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Abstract. We investigate the discrete logarithm problem over jacobians
of hyperelliptic curves suitable for public-key cryptosystems. We focus
on the case when the definition field has small characteristic 2, 3, 5 and 7,
then we present hyperelliptic cryptosystems that resist against all known
attacks. We further implement our designed hyperelliptic cryptosystems
over finite fields F2n in software on Alpha and Pentium-II computers.
Our results indicate that if we choose curves carefully, hyperelliptic cryp-
tosystems do have practical performance.

1 Introduction

1.1 Hyperelliptic Cryptosystems

Koblitz [Ko88,Ko89] investigated jacobians of hyperelliptic curves defined over
finite fields as a source of finite abelian groups suitable for cryptographic discrete
logarithm problems. As a motivation of the cryptographic research, Koblitz gave
the following conjectural remark [Ko88, page–99]: “Thus, as far as we know,
discrete log cryptosystems using J(Fpn) seem to be secure for relatively small
pn (even when p = 2). From the standpoint of implementation, this feature
may outweigh the added time required to compute the more complicated group
operation.”

Frey and Rück’s generalization [FR94] of MOV-attack [MOV93] solved in
subexponential time the discrete logarithm problems over some of Koblitz’s de-
signed hyperelliptic cryptosystems [Ko89]. However, Sakai, Sakurai and Ishi-
zuka designed hyperelliptic cryptosystems [SSI98] that resist against all known
attacks including the Frey and Rück’s method [FR94]. Furthermore, Sakai et
al. [SSI98] analyzed the computational complexity on the group operation in
jacobians. Their results theoretically support the Koblitz’s conjecture referred
to above.
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In this work, we further explores hyperelliptic discrete logarithms for obtai-
ning more efficient public key cryptosystems, and confirms experimentally the
Koblitz’s conjecture on the practical merit of hyperelliptic cryptosystems.

1.2 Our Investigated Topics
We consider the following topics to address as challenging problems after [Ko88]
[Ko89,SSI98].

1. Designing secure hyperelliptic cryptosystems with genus 2 curves over small
characteristic fields
Koblitz [Ko88,Ko89] presented jacobians of curves C : v2 + h(u)v = f(u),
where deg(f(u)) = 5 (genus 2), defined over F2. However, some discrete
logarithms of the curves had been broken by Frey and Rück [FR94]. As a
negative result, Sakai et al. [SSI98] experimentally showed that no secure
curve exists with genus 2 among those defined over F2 and h(u) = 1.
Recently developed other methods [BK98,Fr97,CMT97] have generated se-
cure hyperelliptic cryptosystems with genus 2. However, these require the
size of the characteristic of curve’s definition field to be large.

2. Designing secure hyperelliptic cryptosystems over F2n with smaller n
Sakai et al. [SSI98] examined jacobians over F2n with genus g = 3, 11 curves
v2 + v = u2g+1, which resist against all known attacks. However, their con-
struction requires a large extension-degree n. For example, for achieving the
security as RSA with 1024-bit key, the jacobian of the curve v2+v = u7 must
be defined over F259 or larger fields. They also confirmed that the jacobian
of the curve v2 + v = u23 (genus 11) over F247 induces a secure hyperellip-
tic cryptosystem with the same level of security as RSA with 5000-bit key.
This can be efficiently ( without multi-precision library ) implemented via
software on 64-bit CPU (e.g. Alpha).
However, no secure hyperelliptic cryptosystem is available from this curve
with smaller n than 47. We want such a jacobian over F2n with hopefully n ≤
32 for an efficient software implementation on 32-bit CPU (e.g. Pentium).

3. Implementing hyperelliptic cryptosystem in software
Indeed, the formulas for adding divisors in a jacobian are more complex
compared to formulas for adding points in an elliptic curve. However, as we
first remarked, Koblitz [Ko88] suggested that hyperelliptic cryptosystems
defined over a small definition field may be efficient in practice.
Sakai et al. [SSI98] evaluated encryption/decryption speed which should
that hyperelliptic cryptosystems are indeed practical. However, their confir-
mation was only theoretical, and no performance via a practical implemen-
tation has been reported.

1.3 Our Results
On Design with Genus Two In the case of characteristic 2, we have found secure
jacobians by considering a more wider class of h(u) (degree of h(u) has at most
g). Moreover, in the case of C : v2 = f(u) over characteristic 3, 5 and 7 finite
fields, where deg(f(u)) = 5 (genus 2), we have found many curves which resist
against all known attacks.
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On Design with Smaller Size of F2n By not choosing curves from v2 + v = u2g+1

but from a wider class v2 + v = f(u), we have found secure jacobians over F2n

with “n ≤ 32” that achieve the same (or higher) level of security as RSA with
1024-bit key.

On Implementation We have implemented operations in jacobians via software.
One platform was Alpha 21164A (467MHz) with 64-bit word size, and ano-
ther was Pentium-II (300MHz) with 32-bit word size. Programs were written in
C-language and compiled with GCC. Our software implementation of secure ja-
cobians, which have the same level of security as RSA with 1024-bit key, achieve
good practical performance. In an exponentiation of a randomly chosen divisor,
the jacobian over F259 of the genus 3 curve C : v2 + v = u7 achieved 83.3 msec.
on Alpha 21164A (467MHz), and the jacobian over F229 of the genus 6 curve
C : v2 +v = u13 +u11 +u7 +u3 +1 achieved 476 msec. on Pentium-II (300MHz).
We have also implemented secure jacobians which have the same level of security
as RSA with 5000-bit key. In an exponentiation of a randomly chosen divisor,
the jacobian over F247 of the genus 11 curve C : v2 + v = u23 achieved 1.74
sec. on Alpha 21164A (467MHz). Note that those jacobians can be implemented
without “a multi-precision library”, because of the size of the definition fields.

1.4 Our Approach

Our Considered Security We design hyperelliptic cryptosystems that resist
against the following four known attacks:

1. The Pohlig-Hellman method [PH78].
2. Frey-Rück’s generalization [FR94] of the Menezes-Okamoto-Vanstone attack

[MOV93].
3. Adleman-DeMarrais-Huang’s smooth-divisor-attack [ADH94].
4. Rück’s generalization [Ru97] of the Semaev-Smart-Satoh-Araki attack

[Sem98,Sm97,SA97] on elliptic curves with Frobenius trace one.

Our design further notes new attacks improving the parallerized Pollard-
Lambda search [WZ98,GLV98].

On Choosing Curves and Counting the Order of their Jacobian In
[Ko88], Koblitz investigated the jacobians of the hyperelliptic curves v2 + v =
u2g+1 over finite field for cryptographically intractable discrete logarithm. In
[Ko89], Koblitz also discussed the jacobians of the hyperelliptic curves of more
general form v2 + h(u)v = f(u), however, the degree of the polynomial f(u)
is restricted to be 5 (i.e. genus 2) and the definition fields are only the case
of characteristic 2. In order to obtain a broader class of jacobians suitable for
secure discrete logarithms, we deal with a wider family of the hyperelliptic curves
v2 +v = f(u) and v2 = f(u) over finite field of characteristic 2, 3, 5 and 7, where
deg(f(u))=2g + 1.

2 Preliminaries
In this section, we give a brief description of jacobians. See [Ko98] for more
detail.
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Let F be a finite field and let F̄ be the algebraic closure of F. A hyperelliptic
curve C of genus g over F is an equation of the form C : v2 + h(u)v = f(u) in
F[u, v], where h(u) ∈ F[u] is a polynomial of degree at most g, f(u) ∈ F[u] is
a monic polynomial of degree 2g + 1, and there are no solutions (u, v) ∈ F̄ × F̄
which simultaneously satisfy the equation v2 + h(u)v = f(u) and the partial
derivative equations 2v + h(u) = 0 and h′(u)v − f ′(u) = 0. Thus, a hyperelliptic
curve does not have singular points.

A divisor on C is a finite formal sum of F̄-points D =
∑

miPi, mi ∈ Z. We
define the degree of D to be deg(D) =

∑
mi. If K is an algebraic extension of

F, we say that D is defined over K if for every automorphism σ of F̄ that fixes
K one has

∑
miP

σ
i = D, where Pσ denotes the point obtained by applying

σ to the coordinates of P (and ∞σ = ∞). Let D denote the additive group
of divisors defined over K (where K is fixed), and let D0 denote the subgroup
consisting of divisors of degree 0. The principal divisors form a subgroup P of
D0. J(K) = D0/P is called the ”jacobian” of the curve C. In this paper, we
denote J(C;K) also the jacobian defined over K of the curve C.

The discrete logarithm problem on J(C;K) is the problem, given two divisors
D1, D2 ∈ J(C;K) of determining an integer m such that D2 = mD1 if such m
exists.

3 Security Against Known Attacks

We will choose jacobians to satisfy the following four conditions to resist against
all known attacks.
C1 : ]J(C;Fq) is divisible by a large prime
C2 : J(C;Fq) can not be imbedded into a small finite field Fqk

C3 : 2g + 1 ≤ log q
C4 : Jacobian over a field of characteristic p has not a cyclic group structure

of order pn for small n.
Our design further notes new attacks improving the parallerized Pollard-

Lambda search [WZ98,GLV98].

3.1 C1 : General Algorithms
The condition C1 is to resist Pohlig-Hellman method [PH78]. The algorithm
has a running time that is proportional to the square root of the largest prime
factor of ]J(C;Fq). Therefore, we need to choose curves such that ]J(C;Fq) has
a large prime factor.

3.2 C2 : Imbedding into a Small Finite Field
The condition C2 is to resist Frey and Rück’s generalization [FR94] of MOV-
attack [MOV93] using Tate pairing. Their method reduces the logarithm problem
over J(C;Fq) to the logarithm problem over an extension field Fqk . Methods of
avoiding MOV-attack have been discussed in [BS91,CTT94]. We take the similar
approach by choosing curves such that the induced jacobian J(C;Fq) cannot be
imbedded via Tate pairing into Fqk with small extension degree k. Therefore,
we replace C2 by the following sufficient condition:

C2’ : The largest prime factor of ]J(C;Fq) does not divide
(q)k − 1, k < (log q)2
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3.3 C3 : Large Genus Hyperelliptic Curves

The condition C3 is to resist Adleman-DeMarrais-Huang method [ADH94].
They found a sub-exponential algorithm for discrete logarithm over the rational
subgroup of the jacobians of large genus hyperelliptic curves over finite fields. It
is a heuristic algorithm under certain assumptions. Therefore, we need to choose
curves such that the genus of curves is not so large.

3.4 C4 : Additive Embedding Attack

The condition C4 is to resist Rück’s generalization [Ru97] of the Semaev-Smart-
Satoh-Araki attack [Sem98,Sm97,SA97] on elliptic cryptosystems with Frobe-
nius trace one. The method uses an additive version of Tate pairing to solve the
discrete logarithm of a jacobian over a finite field of characteristic p and has the
running time O(n2logp) for a jacobian with cyclic group structure of order pn.

We should remark that our design is in small characteristic p = 2, 3, 5 and
7. Subgroups of the jacobians that we consider have order prime to the cha-
racteristic p. Therefore, this additive embedding attack does not apply to our
cryptosystems.

3.5 Improved Parallerized Pollard-Lambda Search

New attacks have been announced, which improved the parallerized Pollard-
Lambda search [WZ98,GLV98]. For elliptic curves over F2n with coefficients in
F2, this attacking time can be reduced by a factor of the square root of 2n.
For example, the time required to compute an elliptic curve logarithm on such a
curve over F2163 is reduced from the previous 281 to 277 elliptic curve operations.

This could be applicable to our designed hyperelliptic cryptosystems in cha-
racteristic 2, because the coefficients of our curves belong to F2. We should
note that the power of this attack is not so strong as the four listed above.
However, this attack is very important to our selection of the size of security-
parameter, which effects the performance analysis of our cryptosystems. There-
fore, we should consider the security against possible extension of this kind of
attack in our design of hyperelliptic cryptosystems.

4 Our Order Counting Method

Beth and Schaefer [BS91] used zeta-function for their constructing elliptic cryp-
tosystems and Koblitz [Ko88,Ko89,Ko98] also used zeta-function of a hyper-
elliptic curve to construct jacobians of hyperelliptic curves defined over finite
fields.

A technical difficulty in our computation on general hyperelliptic curves
is that the zeta-function has a complicated form with larger degree. There-
fore, it is not easy to compute its exact solutions unlike the previous cases
[BS91,Ko88,Ko89,Ko98]. However, it is known that the order of a jacobian
can be computed without deciding the solution of its zeta-function [St93, Chap-
ter V]. Therefore, we use this algorithm for our problems.

Throughout this section, F denotes an algebraic function field of genus g
whose constant field is the finite field Fq and P denotes the set of places of
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F/K. The definition, the theorem and the corollary shown below are given in
the article [St93].

Definition 1. [St93] The polynomial L(t) := (1 − t)(1 − qt)Z(t) is called the
L-polynomial of function field F/Fq, where Z(t) denotes the zeta-function of
F/Fq.

Theorem 1. [St93]

(a) L(t) ∈ Z[t] and deg L(t) = 2g
(b) L(t) = qgt2gL(1/qt)
(c) L(1) = h, the class number of F/Fq

(d) We write L(t) =
∑2g

i=0 ait
i. Then the following holds:

(1) a0 = 1 and a2g = qg.
(2) a2g−i = qg−iai for 0 ≤ i ≤ g.
(3) a1 = N − (q +1) where N is the number of places P ∈ PF of degree one.

(e) L(t) factors in C[t] in the form L(t) =
∏2g

i=1(1−αit). The complex numbers
α1, · · · , α2g are algebraic integers, and they can be arranged in such a way
that αiαg+i = q holds for i = 1, · · · , g.

(f) If Lr(t) := (1 − t)(1 − qrt)Zr(t) denotes the L-polynomial of the constant
field extension Fr = FFqr , then Lr(t) =

∏2g
i=1(1 − αit)

Corollary 1. [St93] Let Sr := Nr − (qr + 1). Then we have:
a0 = 1, and iai = Sia0 + Si−1a1 + · · · + S1ai−1, for i = 1, · · · , g.

We can determine the order of jacobians by the Theorem and the Corollary
in the following algorithm. We should note that it is easy to count N1, · · · , Ng if
Fq is small.

Order Counting
Input Hyperelliptic curve C : v2 + h(u)v = f(u) over Fq

and extension degree n
Output The order ]J(C;Fqn)
Step1 Determine Nr = ]J(C;Fqr ), for r = 1, · · · , g

by counting the number of rational points of C over Fqr

Step2 Determine the coefficients of LFq (t) =
∑2g

i=0 ait
i in the following:

a0 = 1
for 1 ≤ i ≤ g: ai = (

∑i

k=1(Nk − (qk + 1))ai−k)/i
for g + 1 ≤ i ≤ 2g: ai = qi−ga2g−i

Step3 Compute LFqn (1) =
∏n

k=1 LFq (ζk),
where ζ runs over the n-th root of unity

Step4 Return ]J(C;Fqn) = LFqn (1)

5 Jacobians over Finite Fields of Characteristic 2
Koblitz [Ko88,Ko89] considered the security of the discrete logarithm problem
over jacobians of genus 2 curves when the definition fields have characteristic
2. However, Frey and Rück [FR94] generalized MOV-reduction to hyperelliptic
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curves. They have found that some of hyperelliptic cryptosystems presented by
Koblitz [Ko89] are breakable in sub-exponential time. In this section, we discuss
the security of genus 2 curves which have the form v2 + h(u)v = f(u) defined
over characteristic 2 finite fields. We also discuss the security of genus 3, 4, 5
and 6 curves.

5.1 Genus 2 Curves

First, we examine the order of jacobians ]J(C;F2n) in the case of h(u) = 1,
where the degree of f(u) equals to 5. We also examine their factorizations.

Extension degree n of F2n were examined from 59 to 89. The reason is that:
]J(C;F259) has the size of 119-bit. ]J(C;F289) has the size of 179-bit. Namely,
if the jacobians are secure, their level of security are in the range from appro-
ximately RSA-512 to RSA-1024. 1 ( ”RSA-n” denotes RSA with n-bit key. )
We have examined whether Pmax of ]J(C;F2n) divide (2n)k − 1 to confirm the
security condition C2’. (Pmax denotes the largest prime factor of ]J(C;Fq).) As
a result, for example, in the case of f(u) = u5 + u3, ]J(C;F289) has the size of
179-bit and its Pmax has the size of 134-bit. However, Pmax divides (2n)12 − 1.
Therefore, the jacobian does not satisfy C2’ (see also [FR94]).

In the case of h(u) = 1, We have failed to obtain secure jacobians, which
satisfy C1 and C2’. However, in [Ko98], Koblitz examined the case of h(u) = u
and showed examples of secure jacobians. We have examined the case of more
wider classes such that h(u) has degree at most g. As a result, ]J(C;F289) of
C : v2 + (u2 + u + 1)v = u5 + u + 1 has the size of 179-bit. Its Pmax has the
size of 178-bit. We also confirmed the jacobian satisfies C2’. The factorization
of the jacobian is given in Appendix A.

5.2 Curves of Genus Larger than 2

Next, we examine ]J(C;F2n) and their factorizations in the case of curves C :
v2 + v = f(u) have genus 3, 4, 5 or 6, where degree of f(u) equals to 7, 9, 11 or
13, respectively.

Table 1 shows the list of the size of ]J(C;F2n) and the size of Pmax. The
factorizations are given in Appendix A. Extension degree n of F2n were examined
by n such that ]J(C;F2n) has the size of larger than 160-bit. Namely, if listed
jacobians are secure, their level of security are approximately same as RSA-1024
or with a larger key. The listed equations of curves C have largest Pmax in fixed
extension degree n. In the case of genus 5, all prime factors of ]J(C;F237) have
much smaller size than 160-bit. Therefore, J(C;F241) are listed.

We have examined whether Pmax of ]J(C;F2n) divide (qn)k − 1 to confirm
the security condition C2’. All listed ]J(C;F2n) satisfy C2’. Namely, Pmax does

1 The notation ”same level of security” is based on the following: One of the most
efficient algorithm of integer factoring is the number field sieve method. The method
takes exp(c(ln n)1/3(ln ln n)2/3) time, where 1.5 < c < 1.9 and n denotes the size
of an integer. On the other hand, Pohlig-Hellman method, which is an efficient
algorithm for discrete logarithm problem for elliptic curve, takes

√
Pmax. Therefore,

for example, EC-160 has approximately same level of security as RSA-1024.
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genus J C : v2 + v = f(u) size of ]J size of Pmax

3 J(C;F259) f(u) = u7 178-bit 165-bit
4 J(C;F241) f(u) = u9 + u7 + u3 + 1 164-bit 161-bit
5 J(C;F241) f(u) = u11 + u5 + u + 1 205-bit 201-bit
6 J(C;F229) f(u) = u13 + u11 + u7 + u3 + 1 174-bit 170-bit

Table 1. Jacobians over char 2 finite fields of genus 3,4,5 and 6 curves

not divide (qn)k − 1 with small k. Therefore, the curves shown in Table 1 are
secure and have the same or higher level of security as RSA-1024. We implement
group operations of the jacobians in software in a later section.

6 Jacobians over Finite Fields of Characteristic Larger
than Two

In this section, we examine genus 2 curves over characteristic 3, 5 and 7 finite
fields. Moreover, we examine genus 3 and 4 curves.

6.1 Genus 2 Curves
First, we examine the curve C : v2 = f(u), where f(u) has degree 5. Tables 2,
3 and 4 show the list of the size of ]J(C;Fpn) and the size of Pmax in the case
of p = 3, 5, 7, respectively. Tabulated are in the case that the coefficients of the
curves are in {0,1}. The factorizations of ]J(C;Fpn) are given in Appendix A.

In the case of characteristic 3, extension degree n of F3n were examined from
37 to 59. ]J(C;F337) has the size of 118-bit. ]J(C;F359) has the size of 188-bit.
As in the last section, if listed jacobians are secure, their levels of security are
in the range from approximately RSA-512 to RSA-1024. The listed equations
of curves C have largest Pmax in fixed extension degree n. As in the case of
characteristic 3, extension degree n of F5n was examined from 23 to 43, and
extension degree n of F7n was examined from 19 to 37.

We have examined whether Pmax of ]J(C;Fpn) divide (pn)k − 1 to confirm
the security condition C2’. All listed ]J(C;Fpn) in tables 2, 3 and 4 satisfy C2’.
Namely, Pmax does not divide (pn)k − 1 with small k.

6.2 Curves of Genus Larger than 2
Next, we examine the order of jacobians ]J(C;Fpn) and their factorizations of
genus 3 and 4 curves C : v2 = f(u), where degree of f(u) equals to 7 and 9,
respectively.

Table 5 shows the list of the size of ]J(C;Fpn) and the size of the largest
prime factor of ]J(C;Fpn). As in the case of genus 2, there exist secure jacobians
which satisfy the condition C2’. The factorizations of ]J(C;Fpn) are given in
Appendix A.
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J C size of ]J size of Pmax

J(C;F337) v2 = u5 + u3 + u + 1 118-bit 97-bit
J(C;F341) v2 = u5 + u2 + u + 1 130-bit 116-bit
J(C;F343) v2 = u5 + u4 + 1 137-bit 118-bit
J(C;F347) v2 = u5 + u3 + u + 1 149-bit 135-bit
J(C;F353) v2 = u5 + u4 + u + 1 169-bit 147-bit
J(C;F359) v2 = u5 + u4 + u3 + u + 1 188-bit 185-bit

Table 2. genus 2 curves over char 3 fields

J C size of ]J size of Pmax

J(C;F523) v2 = u5 + u4 + u3 + 1 107-bit 103-bit
J(C;F529) v2 = u5 + u4 + u3 + u + 1 135-bit 129-bit
J(C;F531) v2 = u5 + u2 + 1 144-bit 140-bit
J(C;F537) v2 = u5 + u4 + u3 + 1 172-bit 149-bit
J(C;F541) v2 = u5 + u4 + u3 + 1 191-bit 118-bit
J(C;F543) v2 = u5 + u2 + 1 200-bit 196-bit

Table 3. genus 2 curves over char 5 fields

J C size of ]J size of Pmax

J(C;F719) v2 = u5 + u4 + u3 + u2 + 1 107-bit 76-bit
J(C;F723) v2 = u5 + u4 + u3 + u + 1 130-bit 118-bit
J(C;F729) v2 = u5 + u4 + u2 + 1 164-bit 157-bit
J(C;F731) v2 = u5 + u4 + u3 + u2 + 1 175-bit 154-bit
J(C;F737) v2 = u5 + u3 + u2 + u + 1 208-bit 203-bit

Table 4. genus 2 curves over char 7 fields

char genus J C size of ]J size of Pmax

3 3 J(C;F337) v2 = u7 + u5 + u3 + u2 + 1 176-bit 171-bit
4 J(C;F329) v2 = u9 + u6 + u5 + u3 + 1 184-bit 178bit

5 3 J(C;F523) v2 = u7 + u6 + u2 + 1 161-bit 154-bit
4 J(C;F519) v2 = u9 + u7 + u6 + u5 + u3 + u + 1 177-bit 168-bit

7 3 J(C;F719) v2 = u7 + u6 + u5 + u3 + u + 1 161-bit 152-bit
4 J(C;F717) v2 = u9 + u8 + u6 + u5 + u3 + u + 1 191-bit 181-bit

Table 5. genus 3 and 4 curves over char 3, 5 and 7 fields

7 Implementation and Timings
In this section, we show software implementation and timings of group operations
in jacobians over characteristic 2 finite fields obtained in previous sections.

7.1 Computing in Jacobians
we show here an algorithm for addition and doubling of elements D ∈ J(C;F2n).
A divisor D is regarded simply as a pair of polynomials D = div (a(u), b(u))
such that deg b < deg a and deg a ≤ g. We give here a brief description of
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the algorithm for the addition: D3 = D1 + D2, where D3 = div(a3, b3), D1 =
div(a1, b1), D2 = div(a2, b2) (see [Ca87,Ko89] for more details).

Addition
Input: two divisors D1 = div(a1, b1), D2 = div(a2, b2) ∈ J
Output: D3 = div(a3, b3) = D1 + D2

Step A1 Compute d1, s1 and s2 which satisfy
d1 = gcd(a1, a2) and d1 = s1a1 + s2a2

Step A2 If d1 = 1 then
a := a1a2, b := s1a1b2 + s2a2b1 (mod a)

else
Compute d2, s

′
1, s

′
2 and s3 which satisfy

d2 = gcd(d1, b1 + b2 + h) and d2 = s′
1a1 + s′

2a2 + s3(b1 + b2 + h)
a := a1a2/d2

2, b := (s′
1a1b2 + s′

2a2b1 + s3(b1b2 + f))/d2 (mod a)
Step A3 While deg(a3) > g do the following:

a3 := (f − b − b2)/a, b3 := −h − b (mod a3), a := a3, b := b3

Step A4 Return D3 = div(a3, b3)

If a1 and a2 have no common factor, Step A2 to be simpler case. Note that
the case gcd(a1, a2) = 1 is extremely likely if the definition field is large and a1
and a2 are the coordinates of two randomly chosen elements of the jacobian.

When a1 = a2 and b1 = b2, i.e., doubling an element of J(C;F2n), we can take
s2 = 0. Moreover, in the case of char F =2 and h(u) = 1, d1 = 1, s1 = s2 = 0,
S3 = 1, and a = a1

2, b = b1
2 + f (mod a). Therefore, In the case of J(C;F2n)

and C : v2 + v = f(u), the doubling can be done in the algorithm as follows.

Doubling
Input: a divisor D1 = div(a1, b1) ∈ J
Output: D2 = div(a2, b2) = D1 + D1

Step D1 a := a2
1, b := b2

1 + f (mod a)
Step D2 While deg(a2) > g do the following:

a2 := (f − b − b2)/a, b2 := −h − b (mod a2), a := a2, b := b2

Step D3 Return D2 = div(a2, b2)

Addition and doubling take O(g3) field multiplications. The details of the
estimation on the computational cost can be found in [SSI98].

7.2 Field Operations
All operations in addition and doubling of D ∈ J(C;F2n) are done by operations
in a finite field, because our divisors D (pair of two polynomials) have coefficients
in their definition field. We will use a polynomial basis in our implementations.

7.3 Representation of Field Elements in Memory
Elements in F2n can be represented as n-bit words in computer memory. If
CPU has m-bit size of resisters, F2n such as n ≤ m are regarded as sim-
ply ordinary ”unsigned integer”. However, unfortunately, if n > m, we need
to use ”multi-precision” operations for computing. In general, we need such
multi-precision operations for RSA and elliptic curve cryptosystems. On the
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other hand, the order of an abelian variety A(Fq) of genus g lies in the range:
(q

1
2 − 1)2g ≤ ]A(Fq) ≤ (q

1
2 + 1)2g [St93]. Therefore, if we choose curves ca-

refully, hyperelliptic cryptosystems, which have larger genus g curves compared
to elliptic curve, can be implemented without multi-precision library, because an
element of the definition field can be stored in computer registers. Such hyperel-
liptic cryptosystems may have practical performance even though the algorithm
for addition of D, shown in the last sub-section, is much more expensive than
the algorithm for addition of points on elliptic curves.

7.4 Generating Random Divisors

From cryptosystems point of view, we need to have a method of generating a
”random” divisor D ∈ J(C;Fqn). In [Ko89], Koblitz has given such a method
in the following way. In our implementation, we have generated divisors D in
the method.

We may regard C as defined over Fqn . Let C have the equation v2 +h(u)v =
f(u). Choose the coordinate u = x ∈ Fq at random and attempt to solve v2 +
h(x)v = f(x). In the case of q is even, h(x) 6= 0 and the change of variables
z = v/h(x) leads to the equation z2 + z = a, where a = f(x)/h(x)2. It is easy to
see that this equation has a solution z ∈ Fq if TrFq/F2a = 0 and does not have a
solution if this trace is 1. In the latter case, we must choose another u = x ∈ Fq

and start again. In the former case, we can find z as follows: If q = 2n is an odd
power of 2, simply set

∑(n−1)/2
j=0 a22j

.

7.5 Timings

We have implemented group operations in jacobians over F2n and timed an
exponentiation, an addition and a doubling of randomly generated divisors using
the algorithms shown in the previous subsection. An exponentiation was done
with a simple repeated-doubling method.

The platforms used were Alpha 21164A (467MHz) and Pentium-II (300MHz).
Alpha has 64-bit registers and Pentium-II has 32-bit registers. Programs were
written in C-language. When extension degree n of F2n has a larger size than
the register size of the CPU, we used GNU-MP library (gmp-2.0.2) for multi-
precision operations.

Table 6 shows the processing time of an exponentiation, an addition and a
doubling of a randomly given divisor implemented on Alpha 21164A (467MHz)
and Pentium-II (300MHz). The order of each jacobians ]J(C;F2n) have the
largest prime factor which has a larger size than 160-bit, namely, they have the
same or higher level of security as RSA-1024 and EC-160.

All jacobians of Table 6 are defined over finite fields F2n with n ≤ 64. The-
refore, we can implement with no multi-precision library over Alpha 21164A
(467MHz). J(C;F259) of genus 3 curve C : v2 +v = u7 achieved 83.3 msec. in an
exponentiation. Moreover, in the case of Pentium, we should focus on the case
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g J(v2 + v = f(u);F2n) Addition(msec.) Doubling(msec.) Exp.(msec.)
F2n f(u) Alpha Pentium Alpha Pentium Alpha Pentium

3 F259 u7 0.54 67.6 0.26 34.1 83.3 1.17 · 104

4 F241 u9 + u7 + u3 + 1 0.55 67.2 0.26 33.3 96.6 1.09 · 104

5 F241 u11 + u5 + u + 1 0.88 109 0.48 58.7 183 2.36 · 104

6 F229 u13 + u11 + u7 + u3 + 1 0.83 2.68 0.44 1.45 159 476

Table 6. Timings of jacobians which have the same level of security as RSA-1024 on
Alpha 21164A (467MHz) and Pentium-II (300MHz)

g J C size of Addition Doubling Exp.
Pmax (msec.) (msec.) (msec.)

3 J(C;F289) v2 + v = u7 246-bit 85.3 42.8 2.57 · 104

3 J(C;F2113) v2 + v = u7 310-bit 118 58.9 3.79 · 104

11 J(C;F247) v2 + v = u23 310-bit 5.04 3.13 1.74 · 103

Table 7. Timings of jacobians of C : v2 + v = u2g+1 which have the same level of
security as RSA-2048 or RSA-5000 over Alpha 21164A (467MHz)

J(C;F229) of genus 6 curve C : v2 + v = u13 + u11 + u7 + u3 + 1. An exponen-
tiation took 476 msec. on Pentium-II (300MHz). This jacobian achieves good
performance and faster than other jacobians of smaller genus curves, because of
the field size.

Moreover, we have implemented genus 3 and 11 curves, which have the same
level of security as RSA-2048 and RSA-5000. Table 7 shows the processing time
of C : v2 + v = u2g+1 implemented over Alpha 21164A (467MHz). Even if the
genus is 11, which has the same level of security as RSA-5000, exponentiation
took 1.79 sec because of its small size of the definition field.

In the case of elliptic curve cryptosystems, many techniques for an efficient
implementation has been developed, and timings were reported. For example,
in [WBV96], an elliptic curve (over F2177) exponentiation with 177-bit exponent
achieved 72 msec. on Pentium 133 MHz. In [MOC97], an elliptic curve (over
Fp, p = 2169 − 1825) exponentiation with 169-bit exponent (of a random point)
achieved 32.54 msec. on Sparc 110 MHz. On the other hand, in the case of hy-
perelliptic cryptosystems, no such a report has been published. Our hyperelliptic
curves exponentiation, which have smaller definition fields, are a few times slo-
wer than the elliptic curves cases. However, our implementation suggests that
hyperelliptic curve cryptosystems may have practical performance.
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A Jacobians which have the Same Level of Security as
RSA-1024

In this Appendix, we show jacobians such that the largest prime factor (Pmax) of
]J(C;Fqn) has the size of approximately 2160.

A.1 Characteristic 2
Genus 2 curves
J(C;F289), C : v2 + (u2 + u + 1)v = u5 + u + 1/F2 (Pmax:178-bit)
]J = 2 · 191561942608242456073498418252108663615312031512914969
Genus 3 curves
J(C;F259), C : v2 + v = u7/F2 (Pmax:165-bit)
]J = 7 · 827 · 33090679324276404784037550343359349791850702512053
Genus 4 curves
J(C;F241), C : v2 + v = u9 + u7 + u3 + 1/F2 (Pmax:161-bit)
]J = 11 · 2125818615244041340661452662120917241919480417187
Genus 5 curves
J(C;F241), C : v2 + v = u11 + u5 + u + 1/F2 (Pmax:201-bit)
]J = 29 · 1773173014354747890253199550169173842018096398692873319662133

Genus 6 curves
J(C;F229), C : v2 + v = u13 + u11 + u7 + u3 + 1/F2 (Pmax:170-bit)
]J = 23 · 1040988300089925365337867649065425169641062000079783
J(C;F229), C : v2 + v = u13 + u11 + u9 + u5 + 1/F2 (Pmax:171-bit)
]J = 13 · 1841646667025959098054051155819603805847557201575621

A.2 Characteristic 3
Genus 2 curves
J(C;F359), C : v2 = u5 + u4 + u3 + u + 1/F3 (Pmax:185-bit)
]J = 5 · 39933562220320460133120368418577581396339849557868704977
Genus 3 curves
J(C;F337), C : v2 = u7 + u5 + u3 + u2 + 1/F3 (Pmax:171-bit)
]J = 5 · 7 · 2608502325966498106517804088886290895899401162747777
J(C;F337), C : v2 = u7 + u6 + u5 + u4 + 1/F3 (Pmax:164-bit)
]J = 47 · 149 · 13036924465204430321626282159677955928081271322337
Genus 4 curves
J(C;F329), C : v2 = u9 + u8 + u7 + u4 + u3 + u2 + u + 1/F3 (Pmax:177-bit)
]J = 137 · 161936596667550201850764509341446010074223174018351807
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J(C;F329), C : v2 = u9 + u6 + u5 + u3 + 1/F3 (Pmax:178-bit)
]J = 2 · 43 · 257968616884115037815521227015137018694634859077456601
J(C;F329), C : v2 = u9 + u7 + u5 + u4 + u3 + u + 1/F3 (Pmax:178-bit)
]J = 2 · 53 · 209295417307275986159417399889573453667424414714367781
J(C;F329), C : v2 = u9 + u7 + u6 + u2 + 1/F3 (Pmax:178-bit)
]J = 3 · 37 · 199867665359855144576119236835076831435089172471787133
J(C;F329), C : v2 = u9 + u7 + u6 + u5 + u4 + u3 + u + 1/F3 (Pmax:178-bit)
]J = 5 · 19 · 233529568966516115208148703607774647750483532026125357
A.3 Characteristic 5
Genus 2 curves
J(C;F543), C : v2 = u5 + u2 + 1/F5 (Pmax:196-bit)
]J = 2 · 2 · 5 · 64623485355705134605734078473194763210739812239980205784653

Genus 3 curves
J(C;F523), C : v2 = u7 + u6 + u2 + 1/F5 (Pmax:154-bit)
]J = 3 · 43 · 13132293573869607525341363618339646743815332017
Genus 4 curves
J(C;F519), C : v2 = u9 + u6 + u4 + u3 + 1/F5 (Pmax:166-bit)
]J = 2 · 967 · 68432754693421761179795901150463384835984065125361
J(C;F519), C : v2 = u9 + u7 + u6 + u5 + u3 + u + 1/F5 (Pmax:168-bit)
]J = 3 · 151 · 292161172338621074756327634541902615881173270592929
J(C;F519), C : v2 = u9 + u8 + u7 + u4 + u + 1/F5 (Pmax:167-bit)
]J = 17 · 73 · 106647119155998044412946215375749800145892212819953
A.4 Characteristic 7
Genus 2 curves
J(C;F729), C : v2 = u5 + u4 + u2 + 1/F7 (Pmax:157-bit)
]J = 79 · 131237887042242857431066650243988190313418218301
Genus 3 curves
J(C;F719), C : v2 = u7 + u6 + u5 + u3 + u + 1/F7 (Pmax:152-bit)
]J = 23 · 41 · 4515589388807654345104182483396611659561472503
Genus 4 curves
J(C;F717), C : v2 = u9 + u8 + u6 + u5 + u3 + u + 1/F7 (Pmax:181-bit)
]J = 24 · 97 · 1887013872967731362035225483450574087672233509002381911

B Curves of v2 + v = u2g+1 over F2
In this Appendix, we show jacobians of C : v2 + v = u2g+1 in the case of g = 3, 11.
Genus 3 curves
J(C;F259), C : v2 + v = u7/F2 (Pmax:165-bit)
]J = 7 · 827 · 33090679324276404784037550343359349791850702512053
J(C;F289), C : v2 + v = u7/F2 (Pmax:264-bit)
]J = 7·179·2671·708571831223255331278233257920542432444353038831539933625391

34263544967267
J(C;F2113), C : v2 + v = u7/F2 (Pmax:310-bit)
]J = 7·1583·75937·1330871544591258503904350594363988884236263515175406042076

326739667429564571295519238138050393
Genus 11 curves
J(C;F247), C : v2 + v = u23/F2 (Pmax:310-bit)
]J = 3·23·29·34687·254741·381077·836413·4370719·122803256446193·101578405621916

029·1396360023741601228722804905934361404439480177105909460096120108013
867835189294124093667687457
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