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Abstract 

This paper deals with the problem of compiling pattern-matching of associative- 
commutative function definitions in a functional-like language where the evaluation 
is performed by head-rewriting. We propose an effective algorithm (i.e which does 
not rely on some -unknown- procedure for computing complements of terms modulo 
AC-axioms) to compile the pattern-matching process. For this purpose, we intro- 
duce the concept of pattern trees. We also get for free a test of the completeness of 
such definitions (with respect to head-rewriting), provided some linearity condition 
is met. Our method will ensure an efficient pattern-matching process at evaluation 
time. 

1 I n t r o d u c t i o n  

Functional languages allow to define functions by a set of rules such as: 

0 + y '  -~y  
x+~(y)  - ~ ( x + y )  

together with a priority on this set of rules (here: apply first applicable rule first) to deal 
with ambiguous patterns (a pattern is the left-hand side of a rule). When an expression is 
to be evaluated, it is matched against the patterns (according to the given priority) and 
when the matching succeeds the evaluator returns the right-hand side expression (which 
can be evaluated again). However, for efficiency purpose, the above definition should be 
compiled into a piece of code which is more suited to machine like: 

( x + y ) =  if x = 0  then  y 
elsif y=s(y') t hen  let y=s(y') 
else n o - m a t c h  

in s(x + y') 
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Nowadays, many algorithms for compiling definition by pattern matching exist see 
[Aug85, P J87, Sch88]. Unfortunately many functions arising in practice are defined with 
equations which cannot be oriented into rewrite rules as above. The most important case 
is that of Associative-Commutative functions (in short AC-functions), i.e functions f such 
that f (x ,y)  = f(y,  x) and f ( x , f ( y ,  z)) = f ( f ( x ,  y), z) which are very common (the + 
operator, union operator in sets,...). For example, the definition of the + operator above 
should be extended by the declaration that + is AC (otherwise it does not define the usual 
+ over the integers: the definition is not complete since no rule applies to +(s(x),0)). No 
present compilation algorithm for pattern-matching handles the case of AC-functions. 
Since ~0 formulae built on the equality predicate are undecidable when AC-functions 
are involved [Tre90], and since the quasi-reducibility property with AC-functions is also 
undecidable [KNRZ87], the problem appears to be of an intrinsic complexity. 

We give a new algorithm to compile pattern-matching definitions into if then else 
expressions in a functional-like language using head-rewriting. Moreover, our algorithm 
provides a decision procedure for the completeness of left-linear definitions. We also have 
sufficient conditions for completeness in the general case. 

The key concept in compiling functions defined through pattern-matching is that a 
term (with variables) is a representation of the (infinite) set of its ground-instances. 
Therefore, the main problem to deal with is "how do the ground instances of a given 
term behave with respect to a finite set of patterns?". The concept of quasi-instance that 
we introduce for solving this question, is similar to that of quasi-reducibility, studied in 
[JK86, Kou90]). Pattern trees (as defined in section 4) whose nodes characterize the be- 
haviour of the ground instances of a term, will provide the simple tool to investigate this 
notion. In addition, they tell us which position(s) and which symbol(s) must be checked 
to know which rule to apply. Section 2 presents informally the method on a simple exam- 
ple, section 3 introduces the main notations and concepts on terms and pattern-matching 
definitions. Section 4 presents pattern trees and the most significant theorems, whereas 
section 5 describes the pattern matching algorithm. 

2 A n  E x a m p l e  

In this section, we describe informally the problem and our solution on an example. 
Missing definitions can be found in section 3. 

When defining the multiplication operator • on the natural numbers, constructed from 
zero, denoted by 0, and the successor operator, denoted by s, provided with the sum op- 
erator +, one may write the following case definition: 

*(x,o) ~ 0 
• ( x , 8 ( 0 ) )  --+ 

. , ( s ( x ) , y )  --+ + ( , ( x , y ) , x )  

together with the declaration that * is Associative-Commutative. Since the patterns (a 
pattern is a left-hand side of a rule) are ambiguous (the term *(8(0), 0) is matched modulo 
AC by the three patterns *(0, x), *(s(0), x), *(s(x), y) a priority rule is necessary and we 
choose the textual ordering which is more suitable in our case (this is the usual priority in 
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functional programming 1). The requirement that the patterns are non-ambiguous would 
add an unnecessary burden to the programmer's task. 

Two main issues must be addressed now: is the definition complete, and how to select 
a pattern? 

The first question means that any ground term -i.e without variables- with * as root- 
symbol, can be evaluated (using head-rewriting) to a term containing only 0 and s. That 
is the same as proving that any ground instance of *(x, y) is a ground instance of some 
pattern. 2 

The second quest!on (find the right pattern) is a key-one since pattern matching is 
a basic operation for evaluation. A naive answer would be: use a matching algorithm 
modulo AC, match the term to evaluate against the first pattern, if it fails match against 
the second one, and so on... Unfortunately, this is not realistic since pat tern matching 
modulo AC is NP complete (see [BKN87]) and many repeated invocations of this al- 
gorithm at evaluation time will cause the process to be unefficient (even when no AC 
function are involved, pattern matching compilation algorithms have been designed to 
avoid redundant calculations [Aug85, P J87, Sch88]). Let us detail this solution with the 
term ,(s(s(O)), 8(8(0))). 

match *(s(s(0)), 8(8(0))) against *(x, 0). Matching fails, as well as unification, there- 
fore the first rule can be dropped. This step requires to solve the diophantine equa- 
tion xl + x2 = xs + x4. 

match *(~(s(0)), 8(s(0))) against .(x,  8(0)). Both matching and unification fail, 
therefore the .second rule is discarded. Again the above diophantine equation must 
be solved and its four minimal solutions must be computed and combined. 

eventually the third rule matches and *(s(s(0)), s(s(0))) is rewritten to 
+(s(s(0)) ,  *(s(0), s(s(0)))). (other rewriting are possible since several matching sub- 
stitutions exist) 

Our approach gives a better solution since most of the computations modulo AC are 
rejected at compile-time. Firstly, the compiler computes a minimal complete pattern tree 
(see section 4 for definition) which is a tree whose nodes are instances of the term *(x, y). 
The successors of a node are computed by instantiating a variable by all possible elemen- 
tary constructions 0 and a(z), z being a new variable (for simplicity we assume 0 and s 
as constructors, + being completely defined, in section 5 , the same example is treated 
without the assumption that 0 and s are constructors). A minimal complete tree, com- 
puted by the compilation algorithm, is: 

1the textual ordering is not always the more relevant one, see [Lav88] for a comparison of priorities 
2Functional definitions often ends with a rule like *(x, y) --* undefined, but this does not really answer 

the completeness issue 
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• (0,y) /(~(~'),y) 

,(~(~,),0) (*(~(*'),~(y')) 
/ 

• (~(~'),~(0)) .(s(~'),~(~(y"))) 

/ 
• (~(0),~(~(~'))) ,(~(~(~')),~(~(~'))) 

Since each leaf of the tree is a term matched by some pattern,  the definition is com- 
plete (no case have been missed) which answers the first question. From this tree, the 
compiler will produce some code which is called whenever a term of the form *(x, y) must 
be evaluated. The compiler will generate a piece of code which looks liken: 

if  x=0 t hen  apply-rule 1 
else let x =s(x') in if  y=0 then  apply-rule 1 

else let y = s(y') in i f x '=  0 then  apply-rule 2 
else let  x' = s(x") in if  y '=0 t h e n  apply-rule 2 

else apply-rule 3 

The evaluation of this code is obviously much more efficient than the painful naive ap- 
proach. The compiler has replaced the initial set of patterns {*(x, 0), , (x ,  s(0)), . (s (x) ,  y)} 
by the new one {*(0, y), *(8(x'), 0), . ( s (x ' ) ,  s(0)), *(2(0), s(y')),  , (s(8(x")) ,  s(s(y")))}. 

3 T h e  F r a m e w o r k  

3.1 Terms,  Subst i tut ions ,  Match ing  and Unif icat ion 

We need some definitions on terms and substitutions. The term algebra Ts (X)  is con- 
structed from a finite set Z of function symbols and from a denumerable set X of variables 
(denoted by x, y, z . . . ) .  We do not require that  Z is partitioned into constructors and non- 
constructors. When such a partit ion exists, our algorithm can be simplified, but  this paper 
deals with the general case. We will assume that  some of the functions are associative 
and commutative. These functions are called AC-functions. 

Agrouudterm is a term without variables, a linearterm is a term where a variable may 
occur only once. Var( t )  is the set of variables of a term t. The  notat ion ~ denotes the 
vector x l , . . . ,  x~,. Substitutions are the morphisms on terms, the domain of a substitution 
c is the set Dora(c~) = {x e X;  x~ ~ x}  where xct denotes the application of cr to x. A 
substitution will be described by {xl ~- t l ,  x2 ~ t 2 , . . . )  with Dam(a) = {xl,  x2 , . . . ) .  

The smallest equivalence relation generated by the equations f ( f ( x ,  y), z) = f ( x ,  f ( y ,  z)) 
and f ( x , y )  = f ( y , z )  is denoted by =AC. A term t is AC-unifiable with another term s 
if there exists a substitution ~ such that ~o ~ =AC s~. If t ~ =AC tc  with a a substitution, 

3because we must deal with flattened terms and not terms~ the actual code is different, but has the 
same flavor 
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we say that  t ~ is an AC-instance of t, and that t is an AC-match of t ~. A substitution 
unifying t and t' (resp matching) is called a unifier of t and t' (resp. match). 

The basic notion in our approach is that  of quas i - ins t ance :  a term t is a quasi- 
instance of a set of terms 11,.. . ,  l~ iff for each ground substitution cr there exists a sub- 
stitution ~, an index i s.t. t~r =AC l~. 

For instance, the terms +(0 ,+(s (0) ,y ) )  and +(s(0) ,z)  are AC-unifiable with a = 
{z ~-- +(0, y)}, the term +(0, +(s(O), x)) is an AC-instance of the term +(x,  y), with a 
matching substitution cr = {y ~- +(0, s(0))} and +(0, x) is a quasi-instance of {+(0, 0), 
+ ( 0 , + ( y , z ) ) , + ( s ( y ) , 0 ) )  if = { 0 , s , + } .  

We recall that  matching modulo AC as well as unifiability modulo AC are decidable, 
finitary i.e there exists a finite set -which can very large- of (most general) matching 
substitutions -resp unifiers-, but both problems are NP-complete [BKN87]. Therefore any 
computation with AC-axioms will be costly except if more specific cases are considered. 

3 . 2  F l a t t e n e d  t e r m s  a n d  P a t h s  

An AC function can be seen as a function of arbitrary arity and we consider flattened 
terms, i.e terms such that  no argument of an AC function f has f as top-symbol. For 
example, f lat(t) ,  the flattened term corresponding to t = +(+(a, b), c) is +(a,  b, c) if + is 
declared to be AC. The permutative class of a flattened term t, denoted by It], is the set 
of flattened t e rms  such that  t =AC s. For instance [+(a, b, c)] = {+(a, b, c), +(a,  c, b), 
+(b, a, c), +(c, a, b), +(b, c, a), +(c, b, a)}. All previous definitions for terms hold for flat- 
tened terms. The number of arguments of a flattened term is defined by a r g ( f ( t l , . . . ,  t~)) = 
n. For instance, arg(f(s(x) ,  s(0))) = 2, and arg(O) = 0. The depth of a term is defined 
by depth( f ( t l , . . . , t~ ) )  = 1 + Max,=l,...,~(depth(t,)), and depth(x) = depth(c) = 1 if x is 
a variable and c a constant. 

The successors of a flattened term t (with respect to x E Vat(t))  are the element of 
Sue(x,t)  = {s f lat tened term; s =AC ta), a = {x + - - f ( x l , . . . ,  x,~)},x~ f resh  distinct 
variables where f ranges over E}. For example, if E = {0,s, +} and t = +(x ,y)  then 
S?$C(X, t) = {-~(0, y),-~'(S(Xl) , y), "[-(X2, X3, y)} 

One problem to solve is to travel through a flattened term (independently of what 
representant of the permutative class is given). For this purpose, we use sequences of 
symbols which we call paths, defined as follows: 

• e the empty sequence is a path, 

* f . c  is a path if c is a path and f is an AC-function symbol, 

• f . i .c is a path if c is a path and f a function symbol which is not AC, of arity n 
with n > i > 0. 

In general several different subterms can be reached following a path (i.e a sequence of 
symbols), for example following the path +.s.1 in +(s(O), s(s(x))), one can reach either 0 
or s(x). We define Iltllc the set of subterms of t reachable at e by: 
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H o  = {t}, 

Htll/.c= if t = f ( t l , . . .  , t , )  where f is an AC-symbol then udltdlc else undefined, 

Iltlls,c= if t = f( t l , . . . ,  t~) where S is not an AC-symbol  and where n > i > 0 then 
Ilt, llc else undef ined  

For example II + (s(0), s(s(x)))lI+.8.1 = {0, 8(x)}, ]I + (s(0), 8(s(x)))lI+.~.l.8.1 = {x}, and 
II + (8(0),s(~(x)))ll+.~.l.+ is undefined. 

We define path(t) to be the mnltiset of paths from the root to the leaves in t. For 
example path(+(s(s(x)),  ~(y))) = {+.s.l.s.1, +.s.1}. 

3.3  Def in i t ion  by  P a t t e r n  M a t c h i n g  

Let £ be a functional language. In £, a term represents the set of its ground instances. 
Moreover, the evaluation is restricted to ground terms only, and the operational semantics 
of the language follows an outermost reduction scheme, not a call by value one. This 
approach is better tailored for lazy languages but this paper does not intend to discuss 
lasy-evaluation in presence of AC-function at full length. Anyway, this question appears 
to be a difficult one since the classical algorithms do not generalize fairly. For example, if 
the strategy of evaluation is "look at the first argument first", the evaluation of f(_[-, 0) 
with f being AC and with a rule f (x ,  0) --+ 0, will give _k, while one expect 0. Changing 
the strategy to "look at the second occurrence" will not clear the situation, since the same 
problem happens with f(0, 3_). The problem is that the matching is not sequential, see 
[HL79, Lay87, Psg0] for a definition of this notion. A possible solution is to have a set 
of unavoidable positions (and not a single one), which will provide some kind of minimM 
laziness [SK90]. In this paper, we stick to head-rewriting, without discussing the lazyness 
iSSUe. 

We suppose that £ allows the definition of a function by pattern matching. A definition 
I1 ~ e x p l  

12 --+ exp2 
of a function f by pattern matching is a set of rules: "l --+ expn 

where the Ii (also called patterns in the following) axe terms with f as top-symbol and 
expi axe expressions of the functional language £. The definition is called left-linear when 
all the li are linear. To avoid ]unl~ when the same term matchs two (or more) patterns, one 
must give a priority on the set of rules. Our priority rule is the textual ordering, as usual 
in functional languages [PJ87]. A definition of an AC-function f by pattern matching is 
an usual definition by pattern matching augmented with the two equations: 

f ( x ,  y) = f (y ,  x) 
f ( x ,  f ( y , z ) )  = f ( f ( x , y ) ,  z) 

and the semantics of the pattern matching is modified in the following way: matching is 
replaced by matching modulo AC. 
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4 P a t t e r n  t r e e s  

4 .1  C o m p l e t e  P a t t e r n  T r e e s  

The key notion of our approach is that of pattern trees. Given a term t and a set of 
terms R = {/1,. . . , /~} (the l~ are also called patterns in the following), a pattern tree will 
help us describing how the ground instances of t behave (modulo AC) with respect to the 
ground instances of the patterns. For simplicity we do not distinguish a node of a tree 
and its label. 

Definit ion 1 Given a flattened term t, a pattern tree associated to t is a tree T such 
that: 

• the root of T is t. 

• if s is an internal node n, the successor nodes of n are the terms of Suc(x,  s) with 
x E Var(s) .  

ExaxnpleApattern tree of the term t = * ( x ,  y) is 

*(i,~) 
• (o,y) .(~(~),~) 

• (.(~),o) .(.(~),~(y~)) .(~(~),y~,y~) 

*(~l,x2,y) 

Pattern trees enjoy the following fundamental property: 

Propos i t ion  1 Let T be a pattern tree of a term t, 

* each node is an instance of t 

* the set of  ground instances o f t  is equal to the set of ground instances of leaves, more 
precisely for any ground substitution 0 there exist a leafs, and a ground substitution 
cr such that tO = sa. 

Pattern trees allow us to split the set of instances of t but we still do not know which 
are the useful ones. The notion of extensibIe node permits to choose which nodes must 
be expanded. 

Definit ion 2 Let t be a variable of t, we say that the flattened term t is extensible in x 
with respect to the flattened term t ~ iff: 

• t and t' are AC-unifiabIe, and 

• there ~xists a path c such that x C lltllc and lit'lie ~ defined 5.e there is a path leading 
to x in t, which also exists in t'), 
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• if  c = d . f  with f an AC-symbol, there are some s = f ( . . . )  e [[t[[c, and some 
.s' = f ( . . . )  e l i t ' l ie such that x e Var(s) and arg(s) <_ arg(s'). 

One must remark that  the path d occurring in the third condition may be empty. 
Roughly speaking, this means that  the position of x in t corresponds to either a position 
of a function symbol in if, or to the position of a variable argument of an AC-symbol in 
t' (this AC-symbol having less (or the same number of) arguments in t than in t'). For 
instance, t = *(x, s(y)) is extensible in x but  not in y with respect to t' = *(x', O) (since 
*.s.1 cannot be the prefix of any path of tO, t = *(x, y, z, w) is not extensible with respect 
to t' = *(0,x') nor to t" = . ( s (x ' ) ,y ' )  in any variable x or y~or z or w. 

From now f is an AC-function and R = { l l , . . . ,  l~} is a list of flattened terms with f 
as top-sylribol (the patterns). We classify the terms occurring in a pattern tree: 

Def in i t ion  3 Let T be a pattern tree of t = f ( x ,  y) with respect to R, a node s of T is 
said to be of: 

• type I i f s  is an instance of some li modulo A C  and is not AC-unifiable with any lj 
for l < j < i. 

• type 2 i f s  is not AC-unifiable with li for 1 < i < n 

* type 3 i f s  is not a ground term, s is neither of type 1 nor 2, and s is not extensible 
in any variable with respect to { l l , . . . ,  ln} 

A pattern tree is complete for R iff each leaf has type 1,2 or 3. A complete pattern 
tree is minimal iff it does not contain a complete proper subtree. 

Example Let us consider the pattern tree given for *(x, y). It is not complete for R = 
{/1 = *(0, x), /2 = *(s(0),y)} since *(s(xl) ,s(yl))  in extensible in Xl and y~ (while 
• (0,y), , ( s (x l ) , 0 )  are instances of and and are of type 
3). 

A minimal complete pattern tree is obtained by extending first *(*(xl), s(y~)), getting 
• (s(O),S(yl)) of type 1, *(s(s(xl) ) ,s(y l ) )  and *(s(*(xs, x4)), s(yl)) which are extensible 
in yl. Extending these nodes yields *(s(s(xl)),  s(0)) and *(s(*(x3, x4)), ~(0)) of type 1, 
• (s( ,(x3,  x4)), y3))) ,  of type 2. 

The next point is to prove that complete pattern trees exist (therefore minimal com- 
plete trees). 

T h e o r e m  1 Given a flattened term t = f ( x , y )  and a set R = { l l , . . . , l ~ }  of flattened 
terms, there exists a f n i t e  pattern tree of t complete for R. 

Sketch of the proof: when one extends a node, its sons have subterms either deeper 
or wider, therefore eventually one gets nodes of type I 2 or 3 [] 

In the following, the complete patterns trees that we consider are minimal ones. 
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4.2 Quasi-instances a n d  P a t t e r n  Trees  

Now we extract the information provided by the leaves of a minimal complete pattern 
tree. We deal with types 1, 2 and 3 respectively. 

L e m m a  1 Let R = {11,... ,  l,~}, and let T be a pattern tree o f t  = f ( x ,  y) complete for R. 
Then a node of type I is a quasi-instance of R and a node of type 2 is not a quasi-instance 
of R. 

The proof is straightforward. Let us now deal with the more complicated situation: 
terms of type 3. We divide this class into two subclasses: type 3a and type 3b. Roughly 
speaking, terms of type 3a are the terms which are deep but not too wide, and a term of 
type 3b has a subterm wider than a corresponding subterm in some l~. 

D e f i n i t i o n  4 A node t of type 3 is of type 3a iff for  each AC-function symboI g, for  each 
c = d.g such that I]tldl is defined, for each I, AC-unifiable with t, one has Maz{arg(s ) ,  s = 
g( . . . )  e Iltl~,ll} < Min{arg(1) , l  = g( . . . )  e Ill, t~,ll}. Otherwise t is said to be of type 3b. 

An example of type 3a is given by +(s(x),  s(y)) when R = {+(x, x)}. 

T h e o r e m  2 Let T be a pattern tree of a term t complete with respect to R, then a node 
of type 3a is not a quasi-instance of {11,-.-, l~}. 

P roof .  We show that  a term of type 3a which is a quasi-instance of 11,.. . ,  l= must be 
an instance of some Ii, which contradicts the definition of type 3a. 

The first point to notice is that,  since there is a term of type 3a, there are terms of 
any depth: a term of type 3a has a depth greater or equal to 3, therefore there are at 
least two symbols of functions of arity greater than 0. Let f and g denotes these symbols, 
then one may consider terms like f ( . . . g ( . . . ,  f ( . . . ) ) ) ,  which have depth n + 1 where n is 
the number of alternances. 

Let t be of type 3a, and R' = {li, i E I} be the set of dements  of R AC-unifiable with 
t. We construct 0 = 01.. .  0= as follows: let {x l , . . .  ,x~} be the set of variables of t, and 
0~ such that  

• depth(x101) > Max(depth(l i ))  + depth(t) ÷ 1 

• depth(x~O~) > depth(trY1... 0~_~) for i > 1. 

Let l such that  tO =AC lp. Since t is of type 3% for any variable y o:f l 

• either yp is equal to a ground subterm of t 

• o1" yp is the instantiation of st a subterm of t which contains a variable x~ 

• or yp = g ( . . . ,  sg , . . . )  with g AC and where sg is the instantiation of st, a subterm 
of t which contains a variable x~. 
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Let y~ be the variable of l such that  YnP contains stnO where st~ is a subterm of t 
containing x~. Because of the condition on x~O, y must be linear in l (remember that 
t is linear). Let O1 be the product  of the t~j for the zj  ~ Var(st~) and let ~r~ be the 
substitution such that  y~ ~ sty. By construction one has ton  = tc~. 

Now we repeat the process with xn~ E ton  such that  depth(x~O) is maximal and so 
on with x ~ , . . ,  until all the variables of t have been treated. Therefore we end with a 
substitution c~ such that  t = lc% yielding a contradiction (t is of type 3a and cannot be 
an instance of any l E R). 

The difficult problem is to deal with a term of type 3b. The solution will be to test 
if some terms (which are instances of the given term) are AC-instances of tile left-hand 
side of the rules. These terms will form a test-set TS( t )  of a term t of type 3b. 

De f in i t i on  5 TS( t )  is the set of flattened terms ~ = f la t ( ta)  such that: 

• s is not too deep, i.e depth(s) < Max{depth( l ) , l  E R} + 1 

• no variable position in s can be a position in some l, more precisely for each x E 
Var(s),  for each path c such that x e IIsHo, then tltHc is undefined for aU l e R 
unifiable with s. 

• s is not too wide, i .e for  each path c . f  in ~ where f is an AC-symbol, then 

- either HlHc.s is undefined for all I E R unifiable with s, in this case we require 
that Max{arg(u); u E Ilsllo and  u = f ( . . . ) )  <_ 2 

- or [l/tic./ is defined for some l E R unifiable with s, and we require that 
Max{arg(u) ,u  E tIsltc and u = f ( . . . ) }  < Max{arg(v ) , v  = f ( . . . )  and v E 
[[l[[~ when ][li[~.] is defined} +1. 

From the definition, one sees that  a test-set is finite. For instance, a test-set for 
t = +(0, y, z) and R = {+(x,  0)} is T,S(t) = {+(0, 0, 0), +(0,  0, 4 z ' ) ) ,  +(0,  s(y'), s(z')),  
+(0, s(y'), 0)} (from which we may remove one of the two AC-equivMent terms + (0, s(y'), O) 
and +(0, 0, s(z'))). 

Two theorems fix the case of type 3b. From now, we suppose that  one can build terms 
of an arbitrary depth. 4 

T h e o r e m  3 If  t of type 3b is a quasi-instance of R, then for each ~ E TS( t ) ,  there exists 
l E R and a substitution c~ such that t =AC l(r. 

P r o o f .  The proof is obvious for the ground terms of TS( t ) ,  since t is a quasi-instance 
of R. What  remains to do is to deal with the non-ground term of TS( t ) .  Any element 
of TS( t )  is a quasi-instance of R since it is an instance of t. The proof is the same as in 
theorem 2 for type 3a: if a term t is a quasi-instance of R and if there is no variable x 

4the case of a signature consisting of one AC-symbol and constants is easily dealt with since all terms 
are linear 
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and no l E R unifiable with t, such that  x E Htllo and such that  Illlt~ is defined, then t 
must be an instance of some 1 E R. [] 

The following example shows why it might be necessary to instantiate so much the 
initial term: 
t = +(x , y , z )  is of type 3b and is a quasi-instance of R with R = {+(O,y),+(s(O),y), 
+(s(~(x)), y), +( s ( f ( x , y ) ) ,  z)} b u t  the instance s = +(s(x), y, z) o f t  (which is not in the 
test-set of t) is not an AC-instance of any rule. 

The converse of the theorem requires a linearity condition to hold: 

T h e o r e m  4 Le t t  be a term of type 3b, let R be a set of linear teT~rns, if for all s E TS(t) ,  
there exists I E R and a substitution ~ such that s =AC lcr, then t is a quasi-instance of 
R. 

P r o o f .  (sketch) For simplicity we assume that  there is only one subterm of t which 
has more arguments than the corresponding subterm in R. Therefore one may write 
t = e l f ( s 1 , . . . ,  sin)] where f ( s l , . . . ,  s,~) is this distinguished subterm and C denotes its 
context. Since the variables in the context do not play any role, we also suppose that this 
context does not contain variables. Let 0 a ground substitution with Vat( t )  c_ Dora(O). 
We will show by induction on depth(O) that  tO = lcr for some l and e. 

Let f ( u l , . . . ,  u,~) be a ground term obtained from f Ia t ( f ( saO, . . . ,  s,~O)) by deleting 
arguments of AC-functions such that  for each position c of an AC-function which is a po- 
sition of some l in R, Max(arg(s)ls  E Iltllc) <_ Min(arg(t)lt  E Iltllc). By construction, the 
term t' = C [ f ( u l , . . . ,  u,~)] is in TS(t )  or is the instance of some term of TS(t) ,  therefore 
there exist some l and o- such that  t' = lc~. Either c~ is such that  xc~ = C'[f (u~, . . . ,  urn)] 
with x E Vat( l )  or f ( h , . . . ,  tp)a =Ae f ( u l , . . . ,  up) with f ( h , . . . ,  tp) a subterm of I with 
p < m .  

In the first case, the variable x is linear since t is linear therefore at such that  xcr / = 
f ( u l , . . .  ,u,~) and ya I = y~ for y ~ x satisfies tO = In'. 

In the second case, there is some (linear) variable x such that xa = f ( u l , . . . ,  u,k). 
Let a '  be such that  ya '  = ycr and xc,' = f(u~l ,. . . , u i~ ,v l , . . .  ,vk) where {vl , . . . ,Vk} 
is the set of arguments of f la t ( f ( s~O, . . . ,  SmO)) which have beeh eliminated when con- 
structing u l , . . . ,  u,~. The process is repeated for the ui not equM to some argument of 
f l a t ( f ( s ~ , . . . ,  sin)O), and finally we get a substitution ~ such that  tO = tc~ [] 

4.3 R e f i n e m e n t s  for T y p e  3b  

When non-linear patterns are present the previous theorem does not apply to type 3b. 
We have necessary conditions for completeness, but  no necessary and sufficient condition. 
We give a sufficient condition which is straightforward but  useful in practice: 

P r o p o s i t i o n  2 Let t be a term of  type 3b, i f  for some variable x E Vat( t) ,  all the 
elements of Sue(x, t) are A C-instance of the patterns, then t is a quasi-instance of R. 
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The proof is straightforward. Unfortunately, this sufficient condition is not necessary, 
even for linear patterns as shown by the example following the proof of theorem 3. More 
complex conditions of the same flavor exist which are not given. 

Another improvement of our method is to restrict the size of the test-set TS(t) (which 
may be very large). We construct a smaller but equivalent set as follows: 

Let To( t ) , . . . ,  T~(t), . . .  be a sequence of sets defined by 

• initialize To(t) to {t}. 

• construct T~(t) from T~_l(t): 

- each ground (flattened) term of T,~-l(t) is in T,~(t). 
- each (flattened) term of T~_~(t) which an AC-instance of some pattern, is in 

T~(t) 
- for all term s E T~_l(t) which is not ground or not an AC-instance of some 

pattern, all the elements of Suc(x, s) (where x is some variable of s) which 
satisfy the condition of the definition of TS(t) are in T~(t) 

This sequence is stationary from some n, and we take its last element (which is equiv- 
alent to TS(t) with respect to the quasi-instance property) as the effective test-set. 

5 C o m p i l a t i o n  o f  P a t t e r n  M a t c h i n g  

5 . 1  P r u n i n g  P a t t e r n  T r e e s  

The reader may notice that  pattern trees often contain redundant nodes: for example 
the node f (x ,y)  produces the nodes f(x,O) and f(x,s(y')) which produce the nodes 
f(O, 0), f (s(x ' ) ,  O) and f(O, 0), f(s(x'), s(y')) ), while the se t / (0 ,  0), f(O, s(z)), f(s(zx), s(z2)) 
is sufficient. A solution is to detect most of the redundant nodes before generating them: 
we call two variables x and y equivalent in t when there exists a subterm f ( . . . ,  x , . . . ,  y , . . . )  
in t with f an AC-function. If a linear term t is extensible in x its sons which are ex- 
tensible are extensible in y. To avoid redundancy, if ~ = {co, . . . ,  c~}, if ti = t{~-c~(~)} 
is extensible in y, it is sufficient to extend t in y with the substitutions {y +-- cj(z')} for 
i < j < n. This prunes (roughly) half of the successors of t. Obviously this may be 
generalized to more than two variables and to similar situations. 

For example, let E = {0, s, q-, *} and let the pattern definition be: 

*(x,O) --*0 
• -+ 
• y) +(,(z, y), 

We will assume that  + is completely defined with respect to 0 and s, but we will not 
assume that  0 and s are declared as constructors 5 A pruned minimM complete pattern 
tree for * is: 

5therefore the pattern tree given is section 2 is no longer relevant 
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*(~,y) 

/ ,(.(~x'), • (.(~),y',z') .(y')) 

,(~(~,),~(~(~,))) *(~(~'),~(*(~,z"))) 
.(s(x'),s(0)) / I ~- / 

• (~(0),~(~(y,))) t .(~(.(x,,~.)),~(~(y,))~(~(0),~(.(~,z'))) ,(~(,(~,,,~,,,,)),~(,(~,,~))) 
I • (~(~(~")),~(s(y'))) ,(~(~(~,,)),~(,(~,,~,,))) 

The theorem on terms of type 3b apply, for example the construction of TS(,(x', y', z)) 
gives *(0, y, z) which is an instance of the first rule, *(s(0), y, z) which is an instance of 
the second rule and *(s(s(x")), y, z) and ,(s(*(x", x"), y, z)) which are instances of the 
third rule. Therefore *(x, y, z) is a quasi-instance of the patterns, and the same property 
holds for the other terms of type 3b. 

5 .2  T h e  C o m p i l a t i o n  A l g o r i t h m  

This section provides the algorithm for the compilation of pattern matching. We recall 
that E is a language which evaluates ground term using head-rewriting. The compilation 
algorithm given in this section is relevant only for such a language. If we want to rewrite 
non-ground terms, the rules for terms of type 3 must be changed. The first part of the 
algorithm is described informally and a set of inference rule will describe more precisely 
the code generation. 

• Compute a minimal complete pattern tree for f(x, y) 

• Prune all nodes of type 3b which can be shown to be a quasi-instance of R and all 
nodes t such that the sub-tree rooted at t contains only leaves of type 1 or type 
3b which are quasi-instance of R. If the pattern tree does not contain any node of 
type2 or 3a, and if all nodes of type 3b are proved to be quasi instance of R, then 
the definition of f is complete, and each node where f appears elsewhere than as 
root symbol can be discarded. 

After this step, the pattern tree contains leaves of type 1,2,3a or 3b which cannot be 
shown to be quasi-instances of the left hand-sides of the rules. Since the definition of • in 
the multiplication example is complete, the minimal pattern tree of the previous section 
is simplified into: 

• (0,y) .(s(~'),y) 

• (s(x'), ~(0"~ "~')' ~ ( y ' ) ) , ~ ,  ~(~(y"))) 
• (~(0), 8(~(y"))) --'~(~(~(~")), ~(~(y"))) 
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The compilation algorithm relies on a function Compile which has two arguments: t 
the functional scheme to compile (initially f(x, y)) and R the set of rules which defines it. 
The result is a function which has one ground term as argument and returns the code to 
be evaluated. Since it is easier to define a function by giving its value on some argument 
S, the inference rules of the compilation are defined for expressions like Compile(t, R)[S] 
i.e the result of Compile(t, R) applied to the dummy variable S. These expressions 
are conditional ones. When the variable S is instantiated by a ground term with f 
as top-symbol, the evaluation of Compile(f(x,y),R) provides the same result than a 
straightforward evaluation of S using the rules of R. The reader must be aware that  this 
algorithm is a general scheme which must be tailored for implementation (some hints are 
given in section 5.3). 

Some definitions are required: 

• match-with(l, S) (resp unify-with) is a function defined by match-with(l, S)=t rue  
iff S =AV hr (resp. S and l are AC-unifiable). 

• if t is a term with variable, t denotes the scheme (or pattern) associated to t, obtained 
from t by replacing all the variables of t by the dummy symbol "?". 

• has-pattern(r, S) with t a linear term and S a ground term, is true if and only if 
S = t¢ where cr is a ground substitution. One may ask why we introduce such a 
predicate similar to match-with: the answer is that  they wilt be implemented in a 
different way. 

The initialization sets t = f(x, y) and R = l i . . .  1,~ the list of patterns. The compila- 
tion algorithm is given by the inference rules: 

R1 Compile(t,¢)[S]= no-match 

R2 Compile(t, R)[S] = no-match 
i f t  is of type 2. 

R3 Compile(t,l.R)[S]= Compile(t,R)[S] 
if t and l are not AC-unifiable. 

Compile(t, I.R)[S] = if  match(I, S) t h e n  apply-rule(1)[S] 
else Compile(t, R) 

if t is of type 1, is AC-unifiable with l, but does not match l. 

R5 Compile(t,l.R)[S]= apply-rule(I)[S t 
if t is of type 1 and t = lcr 
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Compile(t,R)[S] : if has-pattern(t$l, S) then  Compite(tch,R)[S] 
elsif has-pattern(t$2, S) then  Compile(t~r2, R)[S] 
. . .  

else Compile(tot=, R)[S] 
if t is extensible in x and the sons of t are the ti with t{ = tcr{ 
and cq = {x ~ ci(xl)} 

R~ Compile(t,R)[S]= if unify-with(16,S) then  apply-rule(16)[S ] 
elsif uni fy-with(li2, S) then  apply-rule(li~)[S] 

elsif unify-with(16, S) then  apply-rule(Ii,)[S] 
else no-match 

if t is AC-unifiable with ha,- . . ,  llp (where the numbering il to ip is compatible 
with the priority) and t is of type 3a or else t is of type 3b but cannot be 
shown to be a quasi-instance of R 

Let us see how this algorithm behaves on the multiplication example (for simplicity, 
apply-rule(lj)[S] is shortened into apply-rulej[S]). From the last pattern tree computed 
for *, the compilation algorithm returns the result% 

if ha$-patteru(*(O, ?), S) then apply-rutel[S] else 
if has-pattern(,(s(?),s(?)), S) then if has-pattern(*(s(?),s(O)), S) then apply-ruIe2[S] 

else if has-pattern(,(s(O),s(s(?))),S) then apply-rule2[S] 
else apply-rule3[S] 

The correction of the Compilation algorithm (rewrite a term using the compiled code 
yields the same result than using the definition of the function and the priority-rule) is a 
straightforward consequence of the theorems of section 4, and we state: 

T h e o r e m  5 The compilation algorithm is correct. 

Remark: Our compilation algorithm works for flattened terms, and it is possible to 
design another algorithm working for terms (and not flattened terms). 

5 . 3  I m p l e m e n t a t i o n  I s s u e s  

A strMghtforward implementation of the compilation algorithm is likely to be uneffi- 
cient. For example the ha&pattern function would search through the same term many 
times with an increasing sequence of scheme such as *(?, ?), *(0, ?), *(0, s(?)) occurs in the 
ground term S. In the same way, pattern-matching and unification modulo AC should be 
implemented efficiently with respect to the data-structure chosen for representing terms. 
One solution of this problem is to use DAG (directed Acyclic Graph) for representing 
terms, and structure sharing, together with a total ordering on the set of function sym- 
bols, as in [GD88]. One may consider also the solutions suggested in [PB85]. A complete 
description of implementation solhtion is out of the scope of the paper, we limit ourselves 
to show how a total ordering may help. 

6The reader should compare with code generated without using our algorithm and not proving the 
completeness of *! 
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After a total ordering -~ is chosen on E it is possible to represent a ground term t in a 
unique way as a binary search-tree. Let us identify such a tree with sequences of symbols 
separated by "/ ' .  These sequences are the sorted sequence of nodes of the tree occurring 
at the same depth and having the same father. Moreover all sequences corresponding to 
the same depth are concatenated (with respect to the multiset extension of -~). 

For example let E = {0, s, g, f} where 0 is nullary, s is unary and both f and g are AC- 
symbols, with the ordering 0 -< s -< 8 -< g -<. Then the term S = f(g(s(O), 0), g(0, s(O), s(0))) 
is written: / f / g  g/O s/O 0 s/O/O/O/, and it is possible to reconstruct the term (or an 
AC-equivalent one) from this representation: f is the top-symbol of S, a n d / g  g~ proves 
that it has two arguments, both with g as top-symbol. The first such argument has also 
two arguments with top-symbols 0 and s, and the second one has three arguments with 
top-symbols 0,s and s, and so on. 

Scheme can be represented in the same way, and testing that a ground term S matches 
some scheme t can be done linearly in the sum of the size of the representation of t and 
S. Moreover when the pattern tree is generated in a suitable way (a sort of breadth-first 
construction), the has-pattern predicate can be implemented in an incremental way. 

6 C o n c l u s i o n  

We have given a algorithm to compile the pattern-matching of AC-function definitions 
when the evaluation follows a head-rewriting scheme. Although the generated 
i f . . .  then. . ,  else expression can have an exponential size, practical examples usually 
have a reasonable size (when the definition is complete). Moreover our algorithm is 
also a decision method for the completeness of left-linear definitions. When the rules 
are not left-linear, we have necessary conditions for completeness. We have Mso set 
sufficient conditions for the non-linear case (for example, we can prove that the definition 
+(x, O) ---* x, +(x, x) ---* double(x), +(s(x), y) ~ s(+(x, y)) is complete). The main open 
question is to replace the linearity condition by a weaker one. Ore" method generalizes to 
associative functions (which includes the important case of function composition) and is 
useful also in Logic Programming. 
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