
Receipt-Free Mix-Type Voting Scheme
-A practical solution to the implementation of a voting booth-

Kazue Sako’ and Joe Kilian’

NEC Corporation, 4-1-1 Miyazaki Miyarnae, Kawasaki 216, JAPAN
a NEC Research Institute, 4 Independence Way, Princeton, N J 08540, USA

Abstract. We present a receipt-free voting scheme based on a mix-
type anonymous channel[Cha81, PIK931. The receiptfreeness property
[BT94] enables voters t o hide how they have voted even from a powerful
adversary who is trying to coerce him. The work of [BT94] gave the first
solution using a voting booth, which is a hardware assumption not unlike
that in current physical elections. In our proposed scheme, we reduce
the physical assumptions required to obtain receipt-freeness. Our sole
physical assumption is the existence of a private channel through which
the center can send the voter a message without fear of eavesdropping.

1 Introduction

1.1 Receipt-Free Voting Schemes

The ultimate goal of secure electronic voting is to replace physical voting booths.
Achieving this goal requires work both on improving the efficiency of current pro-
tocols and understanding the security properties that these physical devices can
provide. Recently, Benaloh and Tuinstra[BT94] observed that, unlike physical
voting protocols, nearly all electronic voting protocols give the voters a receipt
by which they can prove how they voted. Such receipts provide a ready means
by which voters can sell their votes or another party can coerce a voter. Be-
naloh and Tuinstra give the first receipt-free protocol for electronic voting. In
their scheme a trusted center generates for each voter a pair of ballots consisting
of a “yes” vote and a “no7’ vote in random order. Using a trusted beacon and
a physical voting booth the center proves to the public that the ballot indeed
consists of a well-formed (yes/no) or (no/yes) pair and at the same time proves
to the verifier which pair i t is. The physical apparatus ensures that by the time
the verifier is able to communicate with an outsider, he can forge a proof that
the ballot is (yes/no) and also forge a proof that it is (no/yes). Thus, such a
proof ceases to provide either proof as a receipt.

Independently, Niemi and Renvall[NR94] tried to solve this problem. They
also use a physical voting booth where a voter perform multiparty computation
with all the centers.

Both the Benaloh-Tuinstra and the Niemi-Renvall protocols illustrate that
receipt-freeness is possible. However, their physical requirements are fairly cum-
bersome, and are not unlike those faced by participants in physical elections. An
important open question is precisely what physical requirements are necessary
for achieving receipt-freeness.

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT ’95, LNCS 921, pp. 393-403, 1995.
0 Springer-Verlag Berlin Heidelberg 1995

394

1.2 Results of This Paper

In this paper we consider how to implement receipt-freeness in a more practical
manner. We start with the mix-type protocols of [ChaBl, PIK931 and augment
them to obtain a protocol which is receipt-free and universally verifiable. By
universally verifiable we mean that in the course of the protocol the participants
broadcast information that allows any voter or interested third party to at a
later time verify that the electiori was properly performed. To make our protocol
receipt-free we must by necessity make some physical assumption. We assume
the existence of an untappable private channel. Our untappability requirement
is physical; cryptographic implementations of untappable channels do not suffice
for our purposes. To obtain universal verifiability we develop efficient techniques
by whiclira mixer can prove that they performed correctly, and use the Fiat-
Shamir [FS86] technique to make these proofs noninteractive.

1.3 Techniques Used

Chameleon blobs
Brassard, Chaum and CrCpeau introduced the concept of zero-knowledge proofs
and zero-knowledge bit-commitment schemes[BCC88]. In a zero-knowledge bit
commitment scheme the prover commits t o b by generating a pair (B , Sa) (B is
referred to as a blob) and sends B to the verifier. Later, the prover can open a
blob by sending sb verifier, who evaluates open(B, s b) to obtain 0 , l or reject.
If the prover behaves properly then open(B,Sb) = b. The distribution on B is
independent of 6 , however a computationally bounded prover cannot generate
a triple (B, SO, Sl) such that open(B,Sb) = b for b E (0 , l) . That is, once a
prover has committed to a bit with B , he can open it only one way. A system
of chameleon blobs is a system with the additional property that the verifier
can, on input (B ,b) generate sb such that (B , S b) evaluates to b. That is, the
verifier knows how to open a blob both ways. Furthermore, we require that the
conditional distribution on Sb given B be the same as the conditional distribution
generated by P . We use chameleon blobs to allow the verifier t o forge proofs.

Amortization techniques
In order to achieve universal verifiability, we require the mixers to prove that
they are not altering the ballots. These proofs greatly increase the communica-
tion complexity of the protocol. To ameliorate this problem, we show how to use
techniques similar to those used in [SK94] to reduce the amount of communica
tion and computation necessary to generate, transmit and check the proofs.

1.4 Outline of the Rest of the Paper

In Section 2 we construct a mix-net with the universal verifiability property. In
Section 3 we give a receipt-free voting scheme.

395

2 Universally Verifiable Mix-Net

Mix-net anonymous channels were first proposed by [Cha81]. Subsequently, many
voting schemes have been proposed based on this basic technique [F0092,
PIK931. However, this type of scheme h a s only i n d i v i d u a l ver i f iab i l i t y . That is,
a sender can verify whether or not his message has reached its destination, but
cannot determine if this is true for the other voters. A disadvantage of this situa-
tion is that one has to trust other voters to be vigilant in checking that their vote
was counted. Also, one may wish to audit an election, checking that is was fair,
without getting back in touch with all of the voters. Thus, universal verifiability
is preferable to individual verifiability, provided that it is not too expensive.

In this section, we describe a scheme for mix-net proposed by [PIK93], and
give a protocol to make the scheme universally verifiable. Furthermore, we show
how to amortize the cost for some of the verification procedures required by our
scheme.

2.1 A Scheme wi th Individual Verifiability

The paper of [PIK93] gives two types of mix-type anonymous channels. Both
types of schemes achieve only individual verifiability; we add additional protocols
to achieve universal verifiability.

We first outline (with slightly modifications) the anonymous channel proto-
col proposed in [PIKS.?]. In this scheme, encrypted messages from the senders
are successively processed by the mixing centers until the last center outputs a
randomly, untraceably ordered set of unencrypted3 At a high level, the senders
first post their encrypted messages. Center i processes each message posted by
Center i - 1 (or the senders, when i = 1) and posts the results in permuted
order. It remains to specify how a message m is initially encrypted by a sender
and how Center i processes each message.

In the following, the definition of the “generating element” g is modified from
the original scheme, in order to evade an attack proposed by Pfitzmann [Pfi94].

A Mix-Type Anonymous Channel by [PIK93]

Public information : p = kq + 1 (p , q prime),
g = (g‘)k mod p (where g’ is a generator modp)

Public key of center i : yi = 9“’ mod p
Secret key of center i : zi E 2;

Message from the sender : rn
We define wi = . . . y, and w, = 1.

That is, the encryptions used for the anonymous channel have been stripped off.
Of course, these messages may have been encrypted before being sent through the
channel.

396

Encrypting a message
The sender generates a random number TO, and posts

21 = (GI , M I) = (gra mod p , (~ 0) ' ~ . m mod p)

for use by Center 1.

Processing a message
On input (Gj, M i) , Center i(i = 1,. . . , n - 1) generates a random number ri
(independently for each message-pair) and calculates the following using his
secret key zi:

G;+l = G; . gr* mod p
= gro+. . .+r . mod p

- r o + . - . + r , . mod
Mi+l = Mj . w'*/GY* mod p

- wi

He posts Zi+l = (Gj+l, Mi+l) (permuted with the other processed messages)
for use by Center i + 1.

Center n recovers m by computing

m = Mn/GEn mod p .

By adding redundancy to the message m, and by having the last center n
announce all the received messages (again in permuted order), a sender can
check whether or not his message has reached the destination. However, this
gives only individual verifiability, as a sender can not directly determine if the
other messages have been properly handled. Also, the redundancy can be used
as a receipt, precluding the possibility of receipt-freeness.

2.2 Achieving Universal Verifiability

We obtain universal verifiability in the above scheme, and the other scheme
discussed in their paper, by requiring each center to prove that they correctly
processed their messages. At this time, or later, any interested party can check
the resulting proofs to confirm that the messages have all been handled cor-
rectly. With this method for achieving universal verifiability there is no need for
adding redundancy to the messages. Furthermore, it also helps thwart an attack
proposed in [Pfi94].

We first modify the way each center processes the pairs. Given a pair (G,, Mi),
a center computes (Gj+l , M;+1), but in the first phase it posts GT'. In the second
phase it then posts the pairs (G;+l,Mi+l) in permuted order. Note that this
protocol leaks the value of Gr', which was not leaked in the original protocol.
We know of no way to exploit this extra information.

A center proves the correctness of each stage separately. We write these
protocols in terms of an interactive proof system; they may then be made non-
interactive using the Fiat-Shamir technique [FS86].

397

Proving correctness for the first phase
We can abstract the first phase of the protocol as follows. Given G, the first
phase consists of performing decryption and generate H = G" mod p . The proof
consists of, given (G,g, y = g" mod p) , showing that H is generated in this
manner from G .
prove DECRYPT

1. The prover uniformly chooses T E Zp- l . Let

y' = g r mod p
G' = G' mod p .

The prover sends (y', G').

checks that y' and G' are consistent with r .

verifier checks that

2a. With probability +, the verifier asks the prover to reveal r . The verifier

2b. With probability f , the verifier asks the prover to reveal r' = r - 2. The

y' = gr' . y mod p and
G' = H . G" mod p .

Proving correctness for the second phase
We may slightly abstract the second phase as follows.

Given constants g, w and

the second phase consists of generating r l , r2, . . . and a permutation x and gen-
erating a set of pairs

) . a=($)(') . gri(i) mod p
. wrk(i) mod p

B = (
Here ai (1) refer to G's and a$') to M / H ' s in the first phase. The proof consists

of, given (A ,B ,g ,w) , showing that B could be generated in this manner from
A.
prove SHUFFLE

1. The prover uniformly chooses t i E Zp-ll random permutation X and

1. ax(i) (l) . gtA(i) mod p
= (u ~ (~) (~) . w t ~ (*) mod p

The prover sends C.

checks that C is consistent with A,X,t i in that way.
2a. With probability +, the verifier asks the prover to reveal X and t ; . The verifier

398

2b. With probability +, the verifier asks the prover to reveal A’ = A o T-’ and
ti = t i - r:. The verifier checks Lhat C can be generated from B in the
following way: For

holds.

2.3 Processing Multiple Messages Together

In this section, we show that the centers can process multiple messages together
to achieve a reduces amortized cost per message. Instead of executing “prove
DECRYPT” protocol for each shuffled component, a center can prove a single
statement equivalent to proving that he decrypted all the components correctly
in the following way.

We need to show the following equation holds for each component i.

We can reduce a.bove equations to the following one equation using randomly
chosen coefficients c‘i.

The center can execute above protocol where G = ni(G(j))‘: and H =
n (H (j)) ‘ t . We exploit the fact that if one or more of the original equations is
wrong then if the coefficients are chosen randomly the final equation will also be
wrong. Note that these coefficients must not be picked by the prover, but should
be given by a verifier, beacon or as t,he output of a suitable hash function.

2.4 Remarks on Vote Duplication

Gennaro [Gen94] has pointed out that in the Sako-Kilian [SK94] voting protocol
a malicious voter may copy another voter’s vote by simply duplicating the ballot.
This attack is readily foiled by a simple modification to the Fiat-Shamir heuristic;
see [Gen94] for anumber offixes. However, we note that for some ofthe mix-type
voting schemes proposed in the literature the problem is even more severe. First,
in thc usual mix-type voting paradigm the ballots have redundancy attached to
allow voters to check that their vote h a s been counted. An attacker may then
duplicate a ballot and search the published list of received vot,es to find the two
identical ballots, revealing how that, entity voted.

399

Simple vote duplication may be easily detected by noticing the duplicate
ballots in the first stage, and the adversary risks identification as well as detec-
tion. A more subtle attack on the [PIK93] scheme (which may therefore also be
applied to our current scheme) involves "blinding" a duplicate ballot so that i t
looks different but eventually yields the same ballot in the end. If the legitimate
voter casts an encrypted ballot of the form

Z1 = (G 1 , M 1) = (g r o m o d y , (y1 . . . yn) ' " .mmodp) ,

an attacker can choose T E Zp' at random and cast the ballot

Zi =(G ' , ,M:)=(Gl . g r ' m o d p , M1. (y l . . . yn) "modp) ,

giving no obvious relationship between Z1 and 2;. At the end of the anonymous
channel Drotocol, the final center can still detect vote duplication and refuse to
reveal these votes, but then it is more difficult for others to be assured that the
last center isn't just trying to impede the election.

We note that in our scheme there is no need for extra redundancy. Hence, even
a successful vote duplication attack only gives indirect statistical information to
the attacker, and is not useful when the number of votes for each choice is
large. One approach for evading this problem entirely is to have 21 signed and
encrypted using the first center's public key. TJiiless the adversary colludes with
the first center, he would not succeed in copying the vote. Even if he does succeed
in copying, the inference of a vote may be excluded by omitting the redundancy
in ea.ch messages. Guarding against a colluding center is more difficult. One
approach, is to have a twc-step process whereby the voters commit to their first
posting and then reveal it. This is somewhat against the spirit of the principle
that a voter can vote and then walk away. However, this is not such a big deal
when there are a small number of voters, which is precisely the case where such
attacks arc most troublesome.

3 Proposed Receipt-Free Scheme

In this section, we describe a mix-type receipt-free voting scheme. Subsection 3.1
gives an overview of the scheme and Subsection 3.2 gives a more detailed de-
scription. We note that, t8he interactive zero-knowledge proofs can be made non-
interactive by again iisiiig Fiat-Shamir technique [FS86].

Our assumptions are as follows: First, need a physically untappable means
of communication between the mixing centers and the voters. By a standard
exclusive-or trick this assumption can be implemented by having a number of
communication channels, assuming that the adversary can't simultaneously tap
every one of them. Similarly, it would suffice if at some point in the past the
verifier shared a random string with the centers. Second, we require that every
voter have a discrete-log public-key in which they themselves are guwant1eed to
know the private key. Note that it doesn't mat,ter if an adversary has coerced a
voter to reveal this key.

Subsection 3.3 disciisses h o w to set, up a chameleon-blob system with the
voters.

400

3.1 Overview

The scheme takes the following steps. We use freely the techniques of [BT94]
and [CUSS], adapting them to the mix-type setting.

1. For each voter i, the final counting center posts encrypted 1-votes and 0-
votes in random order. He commits to the ordering using chameleon bit
commitments. note that the voter can open these commitments arbitrarily.
The center executes prove 1-0 vote to prove that he constructed the vote-
pairs properly. He decommits the ordering only to the voter through an
untappable secure channel.

2. Each centers shuffles the two votes for voter i through the mix-net in reverse
order. He commits to how he shuffled using chameleon commitments. Each
execute proof SHUFFLE l o prove the correctness of his action. He reveals
how he shuffled only to the voter i through untappable secure channel.

3. By keeping track of the initial ordering of the pair, and how they were flipped
a t each stage, each voter knows which vote is which. Each voter submits one
of the votes sent down to him.

4. All of the voters' votes are anonymously sent t o the counting center using
verifiable mix-net described in Section 2. The counting center tallies the
votes,

3.2 The Main Protocol

General Constants

Center j Public Key : y, = g " ~ mod p
Center j Secret Keys : xj
Voter i's Public Key : ai = 9'1
Voter i 's Secret Key : ai
1-vote : ml
0-vote : mo

: p = k q + 1 (p , q prime),
g = (g')k mod p (where g' is a generator modp)

1. The last center n executes the following with each voter i. He first commits
a random bit string T (~ , ~) of length 1 + 1 to the voter using public key ai.
For convenience let T!'"' denote kth bit of string T (* , ~) . He then generates

V0 = (Gn, ATn) = (gQn, mo . yr2n 1
1 - Gn', = (gr2n--l, ml . j p n - 1) v - (

where tj = n y i . He places (v o , v l) if = 0 and (v l , v o) otherwise. He
proves that the placed pair is a combination of 1-vote and 0-vote, using
prove 1-0 vote (and ~ (~ 1 ~)) below for 1 times, where 1 is a suitable security
parameter.

2. The counting center reveals to the voter which is 1-vote by decommitting
T(iP) ,

40 1

3. The next center n - 1 executes the following with each voter i. He first
commits a random bit string T(' , '+~) which is I + 1 bit long to the voter. For
convenience let 7 r r l n - ') denote kth bit of string diln-'). He calculates

(Gi-1, Mi-1) = (G, . g r g (n - l) , M,, . gr2(n-- l))

1 (GR-l', Mi-1' = (G,,' . g r 2 (n - 1) - ~ , Mn' . grpa(n-l)-1

where (Gn, A?,,) and (Gn', A?,,') are the votes for voter i sent from the previ-
ous center. The center n - 1 place the votes in this order if T!' = 0 and
reverse otherwise. He proves that the placed pair is a combination of 1-vote
and 0-vote, using prove SHUFFLE for 1 times and for each interaction uses
the first unused bit in da,'+') for random permutation A.

t,n-1)

4. The center reveals to the voter how he placed by decommitting T (~ , ~ - ') .
5. Step 3-4 are repeated for center (mixer) n - 2 down to the first center.
6. The voter, who can compute which vote of the shuffled pair is a 1-vote and

which is a 0-vote, submits the desired vote to the first center of mix, which
sends it down to the counting center through the mix-channel described in
Section 2.

7. After the last center reveals the permuted votes, anyone can compute the
number of 1-votes (mo) and 0-votes (r n l) .

Remark:
We need to choose r n o and ml so that

, m o . yrZn) and u 0 = (g T z n

2, 1 = (gran-l? m1 . y""-')

are indistinguishable. The receipt-freeness follows, as with the [BT94] protocol
from the fact that the verifier can forge "proofs" that imply that the 1-vote and
0-vote were given in either order.
prove 1-0 vote

1 The prover uniformly chooses r' , r" E ZP-' and calculates

Eo(u0) = (f', m o ' y")
El (u') = ($7" , rnl . yf ")

send Eo(v0), E l (v l) in the order according to next unused bit in T (' ! ~) .

2a. With probability i, the verifier asks the prover to reveal T' and r". The
verifier checks if Eo(vo), El(v') is made consistently.

2b. With probability 4 , the verifier asks the prover to reveal rgn - r' and r2n-1-
r". The verifier checks the following holds. vo and d can be generated from
Eo(vO>, E l (V ') .

For completeness, we summarize the chameleon bit-commitment scheme due
to [BKK].

402

Commitment Sender j commits 0 by gr and . g" for 1 to receiver i , who

Decommitment Sender reveals T . The receiver calculates both gr and ai . gr

Modified Decommitment Fkceiver claims he received T - ai instead of T .

knows ai satisfying ai = gal

and obtain the committed bit.

3.3

By adopting non-interactive proofs and chameleon blobs, the voters does not
need to interact with centers in a voting booth as was needed in [BT94] scheme,
if only he can receive messages untapped. The messages must be physically
untappable so that the verifier is free to lie about their contents. Also, it is
necessary to make sure that voter i in fact knows the discrete logarithm of a,
in order t o have the chameleon effect. This is seemingly innocent, but must be
stated as a separate assumption. The simplest solution is to assume that the
verifier is given a discrete-log at some time iri the distant past, such as for a
public-key. We note that only one such piece of information must be given for
all time. Also, while losing this discrete-log to the center is dangerous, losing it
to a coercer does not affect the receipt-freeness of the protocol.

Confirming the Voter Knows his Secret Key

Refer en c es

[BCC88] G. Brassard, D. Chaum and C . Crepeau. Minimum Disclosure Proofs of
Knowledge. In JCSS, pages 156-189. 1988.

[Ben871 J. Cohen Benaloh. Verifiable Secret-Ballot Electioras. P h D thesis, Yale Uni-
versity, 1987. YALEU/DCS/TR-561.

[BKK] J. Boyar, M. Krentel and S. Kurtz. A discrete logarithm implementation of
perfect zero-knowledge blobs. Journal of Cryptology, Vol. 2, No. 2 , pp. 63-76,
1990.

[BT94] J. Cohen Benaloh and D. Tuinstra. Receipt-Free Secret-Ballot Elections. In
STOC 94, pages 544-553. 1994.

[Cha81] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. In Commutaacations of the ACM, pages 84-88. ACM, 1981.

[CUSS] J . Cohen Benaloh and M. Yung. Distributing the power of a Gvernment
to enhance the privacy of voters. In A n ~ u a l Symposium on Principles of
Distributed Computing, pages 52-62, 1986.

[F0092] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for
large scale elections. In Advances in Cryptology -Auscrypt '92, pages 244-251,
1992.
A. Fiat and A . Shamir. How to prove yourself Practical solutions to identifi-
cation and signature problems. In Advonces in Cryptology -Crypt0 '86, pages
186-1 99. Springer- Verlag, 1986.

[Gen94] R. Gennaro. Using non-interactive proofs to achieve independence efficiently
and securely. MIT-LCS Technical Memo 515. 1994.

[NR94] V. Niemi and A. Renvall. How to prevent buying of votes in computer elec-
t>ions. In ASIACRYPT '94, pages 141-148. 1994.

[FS86]

403

[Pfi94] B. Pfitzmann. Breaking an efficient anonymous channel. In EUROCRYPT
'94, pages 339-348. 1994.

[PIKW] C. Park, K . Itoh, and K. Kurosawa. All/nothing election scheme and anony-
mous channel. In EUROCRYPT '93, 1993.

[SK94] K . Sako and J. Kilian. Secure voting using partially compatible homomor-
phisms. In Advances in Cryptology -Cry@ '94, pages 411-424. Springer-
Verlag, 1994.

	Introduction
	Receipt-Free Voting Schemes
	Results of This Paper
	Techniques Used
	Outline of the Rest of the Paper

	Universally Verifiable Mix-Net
	A Scheme with Individual Verifiability
	Achieving Universal Verifiability
	Processing Multiple Messages Together
	Remarks on Vote Duplication

	Proposed Receipt-Free Scheme
	Overview
	The Main Protocol
	Confirming the Voter Knows his Secret Key

	References

