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Abstract. We present a receipt-free voting scheme based on a mix- 
type anonymous channel[Cha81, PIK931. The receiptfreeness property 
[BT94] enables voters t o  hide how they have voted even from a powerful 
adversary who is trying to coerce him. The work of [BT94] gave the first 
solution using a voting booth, which is a hardware assumption not unlike 
that in current physical elections. In our proposed scheme, we reduce 
the physical assumptions required to obtain receipt-freeness. Our sole 
physical assumption is the existence of a private channel through which 
the center can send the voter a message without fear of eavesdropping. 

1 Introduction 

1.1 Receipt-Free Voting Schemes 

The ultimate goal of secure electronic voting is to  replace physical voting booths. 
Achieving this goal requires work both on improving the efficiency of current pro- 
tocols and understanding the security properties that these physical devices can 
provide. Recently, Benaloh and Tuinstra[BT94] observed that,  unlike physical 
voting protocols, nearly all electronic voting protocols give the voters a receipt 
by which they can prove how they voted. Such receipts provide a ready means 
by which voters can sell their votes or another party can coerce a voter. Be- 
naloh and Tuinstra give the first receipt-free protocol for electronic voting. In 
their scheme a trusted center generates for each voter a pair of ballots consisting 
of a “yes” vote and a “no7’ vote in random order. Using a trusted beacon and 
a physical voting booth the center proves to the public that  the ballot indeed 
consists of a well-formed (yes/no) or (no/yes) pair and at the same time proves 
to  the verifier which pair i t  is. The physical apparatus ensures that by the time 
the verifier is able to communicate with an outsider, he can forge a proof that 
the ballot is (yes/no) and also forge a proof that it is (no/yes). Thus, such a 
proof ceases to  provide either proof as a receipt. 

Independently, Niemi and Renvall[NR94] tried to  solve this problem. They 
also use a physical voting booth where a voter perform multiparty computation 
with all the centers. 

Both the Benaloh-Tuinstra and the Niemi-Renvall protocols illustrate that 
receipt-freeness is possible. However, their physical requirements are fairly cum- 
bersome, and are not unlike those faced by participants in physical elections. An 
important open question is precisely what physical requirements are necessary 
for achieving receipt-freeness. 
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1.2 Results of This Paper 

In this paper we consider how to implement receipt-freeness in a more practical 
manner. We start with the mix-type protocols of [ChaBl, PIK931 and augment 
them to obtain a protocol which is receipt-free and universally verifiable. By 
universally verifiable we mean that in the course of the protocol the participants 
broadcast information that allows any voter or interested third party to  at a 
later time verify that the electiori was properly performed. To make our protocol 
receipt-free we must by necessity make some physical assumption. We assume 
the existence of an untappable private channel. Our untappability requirement 
is physical; cryptographic implementations of untappable channels do not suffice 
for our purposes. To obtain universal verifiability we develop efficient techniques 
by whiclira mixer can prove that they performed correctly, and use the Fiat- 
Shamir [FS86] technique to make these proofs noninteractive. 

1.3 Techniques Used 

Chameleon blobs 
Brassard, Chaum and CrCpeau introduced the concept of zero-knowledge proofs 
and zero-knowledge bit-commitment schemes[BCC88]. In a zero-knowledge bit 
commitment scheme the prover commits t o  b by generating a pair ( B ,  Sa) (B is 
referred to  as a blob) and sends B to  the verifier. Later, the prover can open a 
blob by sending sb verifier, who evaluates open(B, s b )  to obtain 0 , l  or reject. 
If the prover behaves properly then open(B,Sb) = b.  The distribution on B is 
independent of 6 ,  however a computationally bounded prover cannot generate 
a triple (B, SO, Sl) such that open(B,Sb) = b for b E (0 , l ) .  That is, once a 
prover has committed to a bit with B ,  he can open it only one way. A system 
of chameleon blobs is a system with the additional property that  the verifier 
can, on input (B ,b)  generate sb such that ( B , S b )  evaluates to  b. That is, the 
verifier knows how to open a blob both ways. Furthermore, we require that the 
conditional distribution on Sb given B be the same as the conditional distribution 
generated by P .  We use chameleon blobs to  allow the verifier t o  forge proofs. 

Amortization techniques 
In order to achieve universal verifiability, we require the mixers to prove that 
they are not altering the ballots. These proofs greatly increase the communica- 
tion complexity of the protocol. To ameliorate this problem, we show how to use 
techniques similar to those used in [SK94] to reduce the amount of communica 
tion and computation necessary to generate, transmit and check the proofs. 

1.4 Outline of the Rest of the Paper 

In Section 2 we construct a mix-net with the universal verifiability property. In 
Section 3 we give a receipt-free voting scheme. 
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2 Universally Verifiable Mix-Net 

Mix-net anonymous channels were first proposed by [Cha81]. Subsequently, many 
voting schemes have been proposed based on this basic technique [F0092,  
PIK931. However, this type of scheme h a s  only i n d i v i d u a l  ver i f iab i l i t y .  That is, 
a sender can verify whether or not his message has reached its destination, but 
cannot determine if this is true for the other voters. A disadvantage of this situa- 
tion is that one has to trust other voters to  be vigilant in checking that their vote 
was counted. Also, one may wish to  audit an election, checking that is was  fair, 
without getting back in touch with all of the voters. Thus, universal verifiability 
is preferable to  individual verifiability, provided that it is not too expensive. 

In this section, we describe a scheme for mix-net proposed by [PIK93], and 
give a protocol to  make the scheme universally verifiable. Furthermore, we show 
how to amortize the cost for some of the verification procedures required by our 
scheme. 

2.1 A Scheme wi th  Individual Verifiability 

The paper of [PIK93] gives two types of mix-type anonymous channels. Both 
types of schemes achieve only individual verifiability; we add additional protocols 
to achieve universal verifiability. 

We first outline (with slightly modifications) the anonymous channel proto- 
col proposed in [PIKS.?]. In this scheme, encrypted messages from the senders 
are successively processed by the mixing centers until the last center outputs a 
randomly, untraceably ordered set of unencrypted3 At a high level, the senders 
first post their encrypted messages. Center i processes each message posted by 
Center i - 1 (or the senders, when i = 1) and posts the results in permuted 
order. It remains to specify how a message m is initially encrypted by a sender 
and how Center i processes each message. 

In the following, the definition of the “generating element” g is modified from 
the original scheme, in order to  evade an attack proposed by Pfitzmann [Pfi94]. 

A Mix-Type Anonymous Channel by [PIK93] 

Public information : p = kq + 1 ( p ,  q prime), 
g = (g‘)k mod p (  where g’ is a generator modp ) 

Public key of center i : yi = 9“’ mod p 
Secret key of center i : zi E 2; 

Message from the sender : rn 
We define wi = . . . y, and w, = 1. 

That is, the encryptions used for the anonymous channel have been stripped off. 
Of course, these messages may have been encrypted before being sent through the 
channel. 
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Encrypting a message 
The sender generates a random number TO, and posts 

21 = (GI , M I )  = (gra mod p ,  ( ~ 0 ) ' ~  . m mod p )  

for use by Center 1. 

Processing a message 
On input (Gj, M i ) ,  Center i(i = 1,. . . , n - 1) generates a random number ri 
(independently for each message-pair) and calculates the following using his 
secret key zi: 

G;+l = G; . gr* mod p 
= gro+. . .+r .  mod p 

- r o + . - . + r ,  . mod 
Mi+l = Mj . w'*/GY* mod p 

- wi 

He posts Zi+l = (Gj+l, Mi+l)  (permuted with the other processed messages) 
for use by Center i + 1. 

Center n recovers m by computing 

m = Mn/GEn mod p .  

By adding redundancy to the message m, and by having the last center n 
announce all the received messages (again in permuted order), a sender can 
check whether or not his message has reached the destination. However, this 
gives only individual verifiability, as a sender can not directly determine if the 
other messages have been properly handled. Also, the redundancy can be used 
as a receipt, precluding the possibility of receipt-freeness. 

2.2 Achieving Universal Verifiability 

We obtain universal verifiability in the above scheme, and the other scheme 
discussed in their paper, by requiring each center to prove that they correctly 
processed their messages. At this time, or later, any interested party can check 
the resulting proofs to confirm that the messages have all been handled cor- 
rectly. With this method for achieving universal verifiability there is no need for 
adding redundancy to  the messages. Furthermore, it also helps thwart an attack 
proposed in [Pfi94]. 

We first modify the way each center processes the pairs. Given a pair (G,, Mi), 
a center computes (Gj+l , M;+1), but in the first phase it posts GT'. In the second 
phase it then posts the pairs (G;+l,Mi+l) in permuted order. Note that this 
protocol leaks the value of Gr',  which was not leaked in the original protocol. 
We know of no way to exploit this extra information. 

A center proves the correctness of each stage separately. We write these 
protocols in terms of an interactive proof system; they may then be made non- 
interactive using the Fiat-Shamir technique [FS86]. 
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Proving correctness for the first phase 
We can abstract the first phase of the protocol as follows. Given G, the first 
phase consists of performing decryption and generate H = G" mod p .  The proof 
consists of, given (G,g, y = g" mod p ) ,  showing that H is generated in this 
manner from G .  
prove DECRYPT 

1. The prover uniformly chooses T E Zp- l .  Let 

y' = g r  mod p 
G' = G' mod p .  

The prover sends (y', G'). 

checks that y' and G' are consistent with r .  

verifier checks that 

2a. With probability +, the verifier asks the prover to  reveal r .  The verifier 

2b. With probability f ,  the verifier asks the prover to reveal r' = r - 2. The 

y' = gr' . y mod p and 
G' = H . G" mod p .  

Proving correctness for the second phase 
We may slightly abstract the second phase as follows. 

Given constants g,  w and 

the second phase consists of generating r l ,  r2, . . . and a permutation x and gen- 
erating a set of pairs 

) .  a=($)( ')  . gri(i) mod p 
. wrk(i) mod p 

B =  ( 
Here ai ( 1 )  refer to G's and a$') to M / H ' s  in the first phase. The proof consists 

of, given (A ,B ,g ,w) ,  showing that B could be generated in this manner from 
A.  
prove SHUFFLE 

1. The prover uniformly chooses t i  E Zp-ll random permutation X and 

1. ax( i ) ( l )  . gtA(i )  mod p 
= ( u ~ ( ~ ) ( ~ ) .  w t ~ ( * )  mod p 

The prover sends C. 

checks that C is consistent with A,X,t i  in that way. 
2a. With probability +, the verifier asks the prover to reveal X and t ; .  The verifier 
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2b. With probability +, the verifier asks the prover to  reveal A’ = A o T-’ and 
ti = t i  - r:. The verifier checks Lhat C can be generated from B in the 
following way: For 

holds. 

2.3 Processing Multiple Messages Together 

In this section, we show that the centers can process multiple messages together 
to  achieve a reduces amortized cost per message. Instead of executing “prove 
DECRYPT” protocol for each shuffled component, a center can prove a single 
statement equivalent to proving that he decrypted all the components correctly 
in the following way. 

We need to  show the following equation holds for each component i. 

We can reduce a.bove equations to  the following one equation using randomly 
chosen coefficients c‘i.  

The center can execute above protocol where G = ni(G(j))‘:  and H = 
n ( H ( j ) ) ‘ t .  We exploit the fact that if one or more of the original equations is 
wrong then if the coefficients are chosen randomly the final equation will also be 
wrong. Note that these coefficients must not be picked by the prover, but should 
be given by a verifier, beacon or as t,he output of a suitable hash function. 

2.4 Remarks on Vote Duplication 

Gennaro [Gen94] has pointed out that in the Sako-Kilian [SK94] voting protocol 
a malicious voter may copy another voter’s vote by simply duplicating the ballot. 
This attack is readily foiled by a simple modification to the Fiat-Shamir heuristic; 
see [Gen94] for anumber offixes. However, we note that for some ofthe mix-type 
voting schemes proposed in the literature the problem is even more severe. First, 
in thc usual mix-type voting paradigm the ballots have redundancy attached to 
allow voters to check that their vote h a s  been counted. An attacker may then 
duplicate a ballot and search the published list of received vot,es to  find the two 
identical ballots, revealing how that, entity voted. 
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Simple vote duplication may be easily detected by noticing the duplicate 
ballots in the first stage, and the adversary risks identification as well as detec- 
tion. A more subtle attack on the [PIK93] scheme (which may therefore also be 
applied to  our current scheme) involves "blinding" a duplicate ballot so that i t  
looks different but eventually yields the same ballot in the end. If the legitimate 
voter casts an encrypted ballot of the form 

Z1 = ( G 1 , M 1 ) = ( g r o m o d y ,  (y1 . . . yn ) ' " .mmodp) ,  

an attacker can choose T E Zp' at random and cast the ballot 

Zi =(G ' , ,M: )=(Gl  . g r ' m o d p ,  M1. (y l . . . yn ) "modp) ,  

giving no obvious relationship between Z1 and 2;. At the end of the anonymous 
channel Drotocol, the final center can still detect vote duplication and refuse to  
reveal these votes, but then it is more difficult for others to be assured that the 
last center isn't just trying to impede the election. 

We note that in our scheme there is no need for extra redundancy. Hence, even 
a successful vote duplication attack only gives indirect statistical information to  
the attacker, and is not useful when the number of votes for each choice is 
large. One approach for evading this problem entirely is to  have 21 signed and 
encrypted using the first center's public key. TJiiless the adversary colludes with 
the first center, he would not succeed in copying the vote. Even if he does succeed 
in copying, the inference of a vote may be excluded by omitting the redundancy 
in ea.ch messages. Guarding against a colluding center is more difficult. One 
approach, is to  have a twc-step process whereby the voters commit to  their first 
posting and then reveal it. This is somewhat against the spirit of the principle 
that a voter can vote and then walk away. However, this is not such a big deal 
when there are a small number of voters, which is precisely the case where such 
attacks arc most troublesome. 

3 Proposed Receipt-Free Scheme 

In this section, we describe a mix-type receipt-free voting scheme. Subsection 3.1 
gives an overview of the scheme and Subsection 3.2 gives a more detailed de- 
scription. We note that, t8he interactive zero-knowledge proofs can be made non- 
interactive by again iisiiig Fiat-Shamir technique [FS86]. 

Our assumptions are as follows: First, need a physically untappable means 
of communication between the mixing centers and the voters. By a standard 
exclusive-or trick this assumption can be implemented by having a number of 
communication channels, assuming that the adversary can't simultaneously tap 
every one of them. Similarly, it would suffice if at some point in the past the 
verifier shared a random string with the centers. Second, we require that every 
voter have a discrete-log public-key in which they themselves are guwant1eed to 
know the private key. Note that it doesn't mat,ter if an adversary has coerced a 
voter to reveal this key. 

Subsection 3.3 disciisses h o w  to set, up a chameleon-blob system with the 
voters. 
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3.1 Overview 

The scheme takes the following steps. We use freely the techniques of [BT94] 
and [CUSS], adapting them to the mix-type setting. 

1. For each voter i, the final counting center posts encrypted 1-votes and 0- 
votes in random order. He commits to the ordering using chameleon bit 
commitments. note that the voter can open these commitments arbitrarily. 
The center executes prove 1-0 vote to prove that he constructed the vote- 
pairs properly. He decommits the ordering only to  the voter through an 
untappable secure channel. 

2. Each centers shuffles the two votes for voter i through the mix-net in reverse 
order. He commits to  how he shuffled using chameleon commitments. Each 
execute proof SHUFFLE l o  prove the correctness of his action. He reveals 
how he shuffled only to  the voter i through untappable secure channel. 

3. By keeping track of the initial ordering of the pair, and how they were flipped 
a t  each stage, each voter knows which vote is which. Each voter submits one 
of the votes sent down to him. 

4. All of the voters' votes are anonymously sent t o  the counting center using 
verifiable mix-net described in Section 2. The counting center tallies the 
votes, 

3.2 The Main Protocol 

General Constants 

Center j Public Key : y, = g " ~  mod p 
Center j Secret Keys : xj 
Voter i's Public Key : ai = 9'1 
Voter i 's  Secret Key : ai 
1-vote : ml 
0-vote : mo 

: p = k q  + 1 ( p , q  prime), 
g = (g')k mod p (  where g' is a generator modp ) 

1. The last center n executes the following with each voter i. He first commits 
a random bit string T ( ~ , ~ )  of length 1 + 1 to the voter using public key ai. 
For convenience let T!'"' denote kth bit of string T ( * , ~ ) .  He then generates 

V0 = (Gn, ATn) = (gQn, mo . yr2n 1 
1 - Gn', = (gr2n--l, ml . j p n - 1 )  v - (  

where tj = n y i .  He places ( v o , v l )  if = 0 and ( v l , v o )  otherwise. He 
proves that the placed pair is a combination of 1-vote and 0-vote, using 
prove 1-0 vote (and ~ ( ~ 1 ~ ) )  below for 1 times, where 1 is a suitable security 
parameter. 

2. The counting center reveals to the voter which is 1-vote by decommitting 
T( iP) ,  
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3. The next center n - 1 executes the following with each voter i. He first 
commits a random bit string T(' , '+~) which is I +  1 bit long to  the voter. For 
convenience let 7 r r l n - ' )  denote kth bit of string diln-'). He calculates 

(Gi-1, Mi-1) = (G, . g r g ( n - l ) ,  M,, . gr2(n-- l ) )  

1 (GR-l', Mi-1' = (G,,' . g r 2 ( n - 1 ) - ~ ,  Mn' . grpa(n-l)-1 

where (Gn, A?,,) and (Gn', A?,,') are the votes for voter i sent from the previ- 
ous center. The center n - 1 place the votes in this order if T!' = 0 and 
reverse otherwise. He proves that the placed pair is a combination of 1-vote 
and 0-vote, using prove SHUFFLE for 1 times and for each interaction uses 
the first unused bit in da,'+') for random permutation A. 

t,n-1) 

4. The center reveals to the voter how he placed by decommitting T ( ~ , ~ - ' ) .  
5. Step 3-4 are repeated for center (mixer) n - 2 down to the first center. 
6. The voter, who can compute which vote of the shuffled pair is a 1-vote and 

which is a 0-vote, submits the desired vote to  the first center of mix, which 
sends it down to the counting center through the mix-channel described in 
Section 2. 

7. After the last center reveals the permuted votes, anyone can compute the 
number of 1-votes (mo) and 0-votes ( r n l ) .  

Remark: 
We need to choose r n o  and ml so that 

, m o  . yrZn) and u 0 = ( g T z n  

2, 1 = (gran-l? m1 . y""-') 

are indistinguishable. The receipt-freeness follows, as with the [BT94] protocol 
from the fact that the verifier can forge "proofs" that imply that the 1-vote and 
0-vote were given in either order. 
prove 1-0 vote  

1 The prover uniformly chooses r' ,  r" E ZP-' and calculates 

Eo(u0)  = (f', m o  ' y") 
El (u') = ($7" , rnl . yf ") 

send Eo(v0),  E l ( v l )  in the order according to next unused bit in T ( ' ! ~ ) .  

2a. With probability i, the verifier asks the prover to reveal T' and r". The 
verifier checks if Eo(vo), El(v') is made consistently. 

2b. With probability 4 , the verifier asks the prover to  reveal rgn - r' and r2n-1- 
r". The verifier checks the following holds. vo and d can be generated from 
Eo(vO>, E l ( V ' ) .  

For completeness, we summarize the chameleon bit-commitment scheme due 
to [BKK]. 
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Commitment Sender j commits 0 by gr and . g" for 1 to receiver i ,  who 

Decommitment Sender reveals T .  The receiver calculates both gr and ai . gr 

Modified Decommitment Fkceiver claims he received T - ai instead of T .  

knows ai satisfying ai = gal 

and obtain the committed bit. 

3.3 

By adopting non-interactive proofs and chameleon blobs, the voters does not 
need to interact with centers in a voting booth as was needed in [BT94] scheme, 
if only he can receive messages untapped. The messages must be physically 
untappable so that the verifier is free to  lie about their contents. Also, it is 
necessary to make sure that voter i in fact knows the discrete logarithm of a, 
in order t o  have the chameleon effect. This is seemingly innocent, but must be 
stated as a separate assumption. The simplest solution is to  assume that the 
verifier is given a discrete-log at some time iri  the distant past, such as for a 
public-key. We note that only one such piece of information must be given for 
all time. Also, while losing this discrete-log to the center is dangerous, losing it 
to  a coercer does not affect the receipt-freeness of the protocol. 

Confirming the Voter Knows his Secret Key 
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