance of R, then for each ~ E TS(t) , there exists
l E R and a substitution c~ such that t =AC l(r.

P r o o f . The proof is obvious for the ground terms of TS(t) , since t is a quasi-instance
of R. What remains to do is to deal with the non-ground term of TS(t) . Any element
of TS(t) is a quasi-instance of R since it is an instance of t. The proof is the same as in
theorem 2 for type 3a: if a term t is a quasi-instance of R and if there is no variable x

4the case of a signature consisting of one AC-symbol and constants is easily dealt with since all terms
are linear

6"l

and no l E R unifiable with t, such that x E Htllo and such that Illlt~ is defined, then t
must be an instance of some 1 E R. []

The following example shows why it might be necessary to instantiate so much the
initial term:
t = +(x , y , z) is of type 3b and is a quasi-instance of R with R = {+(O,y),+(s(O),y),
+(s(~(x)), y), +(s (f (x , y)) , z)} b u t the instance s = +(s(x), y, z) o f t (which is not in the
test-set of t) is not an AC-instance of any rule.

The converse of the theorem requires a linearity condition to hold:

T h e o r e m 4 Le t t be a term of type 3b, let R be a set of linear teT~rns, if for all s E TS(t) ,
there exists I E R and a substitution ~ such that s =AC lcr, then t is a quasi-instance of
R.

P r o o f . (sketch) For simplicity we assume that there is only one subterm of t which
has more arguments than the corresponding subterm in R. Therefore one may write
t = e l f (s 1 , . . . , sin)] where f (s l , . . . , s,~) is this distinguished subterm and C denotes its
context. Since the variables in the context do not play any role, we also suppose that this
context does not contain variables. Let 0 a ground substitution with Vat(t) c_ Dora(O).
We will show by induction on depth(O) that tO = lcr for some l and e.

Let f (u l , . . . , u,~) be a ground term obtained from f Ia t (f (saO, . . . , s,~O)) by deleting
arguments of AC-functions such that for each position c of an AC-function which is a po-
sition of some l in R, Max(arg(s)ls E Iltllc) <_ Min(arg(t)lt E Iltllc). By construction, the
term t' = C [f (u l , . . . , u,~)] is in TS(t) or is the instance of some term of TS(t) , therefore
there exist some l and o- such that t' = lc~. Either c~ is such that xc~ = C'[f (u~, . . . , urn)]
with x E Vat(l) or f (h , . . . , tp)a =Ae f (u l , . . . , up) with f (h , . . . , tp) a subterm of I with
p < m .

In the first case, the variable x is linear since t is linear therefore at such that xcr / =
f (u l , . . . ,u,~) and ya I = y~ for y ~ x satisfies tO = In'.

In the second case, there is some (linear) variable x such that xa = f (u l , . . . , u,k).
Let a ' be such that ya ' = ycr and xc,' = f(u~l ,. . . , u i~ ,v l , . . . ,vk) where {vl , . . . ,Vk}
is the set of arguments of f la t (f (s~O, . . . , SmO)) which have beeh eliminated when con-
structing u l , . . . , u,~. The process is repeated for the ui not equM to some argument of
f l a t (f (s ~ , . . . , sin)O), and finally we get a substitution ~ such that tO = tc~ []

4.3 R e f i n e m e n t s for T y p e 3b

When non-linear patterns are present the previous theorem does not apply to type 3b.
We have necessary conditions for completeness, but no necessary and sufficient condition.
We give a sufficient condition which is straightforward but useful in practice:

P r o p o s i t i o n 2 Let t be a term of type 3b, i f for some variable x E Vat(t) , all the
elements of Sue(x, t) are A C-instance of the patterns, then t is a quasi-instance of R.

6 8

The proof is straightforward. Unfortunately, this sufficient condition is not necessary,
even for linear patterns as shown by the example following the proof of theorem 3. More
complex conditions of the same flavor exist which are not given.

Another improvement of our method is to restrict the size of the test-set TS(t) (which
may be very large). We construct a smaller but equivalent set as follows:

Let To(t) , . . . , T~(t), . . . be a sequence of sets defined by

• initialize To(t) to {t}.

• construct T~(t) from T~_l(t):

- each ground (flattened) term of T,~-l(t) is in T,~(t).
- each (flattened) term of T~_~(t) which an AC-instance of some pattern, is in

T~(t)
- for all term s E T~_l(t) which is not ground or not an AC-instance of some

pattern, all the elements of Suc(x, s) (where x is some variable of s) which
satisfy the condition of the definition of TS(t) are in T~(t)

This sequence is stationary from some n, and we take its last element (which is equiv-
alent to TS(t) with respect to the quasi-instance property) as the effective test-set.

5 C o m p i l a t i o n o f P a t t e r n M a t c h i n g

5 . 1 P r u n i n g P a t t e r n T r e e s

The reader may notice that pattern trees often contain redundant nodes: for example
the node f (x ,y) produces the nodes f(x,O) and f(x,s(y')) which produce the nodes
f(O, 0), f (s(x ') , O) and f(O, 0), f(s(x'), s(y'))), while the se t / (0 , 0), f(O, s(z)), f(s(zx), s(z2))
is sufficient. A solution is to detect most of the redundant nodes before generating them:
we call two variables x and y equivalent in t when there exists a subterm f (. . . , x , . . . , y , . . .)
in t with f an AC-function. If a linear term t is extensible in x its sons which are ex-
tensible are extensible in y. To avoid redundancy, if ~ = {co, . . . , c~}, if ti = t{~-c~(~)}
is extensible in y, it is sufficient to extend t in y with the substitutions {y +-- cj(z')} for
i < j < n. This prunes (roughly) half of the successors of t. Obviously this may be
generalized to more than two variables and to similar situations.

For example, let E = {0, s, q-, *} and let the pattern definition be:

*(x,O) --*0
• -+
• y) +(,(z, y),

We will assume that + is completely defined with respect to 0 and s, but we will not
assume that 0 and s are declared as constructors 5 A pruned minimM complete pattern
tree for * is:

5therefore the pattern tree given is section 2 is no longer relevant

69

*(~,y)

/ ,(.(~x'), • (.(~),y',z') .(y'))

,(~(~,),~(~(~,))) *(~(~'),~(*(~,z")))
.(s(x'),s(0)) / I ~- /

• (~(0),~(~(y,))) t .(~(.(x,,~.)),~(~(y,))~(~(0),~(.(~,z'))) ,(~(,(~,,,~,,,,)),~(,(~,,~)))
I • (~(~(~")),~(s(y'))) ,(~(~(~,,)),~(,(~,,~,,)))

The theorem on terms of type 3b apply, for example the construction of TS(,(x', y', z))
gives *(0, y, z) which is an instance of the first rule, *(s(0), y, z) which is an instance of
the second rule and *(s(s(x")), y, z) and ,(s(*(x", x"), y, z)) which are instances of the
third rule. Therefore *(x, y, z) is a quasi-instance of the patterns, and the same property
holds for the other terms of type 3b.

5 .2 T h e C o m p i l a t i o n A l g o r i t h m

This section provides the algorithm for the compilation of pattern matching. We recall
that E is a language which evaluates ground term using head-rewriting. The compilation
algorithm given in this section is relevant only for such a language. If we want to rewrite
non-ground terms, the rules for terms of type 3 must be changed. The first part of the
algorithm is described informally and a set of inference rule will describe more precisely
the code generation.

• Compute a minimal complete pattern tree for f(x, y)

• Prune all nodes of type 3b which can be shown to be a quasi-instance of R and all
nodes t such that the sub-tree rooted at t contains only leaves of type 1 or type
3b which are quasi-instance of R. If the pattern tree does not contain any node of
type2 or 3a, and if all nodes of type 3b are proved to be quasi instance of R, then
the definition of f is complete, and each node where f appears elsewhere than as
root symbol can be discarded.

After this step, the pattern tree contains leaves of type 1,2,3a or 3b which cannot be
shown to be quasi-instances of the left hand-sides of the rules. Since the definition of • in
the multiplication example is complete, the minimal pattern tree of the previous section
is simplified into:

• (0,y) .(s(~'),y)

• (s(x'), ~(0"~ "~')' ~ (y ')) , ~ , ~(~(y")))
• (~(0), 8(~(y"))) --'~(~(~(~")), ~(~(y")))

70

The compilation algorithm relies on a function Compile which has two arguments: t
the functional scheme to compile (initially f(x, y)) and R the set of rules which defines it.
The result is a function which has one ground term as argument and returns the code to
be evaluated. Since it is easier to define a function by giving its value on some argument
S, the inference rules of the compilation are defined for expressions like Compile(t, R)[S]
i.e the result of Compile(t, R) applied to the dummy variable S. These expressions
are conditional ones. When the variable S is instantiated by a ground term with f
as top-symbol, the evaluation of Compile(f(x,y),R) provides the same result than a
straightforward evaluation of S using the rules of R. The reader must be aware that this
algorithm is a general scheme which must be tailored for implementation (some hints are
given in section 5.3).

Some definitions are required:

• match-with(l, S) (resp unify-with) is a function defined by match-with(l, S)=t rue
iff S =AV hr (resp. S and l are AC-unifiable).

• if t is a term with variable, t denotes the scheme (or pattern) associated to t, obtained
from t by replacing all the variables of t by the dummy symbol "?".

• has-pattern(r, S) with t a linear term and S a ground term, is true if and only if
S = t¢ where cr is a ground substitution. One may ask why we introduce such a
predicate similar to match-with: the answer is that they wilt be implemented in a
different way.

The initialization sets t = f(x, y) and R = l i . . . 1,~ the list of patterns. The compila-
tion algorithm is given by the inference rules:

R1 Compile(t,¢)[S]= no-match

R2 Compile(t, R)[S] = no-match
i f t is of type 2.

R3 Compile(t,l.R)[S]= Compile(t,R)[S]
if t and l are not AC-unifiable.

Compile(t, I.R)[S] = if match(I, S) t h e n apply-rule(1)[S]
else Compile(t, R)

if t is of type 1, is AC-unifiable with l, but does not match l.

R5 Compile(t,l.R)[S]= apply-rule(I)[S t
if t is of type 1 and t = lcr

71

Compile(t,R)[S] : if has-pattern(t$l, S) then Compite(tch,R)[S]
elsif has-pattern(t$2, S) then Compile(t~r2, R)[S]
. . .

else Compile(tot=, R)[S]
if t is extensible in x and the sons of t are the ti with t{ = tcr{
and cq = {x ~ ci(xl)}

R~ Compile(t,R)[S]= if unify-with(16,S) then apply-rule(16)[S]
elsif uni fy-with(li2, S) then apply-rule(li~)[S]

elsif unify-with(16, S) then apply-rule(Ii,)[S]
else no-match

if t is AC-unifiable with ha,- . . , llp (where the numbering il to ip is compatible
with the priority) and t is of type 3a or else t is of type 3b but cannot be
shown to be a quasi-instance of R

Let us see how this algorithm behaves on the multiplication example (for simplicity,
apply-rule(lj)[S] is shortened into apply-rulej[S]). From the last pattern tree computed
for *, the compilation algorithm returns the result%

if ha$-patteru(*(O, ?), S) then apply-rutel[S] else
if has-pattern(,(s(?),s(?)), S) then if has-pattern(*(s(?),s(O)), S) then apply-ruIe2[S]

else if has-pattern(,(s(O),s(s(?))),S) then apply-rule2[S]
else apply-rule3[S]

The correction of the Compilation algorithm (rewrite a term using the compiled code
yields the same result than using the definition of the function and the priority-rule) is a
straightforward consequence of the theorems of section 4, and we state:

T h e o r e m 5 The compilation algorithm is correct.

Remark: Our compilation algorithm works for flattened terms, and it is possible to
design another algorithm working for terms (and not flattened terms).

5 . 3 I m p l e m e n t a t i o n I s s u e s

A strMghtforward implementation of the compilation algorithm is likely to be uneffi-
cient. For example the ha&pattern function would search through the same term many
times with an increasing sequence of scheme such as *(?, ?), *(0, ?), *(0, s(?)) occurs in the
ground term S. In the same way, pattern-matching and unification modulo AC should be
implemented efficiently with respect to the data-structure chosen for representing terms.
One solution of this problem is to use DAG (directed Acyclic Graph) for representing
terms, and structure sharing, together with a total ordering on the set of function sym-
bols, as in [GD88]. One may consider also the solutions suggested in [PB85]. A complete
description of implementation solhtion is out of the scope of the paper, we limit ourselves
to show how a total ordering may help.

6The reader should compare with code generated without using our algorithm and not proving the
completeness of *!

)'2

After a total ordering -~ is chosen on E it is possible to represent a ground term t in a
unique way as a binary search-tree. Let us identify such a tree with sequences of symbols
separated by "/ ' . These sequences are the sorted sequence of nodes of the tree occurring
at the same depth and having the same father. Moreover all sequences corresponding to
the same depth are concatenated (with respect to the multiset extension of -~).

For example let E = {0, s, g, f} where 0 is nullary, s is unary and both f and g are AC-
symbols, with the ordering 0 -< s -< 8 -< g -<. Then the term S = f(g(s(O), 0), g(0, s(O), s(0)))
is written: / f / g g/O s/O 0 s/O/O/O/, and it is possible to reconstruct the term (or an
AC-equivalent one) from this representation: f is the top-symbol of S, a n d / g g~ proves
that it has two arguments, both with g as top-symbol. The first such argument has also
two arguments with top-symbols 0 and s, and the second one has three arguments with
top-symbols 0,s and s, and so on.

Scheme can be represented in the same way, and testing that a ground term S matches
some scheme t can be done linearly in the sum of the size of the representation of t and
S. Moreover when the pattern tree is generated in a suitable way (a sort of breadth-first
construction), the has-pattern predicate can be implemented in an incremental way.

6 C o n c l u s i o n

We have given a algorithm to compile the pattern-matching of AC-function definitions
when the evaluation follows a head-rewriting scheme. Although the generated
i f . . . then. . , else expression can have an exponential size, practical examples usually
have a reasonable size (when the definition is complete). Moreover our algorithm is
also a decision method for the completeness of left-linear definitions. When the rules
are not left-linear, we have necessary conditions for completeness. We have Mso set
sufficient conditions for the non-linear case (for example, we can prove that the definition
+(x, O) ---* x, +(x, x) ---* double(x), +(s(x), y) ~ s(+(x, y)) is complete). The main open
question is to replace the linearity condition by a weaker one. Ore" method generalizes to
associative functions (which includes the important case of function composition) and is
useful also in Logic Programming.

A c k n o w l e d g e m e n t s

We thanks S. Peyton-Jones for his comments on a previous version of this paper, and an
anonymous referee for his remarks.

R e f e r e n c e s

[Aug85] L Augustsson. Compiling pattern matching. In Proceedings of the 2nd Conference on
Functional Programming Languages and Computer Architecture, volume 201, Nancy
(France), 1985. Springer Verlag, Lecture Notes in Computer Science.

[BKN87] D. Benanav, D. Kaput, and P. Narendran. Complexity of matching problems. Journal
of Symbolic Computation, 3(1 & 2):203-216, April 1987.

[GD88]

[}tL79]

[JK86]

[KNRZ87]

[Kou90]

[LayS7]

[Lav88]

[PB85]

[PJ87]

[PS90]

[Sch88]

[sR90]

[Tre90]

73

B. Gramlich and J. Denzinger. Efficient ac-matching using constraint propagation.
Technical Report SR-88-15, SEKI, Universite' de Kaiserslautern, I~FA, 1988.

G. tluet and J.J. Levy. Call by need computations in non-ambiguous linear term
rewriting systems. Research report 359, INRIA, August 1979.

J.P. Jouannaud and E. Kounalis. Proof by induction in equational theories without
constructors. In Proceedings 1st Syrup. on Logic In Computer Science, pages 358-366,
Boston (USA), 1986.

D. Kaput, P. Narendran, D.J. P~osenkrantz, and H. Zhang. Sufficient-completeness,
quasi-reducibility and their complexity. Technical report, State University of New
York at Albany, 1987.

E. Kounalis. Testing for inductive-(co)-reducibility in rewrite system. In 15th Collo-
quium on Trees in Algebra and Programming, volume 431 of Lecture Notes in Com-
puter Science, pages pp175-191. Springer-Verlag, 1990.

A. Laville. Lazy pattern matching in the ML language. In Proceedings 7th Conf.
on Foundations of Software Technology and Theoretical Computer Science, volume
287 of Lecture Notes in Computer Science, pages 400-419. Springer-Verlag, Lecture
Notes in Computer Science, December 1987.

A. Laville. Comparison of priority rules in pattern matching and term rewriting.
Technical report, INRIA, 1988.

P. W. Purdom and C. A. Brown. Fast-many-to-one matching algorithm. In J. P.
Jouannaud, editor, Proc. 1st Conf. Rewriting Techniques and Applications, pages
407-416. Springer-Verlag, Lecture Notes in Computer Science, 1985.

S. Peyton-Jones. The implementation of functional programming languages. Prentice
Hall, 1987.

L. Puel and A. Suarez. Compiling pattern matching by term decomposition. In
Proceedings ACM Conference on LISP and Functional Programming, 1990.

Ph. Schnoebelen. l~efined compilation of pattern matching for functional languages.
Science of Computer Programming, 11:133-159, 1988.

1LC. Sekar and I.V. Ramakrishnan. Programming in equational logic: Beyond strong
sequentiality. In 5th Symp. Logic in Computer Science, pages 230-241. IEEE, 1990.

l~alf Treinen. A new method for undecidability proofs of first order theories. In
K. V. Nori and C. E. Veni Madhavan, editors, Proceedings of the Tenth Conference
on Foundations of Software Technology and Theoretical Computer Science, pages
48-62. Springer Lecture Notes in Computer Science, vot. 472, 1990.

