
Application Development with
the FNC-2 Attribute Grammar System

M a r t i n 3OURDAN D i d i e r PARIGOT

INRIA*

Abstrac t

FNC-2 is an advanced attribute grammar system aiming at production-quality,
currently under development at INRIA. After a brief tour through its internMs and
a short presentation of its input language OLGA, the talk will concentrate on how
FNC-2 and its companions can be used to develop large language-processing appli-
cations. The key feature for enhancing programmers' productivity and supporting
teamwork is FNC-2 constructs for modularity. This will be exemplified by the de-
velopment of FNC-2 itself. Finally we'll present how FNC-2 can be combined with
other tools under development at INR,IA to form a complete, high-quality compiler
production workbench.

1 I n t r o d u c t i o n

Since attribute grammars (AGs) have been introduced in Knuth's seminal paper [Knu68],
they have become a method of choice for describing and implementing syntax-directed
computations, in particular language-processing applications such as compilers, transla-
tors and syntax-directed editors. Many people have made much research work on various
aspects of AGs, and many systems have been developed around the world which produce
attributes evaluators [DJL88]. FNC-2 is one of the most advanced such systems, under
development at INRIA since 1986. It aims at production-quality by providing efficiency,
expressive power, ease of use and versatility. To achieve these qualities, it uses the latest
results in AG implementation [JPJ90], which it combines with OLGA, a new language
especially designed for the specification of AGs [JLP90].

This paper concentrates on the use of FNC-2 and OLGA for building realistic applica-
tions. After a brief presentation of the system and the language, including in particular
a description of what an application is for them, we'll report on the experience we gained
in using them, and especially in building FNC-2, since it is bootstrapped. We'll also show
how FNC-2 Can be combined with other tools being developed at INRIA to generate
complete compilers from high-level specifications. We'll conclude with ideas for future
work.

"Author's address: INRIA, Domaine de Voluceau, Rocquencourt, B.P. t05, F-78153 Le Chesnay Cedex
(France). F-maih {jourdan,parigot}@minos.inria.fr

]2

Note that, for lack of space, this paper does not aim at a complete description of
FNC-2 and OLGA; please refer to [JoP89, JPJ90, JLP90] for more details. For the same
reason, no comparison with other work will be included.

2 A Tour through F N C - 2 and OLGA

2.1 Genera l ove r v i e w

FNC-2 is a modern AG-processing system that aims at production-quality by providing
the following qualities:

Efficiency: the generated evaluators, based on the visit-sequence paradigm [Kas80], are
completely deterministic; furthermore, this paradigm allows to apply very effective
space optimization techniques [Kas84, EnJ90, JuP90]. The evaluators are hence
basicMly as efficient in time and space as hand-written programs using a tree as
internal data structure.

Express ive power: this efficiency is not achieved at the expense of expressive power
since FNC-2 accepts AGs in the very broad class of strongly non-circular AGs
[CoF82].1

Easiness of use: OLGA, the input language of FNC-2, enforces a high degree of pro-
gramming safety, reliability and productivity.

Versat i l i ty: the generated evaluators can be interfaced with many other tools and pro-
duced in many variations (e.g. exhaustive or incremental, sequential or parallel, in
one of several implementation languages) from the same specification.

How we achieve both efficiency and expressive power has to do with the evaluation
methods; ours are described in detail elsewhere [Par88, JPJ90, JuP90]. However, as far
as programming and developing applications are concerned, this does not matter much,
provided of course that the system does a reasonable job in implementing the specification.
Much more important is the way the programmer interacts with the system, i.e. the input
language and the general development paradigm. This is what this paper will concentrate
o n .

2.2 W h a t an appl icat ion is for F N C - 2

In our opinion, one of the main reasons why AGs are only scarcely used in industrial
settings is their lack of modularity, which forces to program a complete application as
a single, monolithic file. As applications get larger and more complicated, this scheme
becomes more and more unworkable; a striking example is the ADA front-end developed
using the GAG system [UDP82]: it is a single AG of more than 500 pages[We clearly had
to address this issue if we wanted FNC-2 to have a chance to become a production-quality
system. Also, there are parts of some applications for which tools other than AGs might
be more pleasant to use (e.g. attributed tree transformation systems are better than AGs

1These AGs are also called absolutely non-circular.

13

to describe the optimization phases in a compiler), so we had to provide for interfacing
our attribute evaluators with these other tools.

The paradigm we chose is hence to consider that an AG specifies, and an attribute
evaluator implements, an attributed-tree to attributed-tree mapping, i.e. an evaluator
takes as input an attributed tree and produces as output another attributed tree (or
zero or more than one, actually). This paradigm was called attribute coupled grammars
(ACGs) by its inventors [GaG84]. It responds to the above-quoted problems as follows:

1. A targe application can be split into a sequence of passes, each pass taking as input
the intermediate representation produced by the previous one and transforming it
into another intermediate representation to be fed to the next pass. Each pass can
be described by an AG, of course, and each of them is thus much smaller and hence
much more easily manageable than a single AG specifying the same translation as
the whole sequence of passes.

2. In this sequence of passes, some can be described by AGs while others can be
described and implemented by other tools. The tree-to-tree mapping paradigm is
indeed quite general and many tools are based on it.

There are two kinds of AGs in OLGA, side-effect and functional, respectively roughly
equivalent to classical AGs and ACGs. A side-effect AG is one in which there is exactly
one output tree which is exactly the same as the input one except that it carries different
attributes. A functional AG has zero, one or more output trees, generally different from
the input one, which must be constructed piece by piece by semantic rules and carried by
(synthesized) attributes. It must be noted here that a naive implementation of functional
AGs involves the physical construction of the output tree(s), and hence suffers from some
overhead, but actually, thanks to descriptionaI composition [GAG84], this needs not be
the case: it is possible to mechanically construct, from two (functional) AGs coupled into
a "pipe," a single AG which performs the same translation as the original sequence but
without physically constructing the intermediate tree. We already know that descriptional
composition is feasible with FNC-2 because the SNC class is closed under composition,
however we have not yet implemented it.

Let us open a parenthesis here to note that, for FNC-2, trees are abstract trees in the
well-known sense [ASU86], i.e. the grammars describing these trees express the structure,
rather than the textual appearance, of the notions and constructs of the languages they
model. This frees the grammar writer from cumbersome syntactic constraints which stern
from a particular parsing method and, on the other hand, allows smaller trees since they
do not include keywords, simple productions and such spurious things. In addition, our
experience is that this allows to make the trees closer to the true semantics of a language,
which makes the AGs shorter and simpler. (End of the parenthesis.)

In this scheme, the intermediate trees are described by grammars extended with at-
tribute declarations (to avoid confusion we call such things attributed abstract syntaxes
(AAS)). Each such AAS potentially "belongs" to more than one AG: it is the input AAS
of one or more AGs and the output AAS of one or more other AGs. To avoid duplication
of work and possible inconsistencies, and to facilitate modularity and reusability, we have
decided to separate the specification of these AASes from the AGs themselves.

It should be clear by now that the most important components of (the specification of)
an application, at least as far as FNC-2 is concerned, are attribute grammars, which spec-

14

ify the computations performed by the various passes, and attributed abstract syntaxes,
which specify the input and output data (attributed abstract trees) of these passes.

In addition, FNC-2 comes with a number of companion processors that help build
complete applications:

• a generator of abstract tree constructors driven by parsers (ate); two instantiations
of ate have been implemented, one on top of SYNTAX, 2 which will be described
with more details in section 4, and one on top of Lex and Yacc;

• a generator of unparsers of attributed abstract trees (ppat), based on the TEX-like
notion of nested boxes of text;

• and a tool for describing the modules composing an application and managing their
processing (mkfnc2).

Note that the input languages of all these tools have much in common with OLGA and
asx, the language for describing AASes.

Fig. i, which depicts the organization of a typical application as can be constructed by
FNC-2 and its companions alone, should now be easily understandable. More details will
be given in the next section, which briefly describes OLGA. Let us add only a few words:
the application is the front-end of a compiler. The first pass checks that the contextual
constraints of the source language are verified; this is a side-effect AG, since no translation
is involved here, only information is computed and added to the tree. The second pass
translates the source tree to some intermediate representation; this is a functional AG. The
final unparsing pass would be used for debugging purposes and needs not be present if the
IR is to be further processed by a complete back-end. However there exist applications,
e.g. source-to-source translation, in which the output is some high-level language; in that
case ppat can generate a suitable "back-end" (see Fig. 4).

2 .3 T h e OLGA AG-description language

OLGA was designed for the description of all aspects of an attribute grammar. This
of course involves constructs to declare attributes, access them in semantic rules, etc.,
but also constructs to describe pure calculations without resorting to a foreign language.
Hence, in addition to being a specialized language for describing AGs, OLGA is also a
general-purpose applicative language. We'll briefly present these two aspects now; more
details can be found in [JLPg0, JoP89].

2.3.1 OLGA as a general -purpose applicative language

First of all, OLGA is a purely applicative language, which means that there is no assignable
variable and side effects, just pure expressions and functions. This is a strong step towards
programming safety and reliability. However, OLGA is not (yet) a functional language in
the sense of ML. The basic objects of OLGA are thus values and functions. There are no
control-flow constructs but value-selection ones; iteration is replaced by recursion.

2SYNTAX is a trademark of INRIA

15

module
olga

parameterized
module
olga

<: source text :2"

/ / ~ or, crete parser I
9rammar + !~ree constructor t

tree construction, / |

attribute phase 1: I
olga semantics checks !

translation

C onparsi g ,nparsor] specification
ppat /

":. I.R. text ..:

Figure 1: Structure of a typical application

OLGA is a strongly typed language, the other necessary condition for programming
safety. The collection of predefined types is rather classical. Type constructors are enu-
merations, subranges of scalar types, records, discriminated unions, sets of scalar values
and homogeneous lists. Structured types may be recursive. Each type definition involves
the definition of corresponding construction or conversion functions. In addition, in a
"functional" AG there are tree types and tree values (see below). Functions, including
user-defined ones, may have a poIymorphic profile as in ML, although OLGA potymor-
phism is restricted to set and list types. We also have a type inference algorithm.

OLGA is of course block-structured. The basic scope rules are similar to those of Ada.
As in Ada also, function names can be overloaded; we found this feature very convenient
to enhance the readability of OLGA programs.

OLGA supports the notion of modules, in which one can define a set of related ob-
jects (types, functions, constants, values, i.e. run-time constants, and exceptions). OLGA

16

modules are similar to those found in e.g. Ada and Modula-2. A module is split in two
a~tual compilation units, a declaration module (DCM) which declares the objects which
are visible from outside, and a definition, module (DFM) in which the actual implemen-
tation of these objects (and maybe other, non-visible objects) is given. Type checking
is performed across module boundaries. Types and other objects in a declaration mod-
ule may be specified as opaque. In addition, a module may be parameterized by types
and/or functions. This supports the notion of abstract data types. Two such modules
are depicted in Fig. 1.

OLGA provides a powerful pattern matching construct unifying structural matching,
selection driven by a scalar value and test for a union tag. OLGA also provides for the
declaration, activation and handling of exceptions. User-defined exceptions may return
parameters. There also exist some constructs which somewhat violate the applicative
character of OLGA but which we felt we had to include anyhow because they are so
useful: production of error messages, interface with external functions written in some
foreign language, and construction of circular structures.

2.3.2 OLGA as an a t t r i b u t e g r a m m a r descr ip t ion language

As said above the syntactic base of AGs written in OLGA is not a concrete syntax as
in the classical framework [Knu68] but rather an abstract syntax as in [VoM82]. The
abstract syntax formalism used for OLGA is very close to Metal [KLM83]. It provides for
heterogeneous, fixed arity operators, similar to concrete productions, and homogeneous,
variable-arity operators (list nodes). Operators are grouped into phyla, which roughly
correspond to non-terminals. In a functional AG the phyla of the output AAS(es) are
tree types whose constructors are the operators.

In addition to what we have already said regarding modularity with FNC-2 and the
ACG concept, let us note that an AAS can be imported in another one. This is useful to
describe the "profile" of a side-effect AG: since the (attribute-less) syntax is the same for
both the input and output AAS, it needs be specified only once; this "base" syntax is then
imported in the actual input and output AASes, which merely specify what attributes
are attached to this syntax (see Fig. 1). The types of the attributes of an AAS must be
defined in a separate DCM.

An AG is structured into phases and, of course, productions. A phase is purely
a structuring construct which has no effect on the AG in the classical sense (i.e. it is
"transparent" to productions and semantic rules), except that it is a block and hence
may contain local declarations and import clauses. For instance, an AG describing the
verification of the contextual constraints tbr some programming language might have a
phase for name anMysis and one for type analysis; each phase needs not know about the
functions used in the other, and they communicate only through the attributes.

Each production is also a block; values local to a production may depend on at-
tributes of this production and hence play the role of what is usually referred to as "local
attributes." Thus, the condition that an AG be in normal form is not too constraining.
A production may appear several times in each AG or phase when this improves the
readability but, of course, a given attribute should be defined only once.

In each AG there are three kinds of attributes. The input and output attributes
are those carried by the input and output AATs and are declared in the corresponding

17

where decls -> DECL* us__ee

$in-env(DECL) := case position is

firsz: $in-env(decls);

other: $out-env(DECL.left);

end case;

$out-env := case arity is

O: $in-env;

other: $out-env(DECL.las%);

end case;

$correct := map left & value true

other $correct(DECL)

en d ma_pp;

end where;

Figure 2: Examples of semantic rules for a list production

AASes. Input attributes are constants. In side-effect AGs, output attributes must be
given a direction (inherited or synthesized) and be defined by semantic rules, whereas
in a functional AG they have no direction and must be attached to the corresponding
AAT while it is being built. Working attributes are "local" to the AG and correspond to
classical ones; for instance they carry the output AATs during their construction. They
must have a direction.

In OLGA, a semantic rule is written, as expected, as the assignment of some value
to some attribute occurrence. The right-hand side expression can refer, in addition to
attributes of the production at hand, to attributes of nodes upward in the tree and
attributes of subtrees (after suitable pattern matching to control the access). OLGA
provides several special constructs for semantic rules in list productions. Fig. 2 presents
a (hopefully self-explanatory) example of these constructs; please refer to [JLP90, JoP89]
for more details.

OL~A allows to leave the definition of some attribute occurrences unspecified in an
AG, and FNC-2 will try to infer the corresponding semantic rules from the context.
Automatically generating copy rules is a rather well-known technique now [Lor77, Jou84],
and we have implemented it in FNC-2; in Fig. 2 for instance, with suitable declarations
for $ in-env and $out-env, the first two rules would have been automatically generated.
However, there still remain a lot of semantic rules which ~'Iook the same" and that you
have to write in whole. Thus, we have extended FNC-2's mechanism to provide for
automatic generation of non-copy rules. The basic mechanism is the definition of attribute
classes, which are sets of attribute occurrences, and associated templates to specify" the
semantic rules which define these occurrences. The templates are actually structured in
two levels, a syntactic level used to specify in which productions the templates will be
applied, and a semantic level which correspond to the actual rules. When some attribute
occurrence is not explicitly defined in a given production, FNC-2 searches whether this
attribute belongs to some class; if so, it tries to match some syntactic template in the
class definition with the production at hand and the corresponding semantic template
with some context conditions that space does not permit to explain in detail here; if all
these conditions are verified, the actual rule is created.

In addition to the shortening of the text of an AG, the other benefit of this feature--

18

the most important in our opinion--is that this gives a more "semantic" view of the
AG, because closely related semantic computations are grouped in a single place (the
definition of a class) rather than being spread over several syntactic productions. The
phase construct supplements this semantic structuring.

3 Application Development
Until now we have worked on two "pure" real-size applications:

* a compiler from the parallel logic language PARLOG to code for the SPM abstract
machine [GJR87];

. a compiler from ISO-Pascal to P-code, which had been originally written in Lisp
for the FNC/ERN system [Jou84] and was translated to OLGA (work not yet com-
pleted).

In addition, FNC-2 is used in the PAGODE code generator generator [DMR89, DMR90],
both to develop the generator itself and to compile some of the modules it generates (see
also section 4).

However, the largest application of our system, and the one with which we have the
deepest experience, is the development of FNC-2 itself, through bootstrap, and of its
companions. This explains why we have decided to use it as the "test case" for this
discussion.

The most important component in FNC-2 is the OLGA compiler, whose structure is
depicted in Fig. 3. The OLGA reader groups the scanner, the parser and the construc-
tor for the first tree; it is generated by arc and SYNTAX. The checker is the largest
component in FNC-2; it performs the verification of the contextual constraints, generates
the missing semantic rules and splits the AG into a~a "abstract AG" to be input to the
evaluator generator, containing only the syntax (list operators are expanded into a finite
set of fixed-arity productions) and attribute dependencies, and the rest of the AG (types,
functions and expressions in the right-hand side of the semantic rules) which is directly
fed to the translator(s). It is written as a sequence of two AGs, a big one doing nearly
all the job while the second one only optimizes the function bodies and semantic rules
(tail recursion elimination, construction of a deterministic decision tree for the pattern
matching construct, etc.). The big AG makes heavy use of out-of-line functions in sep-
arate modules which are also written in OLGA, including the generation of the missing
semantic rules and the creation of the abstract AG. The evaluator generator is the other
most important component in the system; since the basic data structures it manipulates
are graphs, and since most of the algorithms it uses involve fixed-point computations--
two things which are cumbersome or even impossible to specify with AGs--, it is written
in C. The last components of FNC-2 are the translators to the various implementation
Ianguages; presently there exist two of them, one to C and one to Lisp. They are also
written in OLGA (and soon in ppat). The library manager does not exist yet; its job is
performed out of line by" mkfnc2.

The organization of FNC-2 into three parts (front-end, evaluator generator and back-
end(s)) with well-defined interfaces Mlows to use and test these parts separately. For
instance, the evaluator generator was running long before the rest of the system; we

19

~ a l l y) decorat~
Eva a or I

Figure 3: The OLGA compiler of the FNC-2 system

constructed a crude interface (textuM version of our abstract AGs) which allowed to
debug it and can still be used to operate it when you don't want to use OLGA; the
internal representations produced by the crude interface and by the OLCA front-end have
the same structure. In addition, the separation of concerns makes each part simpler; for
instance, the "high-level optimization" AG quoted above acts only on the non-AG part
of the OLaA language, and this is reflected in the input AAS. Lastly, the ACG paradigm
makes it easy to add new features; for instance tile optimization pass was not included
in the first design but was very easy to insert later without major reworking of the other
components.

Even in the presently incomplete status of OLGA--the most important missing features
are full polymorphism, parameterized modules and exceptions--, we found it generally
satisfying. In particular, there are very few parts of the system which could not be written
in OLGA; the most prominent are the evaluator generator and the parts which read from
or write to flies (ppat will provide a solution for the latter). This shows that the expressive
power of the language is sufficient for our purposes. The automatic generation of most
copy rules and many non-copy rules greatly improves the readability of the AGs, especially
for code-generation-like applications.

20

AGs
AASes
DCMs
DFMs
ate

total

files

7
8

I 15

4
4g

lines
rain. max. total] ave.
354 3,212 10,118 1,445

8 381 779 97
28 391 2,891 193
55 3,188 13,404 894
60 2,089 2,575 644

8 3,212 29,767 607

Table 1: Source files in the FNC-2 system

We would like to point out here that AGs are, to the best of our knowledge, the only
programming method which realIy supports incremental development: you may freely add
new attributes and semantic rules, and then test your AG without having to completely
specify it. This is made easier by the great expressive power of FNC-2, i.e. the SNC class:
many AGs we have written were, at some time during their development, not ordered
and not even /-ordered (and our bigger AG still isn't). Of course, with more or less
work, it would be possible to make them actually ordered, but using FNC-2 gives us more
freedom in our development. Also, a great expressive power is quite useful when AGs are
automatically produced by other systems, such as PAGODE: designers of these systems
can ignore "mundane" issues such as evaluation order.

But the single most beneficial feature of FNC-2 asqd OLGA is their support for mod-
ularity: presently there are about 30,000 lines of OLGA, asx and atc code in the system,
summarized in Table 1 (these exclude the ppat subsystem, which is still under develop-
ment, the files processed by SYNTAX, and the C files). As can be seen, the files are
rather small and hence very readable. Even the 3,212-lines AG (the OLGA static seman-
tics checker) is easy to understand because it is split in several phases (name analysis,
type che&ing, check for well-definedness of the AG and generation of missing semantic
rules, generation of the abstract AG) which address only one problem. We would have
had much greater problems if we had had to specify the FNC-2 system in a single AG.
Furthermore, separate compilation comes with (true) modularity, and this saves much
time in the development process. As said above, another benefit is that it is easy to
add new components in the system. Yet other benefits are that this makes teamwork
("programming in the large") easier, and that it is easy to reuse modules in different
applications; for instance, the two instantiations of arc share most of their stuff.

As we gained experience, we learnt to push the usage of AOs and modularity very far
(the OLGA compiler itself is not the best example in this respect). For instance, Fig. 4
depicts the organization of the ppat subsystem and the pretty-printers it generates, with
all the files involved in the process. Files X . asx and X .ppag are written by the user; they
respectively specify the input attributed abstract trees and their textual representation.
File X - p p a t . o lga is generated from those by ppat and then combined with files boxes*
to form the actual unparser. Apart from these, all the files need be written only once.
Each one of them is rather small and easy to read. Furthermore, it is easy to reuse them
for other purposes (e.g. o lga , asx is the AAS for OLaa, which is borrowed from FNC-2).
This figure also illustrates our bootstrap philosophy (file olga.ppa*).

2]

(. X . p p a t - .~ - - -4 . - X . a s x "

s o m e ome
X-tre~ -text

Figure 4: Generation and use of the ppat subsystem

It is quite hard to measure the efficacy of a programming language, i.e. the relative
productivity of a programmer using this language. Let us however quote a single figure
regarding OLGA: the above-described 30,000 lines, together with other support files, were
written and tested by one man in not much more than one year (the development team
grew quite a bit recently, so our experience with teamwork is real).

4 T o w a r d s a C o m p i l e r C o n s t r u c t i o n W o r k b e n c h

In addition to FNC-2, several other language-processing tools are under development at
INRIA.

SYNTAX [BoD88] is a powerful generator of efl:icient scanners and parsers. From
the description of language as a set of regular expressions (for the lexicaI level) and a
BNF grammar (for the syntactic level), SYNTAX produces, using LR-based techniques,
automata that recognize this language. SYNTAX is a production-quality system, which

22

integrates the result of several years of theoretical research work and practical experience.
Some of its advantages are:

SYNTAX can solve analysis conflicts by using an unbounded number of look-ahead
characters (in the scanner) or tokens (in the parser), while keeping a linear analysis
time [Bou84].

• You can influence the analyzers through user-defined predicates and actions.

• The tables representing the automata are typically compressed by more than 95%
while keeping a constant access time.

• Keywords are recognized in constant time by a perfect and optionally minimal hash
function constructed by SYNTAX.

* Above all, SYNTAX provides a very powerful and easily tunable error repair and
recovery mechanism [BoJ87].

In addition, SYNTAX comes with a complete library of modules that facilitate the de-
velopment of language-processing applications: source text manager, character strings
manager, error messages messages, .. . FNC-2 makes heavy use of this library.

TRANSAT [Sou90] is an attributed tree transformation system based on the same
paradigm as the well-known OPTRAN system [LMW88]. However it has a much cleaner
semantics; in particular it is able to detect when a transformation system is confluent, i.e.
when the result of the transformation is the same whatever actual sequence of transfor-
mation steps is used. This eliminates the need for the user to specify the transformation
strategy, which is automatically inferred by TRANSAT. It offers several other advantages,
however its development has begun only recently so we have no experience with it yet.

PAGODE [DMR89, DMR90] is a code generator generator based on tree rewriting.
From the description of the intermediate language (an AAS) and of the target machine--
very easy to write fi'om the manufacturer's manual-7, it produces an instruction selector
which produces locally-optimal code and a register allocator; the latter is in the form of
an OLGA AG. Special attention is paid to the management of temporaries.

In addition, work has been done and is still in progress at tNRIA on the detection
of parallelism in programs written in classical programming languages (FORTRAN) and
its exploitation for producing highly efficient code for architectures involving fine-grain
parallelism (RISC, VLIW, vector machines). Although we have reached very good results
for particular cases, this work is not "ripe" enough yet to be embodied into real compiler
generators, but we're working on this.

The association of FNC-2 with all these tools already forms a highly usable compiler
construction workbench, and will become more and more effective as we improve them.

5 C o n c l u s i o n and F u t u r e W o r k

We have presented the FNC-2 attribute grammar system and its input language OLGA,
and we have described how they can be used to develop large applications. Of paramount
importance for the efficacy of the development is FNC-2's support for modularity. Our
experience is not very deep yet but it already shows that we are on the right track.

23

Apart from all the work that remains to make FNC-2 a real production-quality system
(see [JPJ90, JuP90] for more details), an important item on our "to do" list that is
particularly relevant to application development is the improvement of the modularity
features. The authors of the MARVIN system [GGV86] have extended the ACG paradigm
by unifying the syntactic (the trees) and semantic (the attributes) domains; this allows
to define functions by means of AGs and offers real support for modularizing an AG into
(reusable) sub-AGs. We're thinking of implementing such a scheme in FNC-2. Another
longer-term research direction is to extend the expressive power of AGs to computation
on graphs, fixed-point computations, etc.; our work on space optimization [JuP90] offers
new opportunities therefore.

Also, we are thinking of using OLGA and FNC-2 to design specialized languages and
systems for compiler generation based on AGs. The problem with AGs is that it is
a general-purpose programming method, while one would rather have specialized tools
with a knowledge of a particular application domain and of the algorithms to use in that
domain. We think that AGs are a promising technique both for developing the tools and
as their target language. GIGAS [Fra89] is a good example of this methodology: it is
a language/system for specifying graphical pretty-printers of abstract trees and is based
on the notions of boxes. Its output is an AG, with semantic rules for e.g. computing
the coordinates of the boxes. When compiled by the Synthesizer Generator [ReT89],
it produces a syntax-directed editor with incremental redrawing of the graphic boxes.
A GIGAS specification is translated into an AG which is typically ten times larger; this
shows the interest of having specialized tools rather than general-purpose ones! We would
like to apply the same methodology to compilation problems such as data flow analysis
[Ki173] and name analysis [Rei83]. With such a good AG-processing system as FNC-2 as
base, and with the other compiler construction tools under development at INRIA, our
dream of a complete, powerful and efficient compiler development workbench will become
a reality.

R e f e r e n c e s

[ASU86]

[Bou84]

[BoD88]

[BoJ87]

[CoFS2]

[DJL88]

A. V. Aho, R. Sethi & J. D. Ullman, Compilers: Principles, Techniques and Tools,
Addison Wesley, Reading, MA, 1986.

P. Boullier, "Contribution £ la construction automatique d'analyseurs lexicographi-
ques et syntaxiques," th~se d'Etat, Univ. d'Orl~ans, Dec. 1984.

P. Boullier ~z P. Deschamp, Le syst6me SYNTAX--Manuel d'utilisation et de raise
en ceuvre sons Unix, INRIA, Rocquenconrt, Sept. 1988.

P. Boullier ~z M. 3ourdan, "A new Error Repair and Recovery Scheme for Lexica]
and Syntactic Analysis," Sci. Comput. Programming 9, 4 (Dec. 1987), 271-286.

B. Courcelle ~: P. Franchi-Zannettacci, "Attribute Grammars and Recursive Pro-
gram Schemes," Theoret. Comput. Sci. 17, 2 and 3 (1982), 163-191 and 235-257.

P. Deransart, M. Jourdan & B. Lorho, Attribute Grammars: De~nitions, Systems
and Bibliography, Lect. Notes in Comp. Sci. ~823, Springer-Verlag, New ~brk-
Heidelberg-Berlin, Aug. 1988.

24

[DMR89] A. Despland, M. Mazaud & 1%. Rakotozafy, "Using Rewriting Techniques to Produce
Code Generators and Proving them Correct," Rapport RR-1046, INRIA, Rocquen-
court, June 1989. To appear in Sci. Comput. Programming.

[DMRg0] _ _ ~ "Pagode: A Back-end Generator using Attributed Abstract Syntaxes and
Term Rewritings," in this volmne, Oct. 1990.

[EnJg0] J. Engelfriet gz W. de Jong, "Attribute Storage Optimization by Stacks," Acta In-
form. (1990).

[Fra89] P. Franchi-Zannettacci, "Attribute Specifications for Graphical Interface Genera-
tion," in Information Processing '89, San Francisco, CA, G. X. Ritter, ed., 149-155,
North-Holland, Amsterdam, Aug. 1989.

[GAG84] H. Ganzinger & R. Giegerich, "Attribute Coupled Grammars," in ACM SIGPLAN
'84 Syrup. on Compiler Construction, Montr@al, published as ACM SIGPLAN No-
tices 19, 6 (June 1984), 157-170.

[GGV86] H. Ganzinger, 1£. Giegerich & M. Vach, "MARVIN: a Tool for Applicative and
Modular Compiler Specifications," Forschungsbericht 220, Fachbereich Informatik,
Univ. Dortmund, July 1986.

[G JR87] J. Garda, M. Jourdan & A. Rizk, "An Implementation of PARLOG Using High-
Level Tools," in ESPRIT '87: Achievements and Impact, Brussels, Commission of
the European Coramunities--DG XIII, ed., 1265-1275, North-Holland, Amsterdam,
Sept. 1987.

[Jou84] M. Jourdan, "Les grammaires attributes: implantation, applications, optimisations,"
thhse de Docteur-Ing6nieur, Univ. Paris VII, May 1984.

[JLPg0] M. Jourdan, C. Le Bellee &: D. Parigot, "The Olga Attribute Grammar Description
Language: Design, Implementation and Evaluation," in Attribute Grammars and
their Applications (WAGA), Paris, P. Deransart & M. Jourdan, eds., 222-237, Lect.
Notes in Comp. Sci., Springer-Verlag, New York-Heidelberg-Berlin, Sept. 1990.

[JoP89] M. Jourdan & D. Parigot, The FNC-2 System User's Guide and Reference Manual,
INRIA, Rocquencourt, Feb. 1989. This manual is periodically updated.

[JPJ90] M. Jourdan, D. Parigot, C. Juli4, O. Durin ~ C. Le Bellec, "Design, Implementation
and Evaluation of the FNC-2 Attribute Grammar System," in ACM SIGPLAN '90
Conf. on Programming Languages Design and Implementation, White Plains, NY,
published as ACM SIGPLAN Notices 25, 6 (June 1990), 209-222.

[JuP90] C. Juli@ i: D. Parigot, "Space Optimization in the FNC-2 Attribute Grammar Sys-
tem," in Attribute Grammars and thdr Appllcations (WAGA), Paris, P. Deransart
~z M. Jourdan, eds., 29-45, Lect. Notes in Comp. Sci., Springer-Verlag, New York-
Heidelberg-Berlin, Sept. 1990.

[KLMS3] G. Kahn, B. Lang, B. M41hse &:]~. Maa'cos, "Metal: a Formalism to Specify For-
malisms," Sci. Comput. Programming 3 (1983), 151-188.

[Kas80] U. Kastens, '~Ordered Attribute Grammars," Acta lifform. 13, 3 (1980)1 229-256.

[Kas84] ~ , "The GAG-System--A Tool for Compiler Construction," in Methods and
Tools for Compiler Construction, B. Lorho, ed., 165-182, Cambridge Univ. Press,
Cambridge, 1984.

[Ki173] G. Kildall, "A unified approach to global program optimization," in 1st ACM Syrup.
on Principles of Progr. Languages, 194-206, Jan. 1973.

25

[Knu68]

[LMW88]

[Lor77]

[Par88]

[Rei83]

[ReTSg]

[Sou90]

[UDP82]

[VoMS2]

D. E. Knuth, "Semantics of Context-free Languages," Math. Systems Theory 2, 2
(June 1968), 127-145. Correction: Math. Systems Theory 5, 1 (Mar. 1971), 95-96.

P. Lipps, U. Mhncke & R. WiIhelm, "OPTRAN - A Language/System for the Specifi-
cation of Program Transformations: System Overview and Experiences," in Compiler
Compilers and High Speed Compilation, Berlin, D. Hammer, ed., 52-65, Lect. Notes
in Comp. Sci. #371, Springer-Verlag, New York-Heidelberg-Berlin, Oct. 1988.
B. Lorho, "Semantic Attributes Processing in the System DELTA," in Methods of
Algorithmic Language Implementation, A. Ershov & C. H. A. Koster., eds., 21-40,
Lect. Notes in Corap. Sci. #47, Springer-Verlag, New York-Heidelberg-Berlin, 1977.

D. Parigot, "Transformations, 6valuation incr6mentale et optimisations des gram-
maires attributes: le syst~me FNC-2," thhse, Univ. de Paris-Sud, Orsay, May 1988.

S. P. l~eiss, "Generation of Compiler Symbol Processing Mechanisms from Specifi-
cations," ACM Trans. Progr. Languages and Systems 5, 2 (1983), 127-163.

T. Reps ~z T. Teitelbaum, The Synthesizer Generator, Springer-Verlag, New York-
Heidelberg-Berlln, 1989.

A. Souah, "Contribution/~ la s~mautique d~clarative des systhmes de transformation
d'arbres attribu6s," thhse, Univ. d'Ort~ans, Sept. 1990.

J. Uhl, S. Drossopoulos, G. Persch, G. Goos, M. Daussmann, G. Winterstein &
W. Kirchg£flner, An Attributed Grammar for the Semantic Analysis of ADA, Lect.
Notes in Comp. Sci. #139, Springer-Verlag, New York-Heidelberg-Berlin, 1982.

A. 0. Vooglaid & M. B. M6rist@, "Abstract Attribute Grammars," Progr. and Com-
puter Software 8, 5 (Sept. 1982), 242-251.

