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Abstract. The Shrinking Generator and the Alternating Step Generator
are two of the most well known clock-controlled stream ciphers. We con-
sider correlation attacks on these two generators, based on an identified
relation to the decoding problem for the deletion channel and the ins-
ertion channel, respectively. Several ways of reducing the decoding com-
plexity are proposed and investigated, resulting in “divide-and-conquer”
attacks on the two generators having considerably lower complexity than
previously known attacks.

1 Introduction

A binary additive stream cipher is a synchronous stream cipher in which the
keystream, the plaintext and the ciphertext are sequences of binary digits. The
output of the keystream generator, z1, z2, . . . is added bitwise to the plaintext
sequence m1, m2, . . ., producing the ciphertext c1, c2, . . .. Each secret key k as
input to the keystream generator corresponds to an output sequence. Since the
secret key k is shared between the transmitter and the receiver, the receiver
can decrypt by adding the output of the keystream generator to the ciphertext,
obtaining the message sequence.

The goal in stream cipher design is to efficiently produce random-looking
sequences that in some sense are “indistinguishable” from truly random sequen-
ces. From a cryptanalysis point of view, a good stream cipher should be resistant
against a known-plaintext attack. In a known-plaintext attack the cryptanalyst is
given a plaintext and the corresponding ciphertext, and the task is to determine
a key k. For a synchronous stream cipher, this is equivalent to the problem of
finding the key k that produced a given keystream z1, z2, . . . , zN .

In stream cipher design, one usually use linear feedback shift registers, LFSRs,
as building blocks in different ways, and the secret key is often used as the initial
state of the LFSRs. A general methodology for producing random-like sequen-
ces from LFSRs that recently has been popular is using the output of one or
more LFSRs to control the clock of other LFSRs. The purpose is to destroy the
linearity of the LFSR sequences and hence provide the resulting sequence with
a large linear complexity.
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The most important general attacks on LFSR-based stream ciphers are cor-
relation attacks. Basically, if one can in some way detect a correlation between
the known output sequence and the output of one individual LFSR, this can be
used in a “divide-and-conquer” attack on the individual LFSR [13,11,5,6].

Two of the most well known clock-controlled stream ciphers are the Shrin-
king generator and the Alternating step generator. In this paper we consider
correlation attacks on these two generators. Some basic attacks have been con-
sidered when the generators were introduced [1] and [8], and further studies in
[7] and [4]. For an overview, see [12].

Our considerations are based on an identified relation to the decoding pro-
blem on the deletion channel and the insertion channel, respectively. Several
ways of reducing the decoding complexity are proposed and investigated, re-
sulting in “divide-and-conquer” attacks on the two generators mentioned above
having considerably lower complexity than previously known attacks. For exam-
ple, for the Shrinking generator with shift register length 61 as suggested in [10],
but with known feedback polynomial, the complexity of breaking this genera-
tor is reduced from around 280 [1] to 240 − 250 depending on the length of the
received sequence.

In Section 2 we describe the Shrinking generator and the Alternating step
generator, respectively. We also show the relation to the decoding problem for
the deletion/insertion channel. In Section 3 we consider a procedure for MAP
decoding on the deletion channel. In Section 4 we propose a suboptimal MAP
decoding procedure with reduced complexity and then demonstrate how cer-
tain “weak” subsequences that appear in the output sequence can be used to
further reduce the complexity of a “divide-and-conquer” attack on the Shrin-
king generator. In Section 5 and 6 the same ideas are used on the Alternating
step generator and the insertion channel, essentially showing the same type of
complexity reduction.

2 Preliminaries

The Shrinking Generator, or SG for short, uses two sources of pseudorandom
bits to create a third source of pseudorandom bits, having better cryptographic
quality than the original sources. The output sequence is a subsequence of the
first source, which is selected according to the values of the second source. The
two original sources are in the proposal [1] chosen to be two maximal length
linear feedback shift registers (LFSR).

The output sequence is more precisely defined as follows. Let a = a1, a2, . . .
denote the output of the first LFSR, denoted LFSRA, and let s = s1, s2, . . .
denote the output of the second LFSR, denoted LFSRS . The two LFSRs have
length LA and LS respectively. The output sequence of the generator, denoted
z = z1, z2, . . ., is the sequence obtained from a = a1, a2, . . . by removing all ai’s
for which si = 0. This is depicted in Figure 1.

The Alternating Step Generator, or ASG for short, is closely related to the
stop-and-go generator and was proposed by Günther [8] in 1987. See [8] for a
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Fig. 1. The Shrinking Generator

further description of the ASG. Let us describe a modified version of the ASG,
which we call ASG’.
Description of ASG’: Again, we have three LFSRs, where LFSRS controls the
clock of the two other LFSRs. Let LFSRS generate the sequence s = s1, s2, . . ..
If si = 1 then the output symbol zi is the output symbol from LFSRA, and
LFSRA is clocked. Otherwise, if si = 0 then the output symbol zi is the output
symbol from LFSRB , and LFSRB is clocked. The ASG’ is shown in Figure 2.
It is not hard to show that ASG and ASG’ are equivalent and hence we only
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Fig. 2. The modified Alternating Step Generator, ASG’.

consider the ASG’ in the sequel.
In the case of the SG, it was observed by Golic and O’Connor [4] that the

sequence a can be recovered from the output sequence z if we can solve the
corresponding decoding problem on the deletion channel. The deletion/insertion
channel is a communication channel where the input symbols are deleted with a
probability p and between any two undeleted input symbols i random symbols
are inserted with distribution P (i insertions) = qi(1 − q), i ≥ 0. If there are no
insertions we call the channel the deletion channel, and if there are no deletions
we call it the insertion channel.

For the SG we regard the sequence s from LFSRS as random and try to
decode the output z to the correct sequence a. It can be easily verified that if
we assume that the sequence a = a1, a2, . . . is the input to the deletion channel
and the sequence z = z1, z2, . . . is the output, the requirements for the deletion
channel is fulfilled and the parameter p is p = 1/2. Since there are only 2LA

possible input sequences an output sequence is uniquely decodable if it is long
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enough and if the channel has a positive channel capacity [3]. With a fixed set of
possible initial states we decode by simply checking each possible sequence with
a MAP decoding algorithm, to be described in Section 5.

Having modified the ASG to ASG’ we can then see that if we assume that the
sequence a = a1, a2, . . . is the input to the insertion channel and the sequence
z = z1, z2, . . . is the output, the requirements for the insertion channel is fulfilled
and the parameter q is q = 1/2.

3 MAP Decoding on the Deletion Channel

By definition, a MAP decoding algorithm finds an input sequence a that for gi-
ven z maximizes P (a transmitted|z received), whereas a ML decoding algorithm
finds a sequence a maximizing P (z received|a transmitted). The derivation to
be given is related to [9,4].

Assume that a1, . . . , aLA
is the given initial state of LFSRA at time zero.

Each initial state gives rise to a corresponding infinite sequence a = a1, a2, . . ..
Denote by A the set of possible sequences. Assume also that the output sequence
z is an infinite sequence z = z1, z2, . . . obtained by transmitting some sequence
a over the deletion channel, i.e. the sequence a = a1, a2 . . . gives the output
z = z1, z2 . . .. Let A = A1, A2, . . . and Z = Z1, Z2, . . . be the corresponding
random variables. Continuing, we consider input sequences of fixed length t.
Thus let at denote the sequence at = a1, a2, . . . , at, and let At = A1, A2, . . . , At

be the corresponding random variable. For a fixed length t the MAP decoding
procedure calculates

P (At = at|Z = z), (1)

for all sequences in A and selects a sequence a ∈ A maximizing (1).
The length of the output sequence after t input symbols can be any value in

[0, t]. Hence, introduce the random variables φt, t ≥ 0 as the number of output
symbols after t input symbols. We can then write the above equation as

P (At = at|Z = z) =
t∑

i=0

P (At = at, φt = i|Z = z). (2)

The calculation of P (At = at, φt = i|Z = z) can then be done iteratively by
observing that

P (At = at, φt = i|Z = z) = (3)

P (At−1 = at−1, φt−1 = i|Z = z)P (At = at, φt = i|φt−1 = i,Z = z)

+ P (At−1 = at−1, φt−1 = i − 1|Z = z)P (At = at, φt = i|φt−1 = i − 1,Z = z).

We further observe that

P (At = at, φt = i|φt−1 = i,Z = z) =
1
4
, (4)
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since a deletion occurs with probability 1/2 and then At = at also with proba-
bility 1/2. Furthermore

P (At = at, φt = i|φt−1 = i − 1,Z = z) =
{ 1

2 if at = zi

0 otherwise , (5)

because in this case there should be no deletion, which occur with probability
1/2. Then At = zi and thus At = at has probability 1 if at = zi and 0 otherwise.

With given sequences a, z, each At = at, φt = i, 0 ≤ t T , 0 ≤ i ≤ T can be
considered as a node, denoted (t, i). Then the iterative calculation gives rise to a
trellis, where P (At = at, φt = i|Z = z) is the metric associated with each node.
For simplicity, denote P (At = at, φt = i|Z = z) simply by µ(t, i). The metric
of new nodes will be updated according to whether at = zi or not. The metric
update is obtained by combining (3), (4) and (5) as

µ(t, i) = µ(t − 1, i)
1
4

+ µ(t − 1, i − 1)
1
2
δ(at, zi), (6)

where

δ(x, y) =
{

1 if x = y
0 otherwise .

As previously shown, we have

P (At = at|Z = z) =
t∑

i=0

µ(t, i).

Let N(t, i) be the number of different paths from node (0, 0) to node (t, i). Then
µ(t, i) = N(t, i)/22t−i. This implies that we only have to consider the number
of paths to each node (t, i) and that we can choose N(t, i) as the metric to
calculate. The advantage is that N(t, i) is always an integer. The metric update
using N(t, i) is

N(t, i) = N(t − 1, i) + N(t − 1, i − 1)δ(at, zi), (7)

with initial value N(0, 0) = 1. We illustrate the procedure of creating the trellis
and calculating the N(t, i) metric by a small example given in Figure 3.

As stated for the probabilistic attack described in [4] the length of the se-
quence on which the decoding is performed need to be at least 3LA for unique
decoding, and we here choose to use the length 4LA. A straightforward imple-
mentation of the MAP decoding procedure is quadratic in the length. Hence the
obtained complexity will be roughly (4LA)2 simple operations (about (4LA)2/4
nodes in the trellis each requiring one calculation of µ(t, i)).

4 Reduced Complexity Decoding – Deletion Channel

We reduce the decoding complexity using two different approaches. Firstly, we
propose and examine a suboptimal decoding algorithm, i.e., an algorithm with
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Fig. 3. A trellis with metric N(t, i) for a = 0, 1, 0, 1, 1, 0, . . . and z = 0, 1, 1, 0, . . ..

reduced complexity that has an almost optimal behavior. We use a stopping rule
for the decision together with a list decoding approach (we keep only a fixed
number of nodes at each time instant). Properties of this suboptimal decoding
procedure is considered in the appendix. Let CMAP ′ be the expected complexity
of testing one sequence with the above suboptimal algorithm. The algorithm
implies a divide-and-conquer attack on LFSRA by exhaustively testing all initial
states. The complexity of such an attack is then approximately 2LA · CMAP ′ .

Our second objective is to demonstrate that certain subsequences of the
output sequence are weak in the sense that when they occur, they can be used
to find the initial state of LFSRA with lower complexity than exhaustively testing
as mentioned above.

Assume that the output sequence Z = z1, z2, . . . contains a subsequence
zT , zT+1, . . . , zT+M such that either

(zT , zT+1, . . . , zT+M ) = (0, 0, . . . , 0, 1, 0, . . . , 0) (8)

or
(zT , zT+1, . . . , zT+M ) = (1, 1, . . . , 1, 0, 1, . . . , 1). (9)

The subsequence zT , zT+1, . . . , zT+M is of length M + 1. W.l.o.g we can assume
that (8) holds. Define the time t to be zero exactly where the occurrence of the
single 1 is in the subsequence. In our notation, this means that a0 = 1 and
s0 = 1. Let us now calculate P (a1 = 0) as follows,

P (a1 = 0) = P (a1 = 0|s1 = 0)P (s1 = 0) + P (a1 = 0|s1 = 1)P (s1 = 1) (10)

=
1
2

· 1
2

+ 1 · 1
2

(11)

=
3
4
, (12)

since if s1 = 1 then a1 = z1 = 0, and if s1 = 0 then a1 take any value in {0, 1}
with approximately equal probability.
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The same arguments as above can be applied to P (a2 = 0) etc, as well as to
P (a−1 = 0) etc, and it is clear that

P (ai = 0) =
3
4
, −M1 ≤ i ≤ M2, i 6= 0.

Furthermore, the deletion rate is 1/2. Hence, assuming M1 deletions appearing
in a−2M1 , . . . , a−1, and M2 deletions in a1, . . . , a2M2 , we would end up with

P (ai = 0) =
{ 3

4 , 2M1 ≤ i ≤ 2M2, i 6= 0
0, i = 0.

(13)

If the number of deletions is not exactly M1 and M2 respectively, they are at
least close to these values and the distribution is close to the above.

With such a strong correlation identified, we can use it to reduce the com-
plexity of the exhaustive search. We simply define the initial state to include the
positions a−2M1 , . . . , a2M2 and search according to the above distribution. This
idea can then be extended in different ways. We here examine three different
approaches.

A. Direct exhaustive search: Using the proposed decoding procedure in the
appendix we exhaustively search all 2LA initial states. The complexity of
finding the correct initial state is on average CMAP ′ · 2LA−1, and the length
of z can be very small.

B. Search using one weak subsequence: We identify one weak subsequence
of the form (8) or (9) of length M+1. Assume 2M ≤ LA−1. Define the initial
state to include the 2M + 1 index positions for which (13) hold, possibly
together with some additional index positions. Search through all initial
states having at most M/2 1’s in the corresponding 2M index positions and
a0 = 1, using the proposed decoding procedure. If the correct initial state is
not found, an error is declared. The complexity of finding the correct initial
state is on average approximately

CMAP ′ · 2LA−2M−1
(

2M
M/2

)
,

and the required expected length of z for the weak subsequence to occur is
approximately 2M/M .

C. Search using several weak subsequences: We identify W weak subse-
quences of the form (8) or (9) all of length M +1, where M ≤ LA − 1. Then
define the initial state to include the 2M + 1 index positions for which (13)
hold, possibly together with some additional index positions. Search through
all initial states having at most w ones in the corresponding 2M index positi-
ons and a0 = 1, using the proposed decoding procedure. If the correct initial
state is not found, take a new weak subsequence and do the same again. If
the correct initial state is not found after all weak subsequences have been
used, an error is declared.
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The complexity is approximately CMAP ′ · W2LA−2M−1
(

2M
w

)
, and the ex-

pected observed length of z for W weak subsequences to occur is approxi-
mately W2M/M . For the probability of finding the correct sequence to be
large, W must be chosen such that

1/W ≈
w∑

i=0

(3/4)2M−w(1/4)w(1/2)LA−2M−1.

In order to show different possibilities and choices of parameters we consider
an example where LFSRA of the SG has LA = 61 with known feedback polyno-
mial. Our attack then applies to any LFSRS having arbitrary degree LS and pos-
sibly unknown feedback polynomial. In a comparison we choose LS ≈ LA = 61.
(In [10] it was suggested to choose length 61 − 64 for both LFSRs and using
secret feedback polynomials). A very rough estimate of the complexity in simple
instructions for recovering the initial state of LFSRA for different lengths of z
and different methods are given in Table 1.

Length of z
220 230 240

Exhaustive search on LFSRS [12] 280 280 280

Exhaustive search on LFSRA [4] 277 277 277

A. 271 271 271

B. 258 256 256

C. with 2M = LA − 1 250 240

Table 1. Rough estimate of complexity for different attacks on the SG with LA = 61.

4.1 Comments on the Values of Table 1:

As described in [12], the divide-and-conquer attack on LFSRS requires appro-
ximately 2LS L3

A operations which for LS ≈ LA = 61 is around 280 independent
of output length. Furthermore, using the probabilistic attack described in [4] in
an exhaustive search requires approximately 2LA · (4LA)2 operations, since the
length of the sequence on which the decoding is performed need to be at least
3LA for unique decoding (here chosen to be 4LA) and the decoding complexity
is quadratic in the length.

For method A., the complexity is 2LA · CMAP ′ , where the parameters of the
suboptimal decoding algorithm is chosen such that CMAP ′ = 210, giving an error
probability of 0.34 as shown in the appendix. For method B., and output length
220, M is chosen to be M = 25. We then search through all sequences with
at most 13 ones in 2M = 50 index positions, one position fixed to 1, and the
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remaining 10 positions arbitrarily. This gives complexity

13∑
i=0

(
50
i

)
· 210 · CMAP ′ ≈ 258.

For output length 230 or 240, we have M = 30 and searching through all sequen-
ces with at most 15 ones in 2M = 60 index positions, one position fixed to 1,
gives complexity

15∑
i=0

(
60
i

)
· CMAP ′ ≈ 256.

Finally, for method C., we only consider the case when M = 30, which rules out
the length 220. For length 230 we expect to find about 2 ·230/(231/31) = 31 weak
subsequences of the form (8) or (9). For each of these subsequences, we search
through all sequences with at most 10 ones in 2M = 60 index positions (one
position fixed to 1). The probability of the event that the correct sequence has
10 or less ones in the 2M = 60 index positions is approximately

10∑
i=0

(3/4)60−i(1/4)i

(
60
i

)
≈ 0.08.

Hence the probability that at least one such event occurring among the 31 trials
is large. The complexity of this procedure is roughly

1
0.08

·
10∑

i=0

(
60
i

)
· CMAP ′ ≈ 250.

Finally, for output length 240 we expect about 215 weak subsequences. The pro-
bability that the correct sequence has 3 or less ones in the 2M = 60 index
positions is

3∑
i=0

(3/4)60−i(1/4)i

(
60
i

)
≈ 0.000047.

Searching through all sequences with at most 3 ones in the 2M = 60 index
positions gives complexity

1
0.000047

·
3∑

i=0

(
60
i

)
· CMAP ′ ≈ 240.

Note that in method A.–C. we only succeed with a certain probability when
the selected a is correct, since the suboptimal MAP decoding fails with probabi-
lity 0.34 etc.. If we want a very high probability of success, we can perform the
whole process several times, each time on a new part of the output sequence.
This slightly increases the complexity and the required length of the output
sequence, compared to the above given numerical values.
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4.2 Recovering the Initial State of LFSRS

After having recovered the initial state of LFSRA, we need to recover initial
state of LFSRS . This problem has not been addressed before. Due to the MAP
decoding algorithm of Section 3, our candidate for initial state of LFSRA is
correct with arbitrarily large probability (just run the algorithm long enough).
We now proceed as follows. Again, run the MAP decoding algorithm and create
the trellis. We have

P (st = 1|A = a,Z = z) =
∑

i

P (φt = i|A = a,Z = z)P (st = 1|φt = i,A = a,Z = z)

=
∑

i

P (φt = i|A = a,Z = z)P (st = 1|φt = i, At = at, Zi = zi)

and

P (st = 1|φt = i, At = at, Zi = zi) =
{

0, if at 6= zi,
2/3, if at = zi.

Furthermore,

P (φt = i|A = a,Z = z) =
µ(t, i)∑
j µ(t, j)

,

and hence we get

P (st = 1|A = a,Z = z) =
∑

i

µ(t, i)∑
j µ(t, j)

· 2
3
δ(at, zi).

This procedure creates an a posteriori probability for each symbol st. Restoring
the s sequence is now exactly the problem of decoding a received word to its
nearest codeword on a noisy channel. One advantage is that the received word is
very long and hence different ways of doing a fast decoding can be applied. One
possibility is to use an iterative decoding process as suggested in [11] for fast
correlation attacks. Another simpler method is to search for positions where the
a posteriori probability P (st = 1|A = a,Z = z) is very small. This means that
these positions are very likely to have st = 0. After finding LS such positions
one can perform a search over sequences having a low weight on these positions.
The complexity of recovering the initial state of LFSRS using this approach is
very low, and more details will be given in the full paper.

5 MAP Decoding on the Insertion Channel

In order to consider the ASG, we now consider MAP decoding on the insertion
channel. The procedure is almost identical to the decoding procedure for the
deletion channel. From Bayes rule,

P (A = a|Zt = zt) = P (Zt = zt|A = a) · P (A = a)
P (Z = z)

.
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Since P (A = a) and P (Z = z) are both uniformly distributed it is clear that
MAP and ML decoding is equivalent, i.e.,

max
a

P (A = a|Zt = zt) = max
a

P (Zt = zt|A = a).

It will now be apparent that the easiest way to describe a decoding process
is in the form of ML decoding. Define the random variables φt, t ≥ 0 to be
the number of symbols from a that has appeared in z after observing t symbols
from z (i.e. after observing zt). Clearly,

P (Zt = zt|A = a) =
t∑

i=0

P (Zt = zt, φt = i|A = a),

and

P (Zt = zt, φt = i|A = a) =

P (Zt−1 = zt−1, φt−1 = i|A = a)P (Zt = zt, φt = i|zt−1, φt−1 = i,A = a)

+P (Zt−1 = zt−1, φt−1 = i − 1|A = a)P (Zt = zt, φt = i|zt−1, φt−1 = i − 1,A = a).

Furthermore,

P (Zt = zt, φt = i|φt−1 = i,A = a) =
1
4

(14)

since an insertion occurs with probability 1/2 and then Zt = zt also with pro-
bability 1/2. Finally

P (Zt = zt, φt = i|φt−1 = i − 1,A = a) =
{ 1

2 if zt = aφt−1

0 otherwise . (15)

We can now see that the ML decoding procedure in this case is exactly the
MAP decoding procedure for the deletion channel if the sequences a and z are
switched. Hence all the results from Section 3 are valid also for the insertion
channel if a and z are switched. With this conclusion we leave the details out.

6 Reduced Complexity Decoding – Insertion Channel

The ML decoding algorithm demonstrated in the previous section implies a
divide-and-conquer attack on the ASG’ by exhaustively testing all initial states
of LFSRA. The complexity of such an attack is then approximately 2LA ·CMAP ′ .
We now demonstrate that again certain subsequences of the output sequence of
the ASG’ are weak in the sense that when they occur, they can be used to find
the initial state of LFSRA with lower complexity than exhaustively testing as
mentioned above.

The basic observation is the following. Assume that the output sequence z
contains a subsequence zT , zT+1, . . . , zT+M such that either

(zT , zT+1, . . . , zT+M−1) = (0, 0, . . . , 0) (16)
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or
(zT , zT+1, . . . , zT+M−1) = (1, 1, . . . , 1). (17)

Redefine the time t to be zero at time T and w.l.o.g assume (16). This means
that now (z0, z1, . . . , zM−1) = (0, 0, . . . , 0). Then assuming that at least M/2 of
the symbols in zM (which has probability > 1/2) came from LFSRA, we have
a0 = 0, a1 = 0, . . . , aM/2 = 0. Hence one can perform an exhaustive search
over all possible initial states of LFSRA with the first M/2 index positions set
to zero. This will reduce the complexity with a factor 2M/2 compared with
straightforward exhaustive search.

Having described the basic idea, we can now improve the performance in
several ways. Instead of subsequences of the form (16) or (17), we consider any
sequences of length ≥ M containing at most w ones (or at most w zeros). Each of
the w ones comes from LFSRA with probability 1/2 and hence with probability
2−w none of the ones comes from LFSRA. If this occur, the first (M − w)/2
symbols of a are all zero with probability > 1/2. Hence a possible procedure is
as follows.

1. Search for a length M subsequence of z containing at most w ones (or zeros).
2. Let t be zero at the beginning of the subsequence and assume that a0 =

0, . . . , a(M−p)/2 = 0. Then perform an exhaustive search over the remaining
index positions a(M−w)/2, . . . , aLA−1.

3. Go to 1.
The conclusion is that by the basic observation the search is reduced by

roughly a factor
√

L where L is the length of the observed sequence, and by the
above improvement the reduction factor can be made a bit larger.

Finally, the concept of weak subsequences are always present for the two
considered generators. It is always possible that a “very weak” subsequence
appear, implying a successful attack with very low complexity, even though
the probability of such a sequence is very low. For example, an subsequence of
2LA consecutive zeros or ones from the ASG’ implies a successful attack with
complexity almost zero.
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Appendix: A Suboptimal MAP Decoding Algorithm
Introduce the random variables Xt = P (At = at|Z = z), i.e., Xt =

∑t
i=0 µ(t, i).

Using the recursion (3) we have

Xt =
t∑

i=0

(
1
4
µ(t − 1, i) +

1
2
µ(t − 1, i − 1)δ(at, zi)),

which simplifies to

Xt =
1
4
Xt−1 +

1
2
Xt−1

∑
i:at=zi

µ(t − 1, i − 1)
Xt−1

.

Introduce the random variables St = 2
∑

i:at=zi
µ(t−1,i−1)

Xt−1
. Then

Xt =
1
4
Xt−1 +

1
4
Xt−1St =

1
2
Xt−1

1 + St

2

and after taking logarithms one gets

log Xt = −1 + log Xt−1 + log
1 + St

2
= −t +

t∑
i=1

log
1 + St

2

Clearly, for a being a random sequence P (at = zi) = 1/2 for all t, i and hence
E(St) = 1 implying E( 1+St

2 ) = 1. Now, the Jensen’s inequality [2] states that
E(log 1+St

2 ) ≤ log E( 1+St

2 ) with equality only if St has a deterministic distri-
bution. But St has not a deterministic distribution and hence E(log 1+St

2 ) <
log 1 = 0. Hence

E(log Xt) = −t +
t∑

i=1

E(Yi), (18)

where each E(Yi) < 0.
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Next, consider a being the correct sequence. Then if Pt is the number of
output symbols after t input symbols we have

P (at = zi) =
{

1/2, if i 6= Pt

3/4, if i = Pt

and hence E(St) = 1 + 1
2E(µ(t − 1, Pt)). Without being able to formally prove

the fact, simulations show that E(log 1+St

2 ) > 0 for this case. Thus we have the
same expression as in (18), but now with E(Yi) > 0.

These facts have been investigated by simulations. The value of log Xt − t
expressed in the form log Xt − t = C · t have been investigated for different t,
covering both cases (random sequence, correct sequence). The result is tabulated
in Table 2.

log Xt − t

t = Length of at CORRECT a RANDOM a
10 0.090775 · t −0.096476 · t
20 0.072374 · t −0.097060 · t
30 0.064135 · t −0.083986 · t
40 0.059176 · t −0.069533 · t
60 0.053739 · t −0.057280 · t
80 0.050644 · t −0.051867 · t
100 0.048625 · t −0.049880 · t
200 0.044149 · t −0.051356 · t
500 0.041362 · t −0.042727 · t
1000 0.040404 · t −0.036148 · t
5000 −0.033180 · t

Table 2. Tabulation of log Xt − t for a being a correct/random sequence.

Clearly, {Xt, t ≥ 1} is a stochastic process, for which a stopping rule can
be introduced. For implementation purposes, we simplify this to apply only on
certain index positions, e.g., D · n for n = 1, 2, . . . and some integer D. Such a
stopping rule will introduce a small probability of error in our hypothesis testing
problem, i.e., P (“not correct”|a “correct”) = ε > 0. On the other hand, this will
significantly reduce the computational complexity since in an exhaustive search
the algorithm will terminate very quickly for most random sequences a. One also
has to select a decision region for stopping/not stopping. Looking at Table 2 a
suitable choice might be to stop if log Xt − t < 0.

Secondly, a closer look at µ(t, i) for given t and a correct sequence a shows
that the probability mass of µ(t, i) is concentrated to a few nodes (t, i) on each
level. Therefore, one can consider a suboptimal decoding algorithm that only
stores the L most probable nodes on each level. Furthermore, if Imax is the
largest i such that N(t, i) 6= 0, then the nodes (t, i), i = Imax−L+1, . . . , Imax is a
good approximation of the L most probable nodes, which we use.
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These considerations give the following proposed algorithm.

1. Initialize N(0, 0) = 1, Imax = 1.
2. If at = zImax then Imax = Imax + 1. Update

N(t, i) = N(t − 1, i) + N(t − 1, i − 1)δ(at, zi),

for i = Imax − L + 1, . . . , Imax.
3. If t = 0 (mod D) do the following. Calculate Xt =

∑Imax

i=Imax−L+1 N(t, i)/22t−i.
If log Xt −t < 0 output “wrong sequence” and stop. If t ≥ Tmax output “cor-
rect sequence” and stop.

4. Increase t by 1 and go to 2.

The above algorithm is given to be easily understood. When implementing it,
several steps above should be done differently.

The performance of the algorithm relies on the relation between two impor-
tant parameters, the probability of declaring a wrong sequence when having the
correct one and the average complexity of the decoding algorithm for a random
sequence (until it stops and outputs “wrong”). To measure the average comple-
xity we consider the average depth of the trellis before stopping, i.e., if Tstop is
the value of t = D · n when the algorithm stops, i.e., when log XD·n − D · n < 0
for the first n = 1, 2, . . .. This is suitable since for a fixed number L of remaining
states in each level of the trellis, the decoding complexity is (essentially) a linear
function of Tstop and hence the expected decoding complexity a linear function
of E(Tstop). Some simulated values of the above parameters are given in Table 3.
The final conclusion of this section is a choice of parameters for complexity cal-

D P (“wrong” output|a correct) E(Tstop)
10 0.34 25.4
20 0.24 34.8
30 0.21 50
50 0.16 70

100 0.10 117
200 0.01 209

Table 3. Performance of the proposed algorithm in terms of error probability and
decoding complexity for different D when L = 10.

culations. Selecting D = 10 and L = 10 will give an error probability of 0.34 and
expected trellis depth 25.4. In this case the expected number of nodes in the trel-
lis is less than 200 (there are fewer than L nodes on each level in the beginning
of the trellis). Each node requires a few instructions to be updated, resulting in
a very rough estimate of CMAP ′ = 210 simple operations as an average of the
complexity of testing one sequence a.
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