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Abstract. The concept of group signatures allows a group member to
sign messages anonymously on behalf of the group. However, in the case
of a dispute, the identity of a signature’s originator can be revealed by
a designated entity. In this paper we propose a new group signature
scheme that is well suited for large groups, i.e., the length of the group’s
public key and of signatures do not depend on the size of the group.
Our solution based on a variation of the RSA problem is more efficient
than previous ones satisfying these requirements.
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1 Introduction

In 1991 Chaum and van Heyst put forth the concept of a group signature scheme
[16]. Participants are group members, a membership manager, and a revocation
manager]. A group signature scheme allows a group member to sign messages
anonymously on behalf of the group. More precisely, signatures can be verified
with respect to a single public key of the group and do not reveal the identity of
the signer. The membership manager is responsible for the system setup and for
adding group members while the revocation manager has the ability to revoke
the anonymity of signatures.

A group signature scheme could for instance be used by an employee of a
large company to sign documents on behalf of the company. In this scenario,
it is sufficient for a verifier to know that some representative of the company
has signed. Moreover, in contrast to when an ordinary signature scheme would
be used, the verifier does not need to check whether a particular employee is
allowed to sign contracts on behalf of the company, i.e., he needs only to know
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a single company’s public key. A further application of group signature schemes
is electronic cash as was pointed out in [32]. In this scenario, several banks
issue coins, but it is impossible for shops to find out which bank issued a coin
that is obtained from a customer. Hence, the central bank plays the role of the
membership and the revocation manager and all other banks issuing coins are
group members. The identification as a group member is another application,
e.g., in order to get access to a restricted area [2].

Various group signature schemes have been proposed so far. However, in the
schemes presented in [7JI6JI7I36] the length of signatures and/or the size of the
group’s public key depend on the size of the group and thus these schemes are not
suitable for large groups. Only in the two families of efficient schemes presented
in [9/10] (and the blind versions thereof [32]) are the length of signatures and the
size of the group’s public key independent of the number of group memberd?.
The schemes presented in [28] satisfy the length requirement as well, but these
are inefficient.

In this paper we propose a new group signature scheme for which the length
of signatures and the size of the group’s public key do not depend on the size of
the group. The security of our scheme relies on a variant of the so-called strong
RSA-assumption proposed in [125]. Compared to the solutions in [9[10], our
scheme is based on a different number-theoretic assumption and is also more
efficient.

2 Model and an Approach for Realization

2.1 Model
A group signature scheme consists of the following algorithms:

setup: An interactive setup protocol between the membership manager, the
group members, and the revocation manager. The public output is the
group’s public key Y. The private outputs are the individual secret keys
z¢ for each group member, the secret key x); for the membership manager,
and the secret key x i for the revocation manager.

sign: A signature generation algorithm that on input a message m, an individual
group member’s secret key xg, and the group’s public key Y outputs a
signature o.

verify: A verification algorithm that on input a message m, a signature o, and
the group’s public key Y returns 1 if and only if o was generated by any
group member using sign on input xg, m, and Y.

tracing: A tracing algorithm that on input a signature o, a message m, the
revocation manager’s secret key xg, and the group’s public key Y returns
the identity ID of the group member who issued the signature o together
with an argument arg of this fact.

vertracing: A tracing-verification algorithm that on input a signature o, a mes-
sage m, the group’s public key Y, the identity ID of a group member, and
an argument arg outputs 1 if and only if arg was generated by tracing with
respect tom, o, Y, zp.

2 The other schemes [29]35] with the same properties were shown to be flawed [3TI33].
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The following informally stated security requirements must hold:

Unforgeability of signatures: Only group members are able to sign messages.
Anonymity of signatures: It is not feasible to find out the group member who
signed a message without knowing the revocation manager’s secret key.
Unlinkability of signatures: It is infeasible to decide whether two signatures have

been issued by the same group member or not.

No framing: Even if the membership manager, the revocation manager, and
some of the group members collude, they cannot sign on behalf of non-
involved group members.

Unforgeability of tracing: The revocation manager can not accuse a signer falsely
of having originated a given signature, e.g., by issuing an argument arg such
that vertracing outputs 1.

The efficiency of a group signature scheme can be measured by the size of the
public key Y, the length of signatures, and by the efficiency of the algorithms
sign, verify, setup, tracing, and vertracing.

2.2 Approach of Camenisch and Stadler

The core idea of the schemes proposed in [QI0] is the following. A group’s public
key consists of a membership manager’s public key of an ordinary digital signa-
ture scheme and a revocation manager’s public key of a probabilistic encryption
scheme. A user, say Alice, who wants to join the group chooses a random secret
key x¢ and computes her membership key z := f(zq), where f is a suitable one-
way function. Alice commits to z (for instance by signing it) and sends z and
her commitment to the membership manager M who returns her a membership
certificate u = sigp(2).

To sign a message m on behalf of the group, Alice encrypts z using the
public key of the revocation manager (let ¢ denote this ciphertext) and issues
a Signature of Knowledgd] [9) that she knows some values Z and @ such that
@ = sigp(f(Z)) holds and that f(Z) is encrypted in ¢. The verification of such a
group-signature is done by checking this signature of knowledge. The revocation
manager can easily revoke the anonymity of a group signature by decrypting ¢
and forwarding this value to the membership manager.

To realize a concrete scheme along these lines, one has to find a suitable one-
way function f and a suitable signature scheme that yield an efficient signature
of knowledge for the values & and @. In [910], two proposals based on different
number theoretic assumption were put forth. The first assumption is that, given
e, g, and an RSA-modulus n, finding integers u, z such that u® = ¢* +1 (mod n)
holds is hard, where g is an element of large order. The second one is that it is
hard to find w and x with |z| < |n|/2 such that u® = 25 + v (mod n) given v
and n, where v is a suitably chosen integer and n is an RSA-modulus.

In the next section we will introduce an alternative assumption that allows
the construction of a new group signature scheme.

3 These are message dependent non-interactive arguments derived from 3-move honest-
verifier zero-knowledge proofs of knowledge using the Fiat-Shamir heuristic [23/24].
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3 Number Theoretic Assumptions

Recently, Bari¢ and Pfitzmann [I] as well as Fujisaki and Okamoto [25] inde-
pendently proposed a variation of the well-known RSA [39] assumption, the
so-called strong RSA assumption. We will modify this assumption slightly. Let
k, {4, €1, ly < L4, and € > 1 be security parameters and, for simplicity, let denote
{ = €(fy + k) + 1. Furthermore, let G(£,) denote the set of groups whose order
has length ¢, and has two prime factors of length (¢, — 2)/2. Finally, let be
M(G,2) = {(u,e) | z =u®u € G,e € {21,... 2% + 2} ¢ € primes}, where
Geg(,) and z € G.

Assumption 1 (Modified strong RSA assumption). For all probabilistic
polynomial-time algorithms A, all polynomials p(-), all sufficiently large {4, and
suitably chosen f1, o, k, and €

Prlz=u¢ A ec{2—2l . 20420y A e¢ M : GerG(l,),

z2€r G,(Ux M) Cgr M(G,z2),|M|=0(),(u,e) :=A(G,2)] < AR

g
Possible choices for G are discussed in Section[Al Let us remark that, given u, e,
i, and € with z = u® = @, it is easy to find an element satisfying z = e using
the extended Euclidean algorithm. However, as eé ¢ {26+ —2¢ ... 2% +2¢} for
suitable chosen parameter £, £1, {2, €, and k the integer eé¢ does not satisfy the
range constraint. According to a result in [22[4T], and as all €’s in M are prime,
it is infeasible to compute (u, €') satisfying u¢’ = z for an ¢’ that does not divide
the product of all e’s in M as long as the standard RSA assumption holds. Hence
there is no further attack except the one mentioned above.

Our group signature scheme further relies on the so-called Decision Diffie-
Hellman (DDH) assumption. Let G € G({,), n’ be the divisor of G’s order of
length £, — 2, and define the two sets

DH :={(g1,51,92,y2) € G* | ord(g1) = ord(ga) =", log,, y1 = log,, y2}
Q:={(g91,v1, 92, y2) € G* | ord(g1) = ord(g2) = n'}

of Diffie-Hellman and random 4-tuples, respectively.

Assumption 2 (Decision Diffie-Hellman assumption). For all probabili-
stic polynomial-time algorithms A : G* — {0, 1}, the two probability distributions

Prla=1:T g DH,a:=A(T)] and Prla=1:T € Q,a:= A(T)]
are computationally indistinguishable.

We remark that in the case G = Z, where n is an RSA-modulus, the DDH
assumption does not hold. The Jacobi-symbol, which can be computed efficiently
without knowing the factorization of n, leaks information about log, y1 and
log,, ya. For instance, if (gi[n) = (g2|n) = (y2In) = —1 and (y1|n) = 1, then
log,, y1 # log,, ya. If G = (g) is defined a subgroup of Z;, such that (g|n) = 1
this problem is overcome.
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4 Building Blocks

In this section we introduce the building blocks for our scheme borrowing nota-
tion from [0]. These building blocks are signature schemes derived from statistical
(honest-verifier) zero-knowledge proofs of knowledge using the Fiat-Shamir heu-
ristic [2324] and are therefore called “Signature based on a proof of knowledge”,
SPK for short. Usually, the security of such building blocks is argued by showing
that the underlying interactive protocols is secure and then by assuming that
“nothing bad happens” when the verifier is replaced with a collision resistant
hash-function. This approach has been formalized as the random oracle model
(e.g., see [237]MA. For the signer/prover security means that the protocol should
be zero-knowledge and for the verifier it means that the protocol should be a
proof of knowledge. An example of this method is the Schnorr signature scheme
[0] that is derived from an honest-verifier proof of knowledge of the discrete
logarithm of the signer’s public key.

In the following we describe four building blocks. The first one shows the
knowledge of a discrete logarithm, the second the equality of two discrete loga-
rithms, the third the knowledge of one out of two discrete logarithm, and the
fourth the knowledge of a discrete logarithm that lies in a certain interval. Of
course, these building blocks can be combined in the usual way (e.g., see [10]).
The building blocks have in common that the prover does not know the order of
G, i.e., the verifier chooses a group G = (g) of large order such that only he can
know the order. However, the order of magnitude 2% of the group’s order shall
be known to both. Furthermore, the verifier chooses a second generator h and
proves that g and h have order p'q’, where p’ and ¢ are two primes of length
(£g —2)/2 and that he does not know log, h. How this can be done is discussed
in the next section. Since the group order is not publicly known, we define the
discrete logarithm of an y € G to the base g to be any integer x such that y = ¢*
holds. Finally, we assume a collision resistant hash function 4 : {0, 1}* — {0, 1}*
(e.g., k ~ 160).

Before we define the building blocks let us explain the notation with the
following example [9]: a signature based on a proof of knowledge, denoted

SKP{(a,8): y=g“ A z=g"h"} (m),

is used for ‘proving’ the knowledge of the discrete logarithm of y to the base g
and of a representation of z to the bases g and h, and in addition, that the h-part
of this representation equals the discrete logarithm of y to the base g. This is
equivalent to the knowledge of a pair («, 3) satisfying the equations on the right
side of the colon. In the sequel, we use the convention that Greek letters denote
the elements whose knowledge is proven and all other letters denote elements
that are known to the verifier.

4 Recently, it has be shown that this approach does not work for general protocols
[11], i.e., there exist protocols (although specially designed ones) which are secure in
the random oracle model but that yield an insecure signature scheme. However, it
is believed that the approach is still valid for the kind of protocols considered here.
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4.1 Showing the Knowledge of a Discrete Logarithm

This protocol is an adaption of the protocols for proving the knowledge of a
discrete logarithm [T4J40] to the setting with a group of unknown order due
to Girault [26l27]. A consequence of this setting is that the usual knowledge
extractor for showing that a protocol is a proof of knowledge does not work;
since the knowledge extractor does not know the group’s order either and hence
cannot compute inverses modulo this group order and therefore not extract the
witness. Poupard and Stern [3§] give a security proof for this adaption in a
weaker security model, i.e., they show that if an attacker was able to carry out
the protocol for almost all public keys, then he could also compute the discrete
logarithm of the prover’s public key. Since the latter is assumed to be impossible
the protocol is concluded to be secure.

In the following we propose an alternative security proof using the model of
Fujisaki and Okamoto [25]. In this model, the key setup is made a part of the
protocol, i.e., the verifier chooses the group G and all other parameters and sends
these as a first step to the prover. As a consequence, the knowledge extractor is
allowed to choose the group and hence knows the group order. When turning this
protocol into a signature scheme, the first steps, i.e., the key setup, are carried
out interactively, and only the last three half-rounds are made non-interactive
using the Fiat-Shamir heuristic.

Definition 1. Let ¢ > 1 be a security parameter. A pair (c,s) € {0,1}F x
{2tk 2t satisfying ¢ = H(gllyllg®yC||m) is a signature of a message
m € {0, 1}* with respect to y and is denoted SPK{(cx) : y = g*}(m).

An entity knowing the secret key x = log, y of its public key y can compute such
a signature (s,c) = SPK{(«®) : y = g*}(m) of a message m € {0,1}* by

— choosing r €g {0, 1}5(59“"“) and computing ¢ := g",
— c:=H(glly[[t[m), and
—s:=r—cz (inZ).

Showing that the interactive protocol corresponding to this signature scheme
and the key setup is a proof of knowledge of the integer = := log, y is straight
forward. The proof that it is honest-verifier statistical zero-knowledge for any
€ > 1 is immediate from the proofs found in [38/42] for similar protocols. In [10]
it is analyzed how much information (¢,c,s) gives about x depending on the
choice of e.

4.2 Showing the Equality of two Discrete Logarithms

The next SPK is an adoption of a protocol for showing the equality of two
discrete logarithms given in [15] to the setting in which the order is unknown.

Definition 2. Let ¢ > 1 be a security parameter. A pair (c,s) € {0,1}F x
{20k, 29t satisfying ¢ = H(gllhlly: |y2llyig®llysh®|lm) is a signature
of a message m € {0,1}* with respect to y1 and yo and is denoted

SPK{(a) : yp = g% A y2 = h%}(m).
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Let z € {0,1}* be the secret key of the signer such that y; = ¢ and yo = h*
holds. Then a signature SPK{(a) : y1 = g% A ya = h®*}(m) of a message m €
{0,1}* can be computed as follows.

— Choose r €g {0, 1}6(694"“) and compute t1 :=g", to :=h",
— c:=H(gl|hllyrllyz2[lt1[[t2[|m), and

—s=r—cz(inZ

The security proofs of this building block follow from the ones of the previous
building block.

4.3 Showing the Knowledge of One out of Two Discrete Logarithms

The realization of the following SPK of one out of two discrete logarithms is an
adoption of a protocol given in [20] to the setting with unknown order.

Definition 3. Let ¢ > 1 be a security parameter. A tuple (c1,ca,51,82) €
{0,1}F x {0,1}F x {—=2fathk . 2cllath)) s L otatk - ocllatR)) satisfying
c1®c2 = H(gllhllyilly2llyr! g§1||y22h52Hm) is a signature ofa message m € {0,1}*

with respect to y1 and ys and is denoted

SPK{(cv, 8) : y1 = g* V y2 = h7}(m).

Assume that the signer knows 2 €x {0,1}%s such that y; = g holds. Then a
signature SPK{(a, 3) : y1 = g* V ya = hP}(m) of a message m € {0,1}* can be
computed as follows.

— Choose 71 €g {0,1}¢tF) ry €p {0,1}CsHF) ¢y €x {0,1}F and compute
tl —grl tg —hr2 02

—ai=0d H(gllh\\ylllyzlltl||t2||m)

—s1:=r1—cz (in Z), and s9 :=rs.

The security proofs of this building block follow from the ones of the previous
building blocks and from [20].

4.4 Showing that a Discrete Logarithm Lies in an Interval

The last building block is based on a proof that the secret the prover knows lies
in a given interval. It is related to a protocol presented by Chan et al. [13].

Definition 4. Let € > 1 be a security parameter and let ¢y < {4 and lo de-
note lengths. A pair (c,s) € {0,1}F x {=2f+k  2¢4kY satisfying ¢ =
H(gllyllg*=2" y°|lm) is a signature of a message m € {0,1}* with respect to
y and is denoted

SPK{(a): y=g* A (20 —2:2HRH <« < 90 4 oellatR)FL) 1 (1),

Such a signature of a message m € {0,1}* with respect to a public key y € G
can be computed as follows if an z € {2,... ;2% + 2% — 1} is known such that
y = g* holds:
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— choose r €x {0,1}>+*) and compute ¢ := g",

— c:=H(g|ly||tllm), and
—s:=r—clx—2") (in Z).

Theorem 1. The interactive protocol corresponding to the signature scheme of
Definition[4] and the key setup is a statistical honest-verifier zero-knowledge proof
of knowledge of an x € {201 — 262tk F1 ol 4 oclb2AR)H1Y gych that y = g*
holds.

Proof (Sketch). The proof that the protocol is statistical honest-verifier zero-
knowledge is as before.

Let us consider the proof-of-knowledge part. Extracting the x such that ¢g* =
y is as usual. It remains to show that the extracted x lies indeed in the required
interval. Let (¢,c¢;, s;) be the accepting triples that the knowledge extractor got
and used to compute x. Then we have y° g = y®g , where ¢; # cs.
Without loss of generality, we can assume that ¢y > c¢;. Let denote As :=
51 — s and Ac := ¢y — ¢;. Then (x — 24)Ac = As (mod ord(g)) holds. As
Ac € {1,...,2F — 1} and As € {—2¢Weth)+1 = ocllz4k)+11 " we have (z —
20)Ac € {—2¢teth)+l  gella+R)+1Y 4 g 6rd(g) and thus also (z — 24) €
{—oeteth)F1 9ellatk)+1Y 4 . ord(g) for some integer j. From this it follows
that 2 (mod ord(g)) € {20 —2¢(b2FR)+1 9l 4 oell2+k)+1Y Gince it is assumed
to be infeasible for the prover to compute the order of g, the integer x must in
fact lie in {26 — 2¢(fzHk)F1 ol 4 oe(latk)+1Y (of [25]). 0

31—(:1221 82—(12221

Note that e(¢2 + k) + 2 < log (ord(g)) ~ ¢, should hold in order to indeed restrict
the size of log, y.

5 Proposed Scheme

In this section we propose a realization of a group signature scheme the security
of which is based on Assumptions [l and Bl The basic idea of the scheme is
the following. The membership manager chooses a group G = (g) and a group
element z such that both assumptions hold. Furthermore, he chooses a second
generators h such that log, i is unknown. Computing discrete logs in G to the
bases g, h, or z must be infeasible. Finally, computing roots in G must be feasible
only to the membership manager, i.e., he is the only one who should know the
order of G. The revocation manager chooses his secret key = and publishes
y=g".

Each group member chooses a prime e randomly in a certain range together
with the membership manager. Only the group member learns e and stores it
as a secret key. A membership certificate issued by the membership manager
is an element u € G such that u® = z holds. Here we slightly deviate from
the approach of Camenisch and Stadler, i.e., the membership certificate and the
membership key are the same value. As a consequence, the issuing of certificates
must be realized in a way that the membership manager is not able to learn the
group member’s secret key e.

A signature of a message m by a group member consists of a triple (a, b,d) €
G2 and an SPK of integers u and e such that
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— u is encrypted in (a, b) of under the revocation manager’s public key (which
is part of the group public key)

— d commits to e,

e lies in a given range, and

— u® = z holds.

The membership manager can reveal the identity of a signer by asking the revo-
cation manager to decrypt (a,b).

The following paragraphs describe the new scheme in detail and provide
security and efficiency analyses.

5.1 Setup of the Scheme

The setup procedure of our scheme consists of two phases. In the first phase the
membership manager and the revocation manager construct the group’s public
key and choose their secret keys. This is described in this subsection. In the
second phase of the setup, the group members choose their membership secret
keys and get their membership certificates. This phase is described in the next
subsection.

The membership manager chooses a group G = (g) and two random elements
z,h € G with the same large order (= 2%) such that Assumptions [ and 2 hold.
He publishes z, g, h, G, {4, and a proof that z, g, and h have the same, large
order of the order of magnitude 2%. Also, he proves that the order of g, h, and z
is not prime and not smooth. The latter would enable the membership manager
to compute discrete logarithms in G. The membership manager must also proof
that z and h where chosen at random. The revocation manager chooses his secret
key = randomly in {0, ... ,2% —1} and publishes y = ¢ as his public key. Finally,
a hash function #H : {0,1}* — {0,1}* and security parameters 0,04, 0y, and €
are set. An example for choosing the parameters e, ‘ 4y, 41, and ¢ is given in
Section (.6l

A possible choice of G = (g) is a subgroup of Z} such that (g|n) = 1. In
this case the membership manager chooses two large random primes p and ¢
(= 2%/2) of form p = 2p’ + 1 and q = 2¢’ + 1, where p’ and ¢’ are primes as
well, such that p,¢g 21 (mod 8) and p # ¢ (mod 8) holds. He keeps p and ¢
secret and publishes n := pqg. For proving that n is of the right form, there is no
efficient proof system to the best of our knowledge. Thus one has to use general
zero-knowledge proof techniques (e.g., [BI6II9]) and a circuit that takes as input
integers p, q, p’, and ¢ and outputs 1 if and only if the inputs are primes and if
n=pq, p=2p +1,and p = 2p’ +1 holds. The size of p and ¢ can be checked by
the number of input bits for them (they should have at most [0.5logn] bits).
This is not very efficient but must be done only once. To verify that an element
a has the (large) order p'q’ in Z; and Jacobi symbol 1, one needs only to test
whether a Z 1 (mod n) and ged(a — 1,n) = 1 holds and provide a proof should
that a is a quadratic residue modulo n. An alternative choice of G is a suitable
elliptic curve (e.g., see [30]).
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5.2 Registration

To become a group member Alice chooses a random prime é €5 {2¢71,... ,2¢~1}
such that é 1 (mod 8) and a random number e; €g {1,...,2% — 1}. She
computes Z := z¢ (mod n) and the commitment é = Z°1h™1 with r., €g {0,1}%.
Then she sends Z and ¢ to the membership manager. The membership manager
chooses a random number e; €g {1,...,2 — 1} and sends it to Alice. Alice
computes ez := e1 + e (mod 22) and e := e3 + 2. If e is not a prime satisfying
e Z 1 (mod 8) and e # é (mod 8) Alice reveals e and é to enable the membership
manager checking that she hasn’t cheated and they repeat the whole process.
The success probability per round is roughly 1/(¢121n2).

If e is a prime, Alice computes € := eé, commits to € and Z (for instance by
signing them), sends €, Z, and their commitments to the membership manager,
and carries out the interactive protocols corresponding to

W= SPK{(a,B,%(S, Q) ie=2R" A (=29 < < ol HRIEL)
=27 A ((6262—2224_241)/2& — h6 vV (62€2+2£1)/Zé _ h()}(g) ,

with the membership manager (cf. previous section). Furthermore, Alice proves
that € is the product of two primes (e.g., using the methods described in [4[43]).
Using the same arguments as for the building blocks in the previous section, it
can be seen that the protocol corresponding to W convinces the membership
manager that Alice has formed é and Z correctly and that é/log, 7 — 2% equals
the sum of es and the e; committed to in é modulo 2¢2.

The membership manager computes u := /¢ and sends u to Alice, who
checks that Z = u® holds (which is equivalent to z = u¢). The membership ma-
nager stores (u, €, Z) together with Alice’s identity and her commitment to € and
Z in a group-member list. Finally, Alice stores the pair (u, e) as her membership
key.

Of course, @, ¢1, and ¢5 must be chosen such that é cannot be factored (cf.
Section B.0)). In particular o > €1 — (f + ¢1)/4 must hold [1§].

5.3 Signature Generation

Let us first define a group signature and then show how a group member can
compute such a signature.

Definition 5. Let €, {1, and {5 be security parameters such that € > 1, ly <
U < Ly, and £y < ZQT_Q — k holds. A group-signature sign(xq, (g, h,y,2), m)
of a message m € {0,1}* is a tuple (c,s1,82,83,a,b,d) € {0,1}F x
{2tk o 2elath) ) fptatbtk [ gella k) fptath o pella R

G? satisfying
¢ = H(glhllyl=lallelldl=b =" /ya® =" /g™ atg™||d7g™ =" 1 |m).
Remark. Such a group-signature would be denoted
SPK{(U,ﬁ,g) ca=b1y? A 1=0a"/g" AN a=g°" A d=g"ht A
(221 o 26(42“1”6)“1’1 < n < 221 4 26(@2+k)+1)}(m)'
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To sign a message m € {0,1}* on the group’s behalf, a group member Alice

— chooses w €p {0,1}%, computes a := g* , b:= uy®, and d := g°h",
— chooses 71 €g {0,1}2+k) ) € {0,1}CaT0FR) "and r3 € {0,1}Cath)]
and computes

— t1 =0 (1Y), ty = a™ (1/g)"2, tg := g"3, tg := g" h"3,
— c:=H(gllhllyll=llalblldltl[t2llts][ta]lm),
— 51 =711 —cle—2%) (in Z), s3 := 1y — cew (in Z), and s3 := r3 — cw (in Z).

The resulting signature of m is (¢, s1, $2, $3, a, b, d). It can easily be verified that
it satisfies the verification condition given in Definition

5.4 Verifying Signatures, Tracing, and Verifying Tracing

A signature (c, s1, S2, S3,a,b,d) of a message m can be verified by checking the
equation stated in Definition [{.

To reveal the originator of a given signature o := (c, s1, S2, s3,a,b,d) of a
message m, the revocation manager first checks its correctness. He aborts if
the signature is not correct. Otherwise he computes v’ := b/a”, issues P :=
SPK{(a) : y = g* A bj/u' = a®}(o||m) (see SectionE2), and reveals arg := /|| P.
He then looks up u' in the group-member list and will find the corresponding wu,
the group member’s identity and his/her commitment to € and Z.

Checking whether the revocation manager correctly revealed the originator
of a signature o = (¢, s1, S92, $3,a,b,d) of a message m can simply be done by
verifying o and aryg.

5.5 Security Analysis

Before discussing the security requirements described in Section [2:1] let us have
a closer look at the interactive protocol corresponding to the generation of a
group signature and the parameter setup.

Theorem 2. The interactive protocol sequentially composed of the parameter
setup and the protocol corresponding to the gemeration of a group signature is
a zero-knowledge proof of knowledge of a membership key and certificate. Furt-
hermore, the pair (a,b) encrypts the certificate under the revocation manager’s
public key y.

Proof (Sketch). Using the standard techniques (cf. Section H)), this protocol can
be shown to be a statistical zero-knowledge proof of knowledge of values x1, xo,
and z3 such that

x1 € {2@1 _ 25(!2+k)+1’ o 7221 + 26(62+k)+1}
2232 , a"t=g"2 . a=g", and d = g¢g" h"3

holds. From the second and third equations we can conclude that g*2 = g*3™1
and thus also y®2 = y*3*1 holds. Therefore, we have

b¥1 b*1 _( b )961

y*z — (ym)Tr  \y7s

z =
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and hence (z1, yi) is a valid membership key-pair. The triple (a,b,d) is an

T3
unconditionally binding commitment to these two values and hence the group
member/prover must have knowrﬁ them when she computed a, b, and d. Since it
is assumed that the group member cannot compute roots nor discrete logarithms
(as otherwise Assumption [lwould not hold), she must have had other means to
get such a pair, i.e., by having run the registration protocol with the membership
manager.

Finally, the commitments can be opened by the entities knowing log;, y and
log, h, respectively, i.e., the values are encrypted for these entities. We recall,
that the first discrete log was chosen be the revocation manager, while the second
is assumed to be unknown. O

Let us now informally discuss the security properties of the proposed group
signature scheme.

Unforgeability of Signatures: This is due to Theorem [2

Anonymity of Signatures: It can be shown that the values ¢, s1, sz, and s3
do not reveal any useful knowledge. Hence, deciding whether a signature
(¢, 81, 82, 83, a, b, d) originates from a group member with public key u’ re-
quires to decide whether log 6 a = logy%. If one was able to decide this
efficiently, this would violate Assumption Bl

Unlinkability of Signatures: Linking two signatures, i.e., deciding whether two
signatures (c, s1, S2, S3,a,b,d) and (¢, s}, sh, s5,a’,V',d") originate from the
same group member requires to decide whether log, o7 = logybﬂ, = logh%, as
¢, 81, 2,83 and ¢, s}, sh, sh do not reveal useful knowledge. Under Assump-
tion [2] this is infeasible and hence signatures are unlinkable.

No Framing: Given Theorem B] signing in the name of a group member with
certificate v and requires the computation of log, z or to factor the value
€ that the membership manager received from the group member during
registration. Both is assumed to be infeasible.

Unforgeability of Tracing: The pair (a,b) that is part of a signature is an El-
Gamal encryption [21] of the signer’s membership key under the revocation
manager’s public key 3. Theorem [ shows that b/(3'°%s %) = b/a® is a valid
membership public key. Due to Assumption [ this must be the membership
certificate of the group member who signed. Therefore, by decrypting (a, b)
the revocation manager can reveal the originator of a signature at hand.
In the tracing algorithm the revocation manager issues an SPK denoted arg
which shows that he decrypted the membership public key correctly. Forging
this SPK is infeasible under Assumption [

5.6 Efficiency Analysis

With e = 9/8,¢, = /= 1200, ¢, = 860, ¢ = 600, and k = 160, the signature
generation and verification need little less than 13’000 modular multiplications
modulo a 1200-bit modulus in average, and the signature is about 1 KBytes long.
Compared to the most efficient scheme given in [9], our scheme is about three

5 This is important, since the knowledge-extractor knows the order, he can always find
a random e and w such that z = u°.
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times more efficient and signatures are about three times shorter when choosing
the same modulus for both schemes. Signatures could made shorter without com-
promising the security of the scheme if the parameter w in the signing procedure
is chosen from a smaller domain, e.g., {0, 1}*2 instead of {0, 1}%s.

6 Conclusion

It is worthwhile noting that it is possible to realize blind group signatures using
the techniques given in [RI34], which are much more efficient than the blind
versions of [910] given in [32]. Splitting the membership and/or the revocation
manager can be done by applying the techniques of [3[12], respectively (see also
[10]). As the signature generation algorithm was derived from an interactive pro-
tocol, a group identification scheme (also called identity escrow [2]]) is obtained
by using this protocol for identification.
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