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There is an ad hoc syntactic notion involved in the basic notions of standard universal algebra: that 
of a signature. We review how .syntax was removed by Lawvere's introduction [Law63] of the notion 
of an algebraic theory. 

Let f be a signature. A f-algebra ~a consists of a set A and a function f~ : A n --~ A for each letter 
f in f of rank n, n > 0. We assume that the notion of a ~-term built from variables in the set 
{ x l , . . . , x , }  is familiar. Each f - te rm t built from { x l , . . . ,  Xn} determines a function 

Two such terms t, t t are equivalent in ~t if the functions t~t and t~ are the same. The structure of 
equivalence classes of terms under ~a-equivalence, for all algebras ~ in a class K was analyzed by 
Lawvere [Law63] as an algebraic theory. Briefly, an algebraic theory T is a category whose objects are 
the nonnegative integers and in which n is the copower of t with itself n-times. One class of algebraic 
theories is the following. For each set A, the algebraic theory PowA has all functions A p ~ A n as 
morphisms n -~ p; copower morphisms in : 1 -* n, i E [n], are the projection functions A n --* A. If T 
is an algebraic theory, a T-algebra (A, a) is a functor a : T --+ POWA which preserves objects and the 

copower injections. Thus, if f : n --* p in T, na  -~ pa  in POWA; i.e. 

A p .~ A n. 

A morphism (A, a)  --+ (B, fl) of T-algebras (i.e. a homomorpldsm) is a natural transformation h : a 
ft. It  can be shown that for any fixed theory T, the collection of all T-algebras and morphisms is a 
category which is isomorphic to a variety of f-aJgebras for several possible choices of ~.  Conversely, any 
signature ~,  each variety K of ~-algebras determines an algebraic theory T such that K is isomorphic 
to the category of all T-algebras. In this framework, the role of ~-terms on the variables { x l , . . . ,  x,,} 
is played by the morphisms 1 ~ n in the theory. Thus, in particular, there is one algebraic theory T 
such that the category of T-algebras is isomorphic to the variety of all groups. No particular choice 
of a signature for groups is required; all equivalent choices yield the same algebraic theory. 

In several papers (see [BEW80a, BEW80b, I~si80, BI~88] and the references there), properties of 
algebraic theories enriched with a fixed point operation 

f~_+ f t  

satisfying certain identities have been studied. These theories, iteration theories, seem to capture 
all of the equational properties of iterative processes, whatever they are. As samples, the input- 
output behaviors and the stepwise behaviors of flowchart algorithms, the matrices of regular sets, the 
bisimulation equivalence classes of synchronization trees all form iteration theories. 

*Partially supported by an Alexander yon Humboldt Fellowship 
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In the current paper, we are interested in the algebras of iteration theories. It is a fact, noticed in 
particular in Wagner [Wag90], that in many theoretical studies of iteration, theories have played the 
central role, and not their algebras. This phenomenon is perhaps due to the fact that little effort has 
been devoted to studying these algebras, except in special cases. As examples, we mention the ordered 
w-continuous algebras [WTGW76, GTWW77, Niv75, CN76, GuessS1] and the iterative and regular 
algebras [Ne181, Tiu78]. 

If ~ = (A, a) is an iteration algebra, i.e. an algebra of some iteration theory T (see the next section 
for a precise definition), the functions ta : A I+p --* A induced by the T-morphisms t : 1 --. 1% p in T 
all have the following fixed point property. 

Vy e A p 3x e A [x = tc,(x, y)]. 

More genera~y, for any n-tuple of functions (t~)a : A n+v --~ A induced by T-morphisms t# : 1 --* n % p, 

Vy • AV3xl, . . .  Xn e A [xi = ( t l )a(Xl,--- ,  xn, y)], 

for each i E In]. Thus, in algebras of iteration theories, there are solutions for certain systems of fixed 
point equations. The reason that solutions exist is that in each iteration theory, for any morphism 
t : n --* n + p ,  the morphism t? satisfies the fixed point identity t t = t .  (t?, lv). Hence, for any y E Ap, 

( t t ) . ( y )  = t . ( ( t t ) . ( u ) ,  u). 

Thus, the morphisms t t determine canonical solutions for the fixed point equation for t: 

x = t~(x ,  y).  

What is meant by canonical solutions? That the axioms for iteration theories are satisfied. 

We discuss the meaning of three of the four axioms in []~si80] in the context of theories of functions. 

Suppose that f : A v -+ A ~. Define the function (On @ f)  : A n+v --~ A n by 

(0, ~ / ) ( ~ , y )  = / ( y ) .  

The fixed point identity forces the definition: 

( 0 . e / ) t : A p  -0 A - 

y ~ / ( ~ ) .  

Thus, (0n @ f)? = f .  This equation is one of a possible set of axioms for iteration theories. 

Now for any function g : A k ~ A r and any q ~ 0, define the function g @ 0q : A k+q --~ A r by 

When f : A '~+p --* A n, the fixed point equation for ( f  @ 0q) : A n+v+q --* A n is ~ = ( f  @ 0q)(~,~,~), 
i.e. • = f ( ~ , y ) .  It is natural then, to define 

( f e O q ) t = f t e O q  ' 

which is the second axiom in []~siSO]. 

Lastly, suppose we are given functions 

f l  : A n+m+p ---* A n 

f2 : A n+m+P ~ Am.  
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By target tupling these functions we obtain the function 

( /1 ,  / 2 )  : A ~ + ' + p  -~ A ~+'~ 

(~,Y,~) ~ ( / I ( ~ , Y , ~ ) , / 2 ( ~ , Y , ~ ) ) .  

Consider the system of fixed point equations: 

If we solve these fixed point equations one at a time, we obtain first ~ = f~(y, ~). Then~ substitute 
this value for ~ in the second equation and solve for the y in the equation 

where h is the function A 'n+p --+ A m defined by: 

h(y,~) =/~(/~(~,~),y,~). 
The solution is y = ht(~). Thus, we have the pairing identity for (fl, f2) t : A p ~ An+m: 

(fl, f2) t = (fl t ' ( h t , l P ) ,  h t) (1) 

~ (f~(ht(~),~), ht(~)). 

There is one other axiom whose justification is less obvious, and we omit it. The point of the above 
discussion is to show that iteration algebras arise naturally when one is interested in solving systems of 
fixed point equations in structures having enough polynomial functions to serve as Skolem functions. 

The category of all iteration algebras of an iteration theory T forms a variety o f  ite~ution algebras. 
In more familiar terms, a variety of iteration algebras is a collection of algebras which are models 
for a set of first order sentences. These sentences can be divided into a set of equations and a set of 
compatibility conditions. Some of the equations follow from identities valid in all iteration theories, 
such as 

tt(y) = t ( t t ( y ) , y ) ,  

for each term t(~,y); others are valid only in a given theory T, e.g. 

t (x ,  x )  = x,  

for some term t(x, y). The compatibility conditions ensure that whenever two terms t~ u are interpreted 
as the same function, then the terms t t and u t are also interpreted as the same function. 

The authors had hoped that all of the familiar properties of standard varieties would hold also for 
varieties of iteration algebras. Indeed, our first result was a Birkhoff type theorem: a class ~ of 
iteration algebras is a variety iff 1) is closed under products, quotients and subalgebras. (See Theorem 
2.3.) We quickly discovered what at first we thought were extremely strange phenomena: although 
a~ infinitely generated free algebras always exist, sometimes initial algebras do not exist; sometimes 
homomorphisms cannot be decomposed into surjections followed by injections; sometimes equalizers 
do not exist; sometimes coequalizers do not exist. 

All of these facts are explained by our Theorem 2.5: varieties of iteration theories have nice properties 
only when they coincide with a standard variety - i.e. only when the iteration operation f ~-* .ft is 
preserved by all theory congruences. 

We assume the reader has some familiarity with theories and iteration theories (see [BEWS0a, BEW80b, 
BE88] and the references there). This extended abstract contains no proofs. After a preliminary sec- 
tion which contains all of the necessary definitions, we give a detailed account of the results. Then 
we outline the main construction needed in the proofs of these results. This construction shows that 
for each iteration theory T, any T-algebra ~[ can be embedded in a T-iteration algebra 2i ~. In the 
last section, we indicate several kinds of examples of familiar and pathological varieties of iteration 
algebras. 
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1 Definitions: algebras and iteration algebras 

Let T be an algebraic theory, not necessarily an iteration theory. 

DEFINITION i . I  A T-aJgebra 2 = ( A , a )  consists of a set A and a theory morphism ce : T -., POWA, 
where P o w A  is the theory whose morphisms n ~ p are all functions A ~ --~ A n (see [BW]). The image 
f a  of the T morphism f is usually written fa or fA. 

Thus, in detail, the assignment f ~-, fa of functions to morphisms satisfies: 

• ( f . g ) , = A P ~ A n ~ A m ,  a l l f : m - + n , g : n - . + p ;  

• ( f ,g)a  = A n (~¢ ' )  A p+q, all f : p --+ n, g : q ---+ n; 

• (in)o, is the i th projection A" --+ A. 

The set A is called the "underlying set" of the algebra (A, a).  Note that if f : n -~ p is a T morphism, 
the function f~ : Ap - .  A n is determined by the n functions gi := (i~- f),~ : A p ~ A as follows: 

fc~(a I . . . .  , a p )  = (gl(al,...,ap),...,gn(al,...,ap)). 
Hence, we may specify a T-algebra by defining only the functions fa for f : 1 -+ p. 

DEFINITION 1.2 I f 2  = (A,c 0 and 23 : (B,]3) are T-algebras, a homomorphism h : 2 --~ 23 /s a 
function h : A ~ B such that for each f : n ~ p • T ,  

h p AP , Bp 

1 
A" ~ B ~ 

(Several equivalent definitions of T-algebras, as well as certain facts about the category of all categories 
of T-algebras, for all T,  were given in [BW].) 

DEFINITION 1.3 The collection of all T-algebras and homomorphisms determines a category, denoted 
T b . 

If ~t and ~B are T-a~gebras, we say that  ~ is a subalgebru of ~B, in symbols, ~t C 23, if there is an 
injective homomorphism h : ~ --~ 23; we say that  23 is a quotient or homomorphic image of g if there 
is a surjective homomorphism h : 2 --~ 23. If ~i  = (Ai,  ai),  i E [ ,  are T-algebras, the product 

II , = ( I IA , , - )  
i6 I  i6 I  

is defined pointwise: for f : 1 --~ 2, say, in T,  

fcx((ai), (bl)) -- (fcq(al, bl)). 

We note that if 2 = (A, a) is a T-algebra, then the relation ,,,~ defined by 

f ~ a g ~  f a = g ~  
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is a theory congruence on T. Recall that a (theory) congruence on an algebraic theory T is a family 
of equivalence relations 0,~,p on T(n ,p) ,  for each pair n ,p  > 0, which axe compatible with the theory 
operations of composition and tupling: if f 0,~,p g : n --~ p and f f  8p,q gr : p ... q, then ( f . f ' )  8n,q (g.g') : 
n --* q; also if fl  01,p gi, for each i E [hi, then (f~ . . . . .  fn) On,p (gl . . . . .  gn). h theory congruence 0 is 
trivial if f 0n,p g, for all f , g  : n ~ p, all n,p.  A theory congruence on an iteration theory is a dagger 
congruence or iteration theory congruence, if f On,n+p g =~ f l  0n,p g¢. From now on, we will write only 
f O g, and omit the subscripts on 0. 

REMARK 1.1 Let ~ be the signature (or ranked set) with On = T(1 ,n ) ,  n > 0. Then an f~-algebra fit 
is a T-algebra iff fit satisfies all of the following equations: 

h (Xl , . . . ,Xn)  = f ( g l ( X l , . . . , x n ) , . . . , g p ( x l , . . . , Z n ) )  
i . ( z l  . . . . .  x . )  = ~,, 

for all h = f .  ( g l , . . - ,  gp) in T,  where f : 1 -~ p and gj : 1 --* n. Thus the dass of all T-algebras is an 
equational dass of E-algebras, where Z is the signature with Y'n = T(1, n), n > 0. 

DEFINITION 1.4 Suppose that T is an iteration theory. A T-iteration algebra is a T-algebra fit such 
that the relation , .~ is a dagger congruence on T - i.e. for all f , g  : n --* n + p in T,  

f ~~ g =~ f t  ~~ gt. 

Note that  by virtue of the pairing identity (1), a T-algebra fit = (A , a )  is a T-iteration algebra iff 
f l  " a  g? whenever f ~,a g for all f ,  g : 1 --* 1 + p in T.  

REMARK 1.2 Let f / b e  the same signature as in Remark 1.1. Then an f/-algebra fit is a T-iteration 
algebra iff fit is a T-algebra and also satisfies the following first order sentences: 

(w)(vy)[ f(~, y) = g(~, y) ] ~ (w)[ f ( ~ )  = gt(~) ] 

for all f ,  g : n --~ n + p in T.  Here, the variables y and z range over A p and x ranges over A n. Thus, 
the collection of all T-iteration algebras is first-order axiomatizable either by universal-existential or 
by existential-unlversal sentences. 

DEFINITION 1.5 We write T ? for the full subcatcgory o f T  ~ determined by the class of  those T-algebras 
2 = (A, a) such that ,,~ is a dagger congruence on T .  

Both T ~ and T t have an underlying set functor UT which maps the homomorphism h : fit --. !B to the 
function h : A --r B. 

If 2 = (A, a)  is a T-iteration algebra, the collection T a  of all functions fa : A T "-+ A n, for f : n --~ p 
in T forms an iteration theory of functions, where the dagger operation on functions is defined by: 

( f , ) t  :=  ( f t ) , .  

We call an iteration theory of functions a concrete iteration theory. Thus, a T-iteration algebra can 
be defined as a (surjective) iteration theory morphism from T to a concrete iteration theory. 

If T is an iteration theory we abbreviate the morphism 11 t : 1 --~ 0 by .L. If fit = (A , a )  is any 
T-iteration algebra, we write _1.~ or J-a for ( l l t )~ .  

Suppose that  ,~ is any dagger congruence on the iteration theory T.  Write R for the quotient theory 
T/ , .~.  Then, fit = (A, (~) E T ~ determines an algebra in R t i f f  the theory congruence "~c, on T is a 
dagger congruence, and ,,, < "~a- In this case, the theory morphism a : T --* PowA factors uniquely 
through R. A case of some importance here is the case that T is a free iteration theory. We recall 
from [BEW80a, BEW80b] that  the theory ~ t r  of regular labeled trees is the iteration theory freely 
generated by the ranked set ~. 
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2 R e s u l t s  

There is a great deal known about the categories T b. Indeed, these categories axe the varieties of 
algebras (on a finitary signature). Thus, T b is complete, cocomplete, has surjective-injective factor- 
izations, and has a free algebra generated by each set X - i.e. the underlying set functor has a left 
adjoint. We are concerned mainly with the categories T ?. 

DEFINITION 2.1 Suppose that T is a fixed iteration theory. A full  subcategory V o fT?  is a variety of 
T- i te ra t ion  algebras i f  

V = H(V) ClT t 

= S(V) f ]T t 

= P(V) I'1 T t. 

Here, H(V) is the collection of all T-algebras which are (surjective) homomorphic images of algebras 
in V; S(V) is the collection of all T-algebras which are subalgebras of algebras in V; P(V) is the 
collection of all T-algebras which are products of algebras in V. 

If we delete the restriction "N T t" everywhere, we have the definition of a variety ofT-algebras. 

We state several of the main theorems. 

THEOREM 2.1 For each infinite set X there is an algebra in T t freely generated by X .  

As for the existence of finitely generated free algebras in T t we have the following. 

THEOREM 2.2 T t has an n-generated free algebra iff  '~n is a dagger congruence on T.  Here, 

f ~n g ¢~ (Vh : k ---. n ) ( f .  h = g .  h), 

where f ,  g : p --. k in T.  

(2) 

In all of the theorems below, we assume that T is an iteration theory. 

The varieties of T-iteration algebras are those categories R t, for some quotient iteration theory R of 
T. More precisely, we have the following statement. 

THEOREM 2.3 Let V be a full  subcategory of  T t. Then V is a variety of  T-iteration algebras if f  there 
is a dagger congruence 0 on T such that the T-iteration algebras ~ = (A,  a)  in V are exactly those for  
which a factors through the canonical map T --* T/O: 

T , T/O 

POWA 

A special case of Theorem 2.3 may look more like a Birkhoff-type theorem. Suppose that T = ~tr. 
Then W is a variety of ~tr-iteration algebras iff there is a dagger congruence ~R on ~tr  such that }4/ 
is isomorphic to R t, where R = E r r / " R  - 
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TIIEOltI~M 2.4 * Let 1/be a variety ofT-algebras. Then l l D T  t is a variety ofT-i teration algebras. 

• Let Y be a variety ofT-iteration algebras. Then H(1)), the full subcategory o f T  ~ determined by 
all quotients of algebras in Y, is a variety ofT-algebras. Moreover, H(1)) = S(V). 

• The map from varieties of T-iteration algebras to varieties of T-algebras 

v ~ H(V),  

is injeetive, but not always surjective. 

It turns out that varieties of T-iteration algebras have nice properties only when every T-algebra is a 
T-iteration algebra. 

T~EOREM 2.5 The following statements are equivalent. 

a. T t = T ~. 

b. Every theory congruence on T is a dagger congruence. 

e. Every homomorphism h : ~ --* ~ in T t factors as 

h = ~a-~ ¢ -~ ~ 

where e is a coequalizer and m is a monie. 

d. Every homomorphism h : ~ ~ ~ in T t factors as 

where e is an epi and m is a monic. 

e. T t has equalizers. 

f. T t is complete. 

g. T t has coequalizers. 

h. T t is cocomplete. 

i. The inclusion funetor T t ~ T ~ has a left adjoint. 

j. For each ~ E T ~, and ~ E T t  with ~ a subalgebra of ~ ,  there is a least subalgebra ~ C ~ in T t 
with ~t C_ ¢. 

3 T h e  E m b e d d i n g  T h e o r e m  

The main tool in the proof of Theorem 2.5 is the Embedding Theorem. This latter result shows that 
for any iteration theory T and any T-algebra ~t, there is a T-iteration algebra ~ and an injective 
homomorphism # : ~t --. ~ .  In order to prove the extension theorem, we found it necessary to find 
an explicit representation of the coproduct T[X] of the iteration theories T and [X, x0], the iteration 
theory freely generated by the set X of morphisms i --+ 0. The iteration theory T[X] has the property 
that  there are iteration theory morphisms 

T -~ T[X] ~ IX, xo] 
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such that  x0A = 11 t,  with the following universal property. For any iteration theory R and any 
iteration theory morphism to : T -~ R and any function ¢ : X --* R(1,0) there is a unique iteration 
theory morphism (~, ¢ ) :  T[X] --* R with a .  (to, ¢) = 9 and A. (~o, ¢) = ¢. 

Using this description, for any T-algebra 2 in T b, we show how to construct an iteration theory 
T(~t). This theory has the property that the initial algebra in T ( 2 )  v is 2 with all elements in A 
adjoined as constants; more generally, the T(!a)-algebras are those T-algebras ~B for which there is 
some homomorphism ~t ~ ~B. If we now form the theory T t = T(2)[X],  for an infinite set X ,  it turns 
out that  the T~-morphisms 1 -* 0 determine a T-iteration algebra containing an isomorphic copy of 
2[. 

4 Examples 

EXAMPLE 4.1 We give azt example of an iteration theory T for which there is no initial algebra in T t. 
Let Z1 = {f}; S0 = {J-} and'~,~ = 0 otherwise. We consider the theory T which is the quotient of 
2 t r  by the least theory congruence ,,, such that 

f . J _  ,~ i ,  

where of course, 3- = 11 t. T is an iteration theory. Each tree 1 -~ 0 in Err is equivalent to either _L or 
to f t  The morphisms 1 --* p in T are the trees f k .  in , for some k > 0 and i E [p], or f t .  0p or .L. 0p. 

In T,  "o  is a congruence which is not a dagger congruence, since, writing It] for the ,-,-congruence 
dass of t, 

but 

[ f ]" 'o  [111, 

[ f t ]  "rio [J-] 

EXAMPLE 4.2 For any set A, every theory congruence on PfnA is a dagger congruence. In fact, we 
can describe all theory congruences on PfnA as follows. For any two partial functions f ,  g : A x In] --* 
A x [p], let 

D ( f , g )  := {(a, i )  E A × [p]: f - l ( a , i )  # g - l ( a , i ) } .  

Let ~; be an infinite cardinal. Define 

f " , ,  g ~ [D(f ,g) l  < ~:. 

Then, for infinite sets A, the lattice of theory congruences on PfnA is a well-ordered chain 

=A, '~o ,  • • •, "~IAI' ~']AI + 

with least element the identity congruence, and greatest element the trivial congruence ~,IAI+. On 
finite sets with at least two elements, there are exactly two theory congruences on PfnA: the identity 
and the trivial congruence. 

EXAMPLE 4.3 An example of an iteration theory T such that T t has all free algebras, but T i # T ~. 
If T = M a t s  is a matrix theory, i.e. the morphisms n --~ p in T axe n by p matrices over a semiring 
S, then a T-algebra is essentially an S-module. In the case that  T is a matr ix  iteration theory, for 
each element s E S, in T there is an element ~* E S satisfying certain equational properties (see 
[B]~a, BISb]). For example, 

8* = s 8 " + I ,  
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for each n > O. 
implication holds: 

for all s E S, where 1 = l l .  Thus, for any element a in the S module A, and any s E S, 

s* a = a + sa + s2a + . . .  + sna + s'~+ls* a, 

An S-module A is a T-iteration algebra iff for each pair s, t E S, the following 

(Va e A)(sa = ta) =~ (Va E A)(s* a = t 'a) .  

It is easy to see that  for matrix theories, each theory congruence " n  (defined above in (2)) is the 
identity congruence when n > 0; ~0 is the trivial congruence. In any case, each congruence "~n is a 
dagger congruence, so that T t has all finitely generated free algebras. It  follows that  T? has all free 
algebras, by Theorem 2.1. 

However, not every theory congruence on matrix iteration theories is a dagger congruence. For one 
example, consider the semiring S of all subsets of words on an alphabet X containing at least two 
distinct letters. Any relation ,,, on sets of words extends in the obvious way to matrices over S: A ,,, B 
iff Aij  "~ Bi j ,  for ~ i , j .  Now for any fixed nonnegative integer n, we define w =,~ w ~, if the length of 
w is the same as the length of w t and it is possible to change up to n letters in w to obtain w ~. 

For sets of words A, B, say that  A <n B if for each word w in A there is a word w ~ in B with w =~ w t. 
Now define 

A ,~ B ~ (3n)(A <~ B A  B <n A). 

Then, ,,~ determines a theory congruence on M a t z  which is not a dagger congruence. 

EXAMPLE 4.4 If Z is any subset of natural  numbers, there is a variety 1;z of iteration algebras having 
an n-generated free iteration algebra iff n E Z. In particular, there is an iteration theory T such that  
T t has no finitely generated free algebras. 

EXAMPLE 4.5 For any fixed signature ~., we exhibit a subclass of algebras in (~ t r )  t. Suppose that 
(A, <) is an w-complete poset, with least element I .  Let f be any w-continuous and monotone function 

f : An+P ._. An. 

Let y be some element in A p. The sequence of elements in An: 

bo = (.1_,..., ±) ,bl  = f(bo, y ) , . . . ,  bk+l = f (bk,  y) , . . .  

is increasing and has a least upper bound, denoted f i ( y ) .  It is not hard to show that  the function 

A p -.. A ,~ 
y ~ / t (y )  

is also w-continuous and monotone. Further, for all y E A p, 

ft(y) = f(f?(y), y). 

Let Pow~(A)  denote the subtheory of PowA whose morphisms are the w-continuous, monotone 
functions. Then,  with the above definition of the iteration operation, Pow~(A)  is an iteration theory 
[B]~89]. Hence, if a is a function which assigns to each symbol in ~ a function in Pow~(A) ,  a extends 
uniquely to an iteration theory morphism ~]tr -~ Pow~(A) .  

Thus, all w-continuous algebras are iteration algebras. 

Similarly, one can show that the regular algebras of Tiuryn [Tin78] are iteration algebras. 
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EXAMPLE 4.6 For any signature ~,  an iterative ~.algebra ([Nel81, Tiu80]) is a ~-algebra ~ with the 
property that for each n-tuple of nontrivial polynomial functions p~(~,y), i E [n], in n + p variables 

= (xx , . . . ,  x,~) and y = (Ya,.-. ,  Yp), for each choice of p elements b l , . . . ,  bp in A, there is a unique 
solution to the system of equations 

~1 = pl(~,b) 

Xn = P n ( x , b ) .  

An iterative algebra m~v be extended to an iteration algebra by making a choice of a distinguished 
element .1_ in A (see [BEW8Oa]). 

REMARK 4.1 Every variety of iteration algebras generated by a class of w-continuous algebras has all 
free algebras. The same is true for the varieties generated by iterative algebras. 

EXAMPLE 4.7 If T is the iteration theory of regular synchronization trees over a set of action symbols 
([B~T]), all free algebras exist in T f. This fact can be established by showing that each of the 
congruences ,,~ is the identity congruence in this theory. 

EXAMPL~ 4.8 A T-iteration algebra ~ = (A, a)  is strong if the following sentences are true in ~1: 

Vy E AP[ Vx E A"[f(x,y) = g(x,y)] ~ f t (y)  = gf(y)], 

for each pair f ,  9 : n --* n + p in T. These algebras were introduced in [Esi83]. We mention here the 
fact that there are iteration theories T having a T-iteration algebra which is not strong. But every 
w-continuous algebra and iterative algebra is a strong iteration algebra. 
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