Polytypic Compact Printing and Parsing

Patrik Jansson! and Johan Jeuring?

! Computing Science, Chalmers University of Technology, Sweden
http://www.cs.chalmers.se/ patrikj/
patrikj@cs.chalmers.se
2 Computer Science, Utrecht University, the Netherlands
http://www.cs.uu.nl/"johanj/
johanj@cs.uu.nl

Abstract. A generic compact printer and a corresponding parser are
constructed. These programs transform values of any regular datatype
to and from a bit stream. The algorithms are constructed along with a
proof that printing followed by parsing is the identity. Since the binary
representation is very compact, the printer can be used for compressing
data - possibly supplemented with some standard algorithm for com-
pressing bit streams. The compact printer and the parser are described
in the polytypic Haskell extension PolyP.

1 Introduction

Many programs convert data from one format to another; examples are parsers,
pretty printers, data compressors, encryptors, functions that communicate with
a database, etc. Some of these programs, such as parsers and pretty printers,
critically depend on the structure of the input data. Other programs, such as
most data compressors and encryptors, more or less ignore the structure of the
data. We claim that using the structure of the input data in a program for a
data conversion problem almost always gives a more efficient program with better
results. For example, a data compressor that uses the structure of the input data
runs faster and compresses better than a conventional data compressor. This
paper constructs (part of) a data compression program that uses the structure
of the input data.

A lot of files that are distributed around the world, either over the inter-
net or on CD-rom, possess structure — examples are databases, html files, and
JavaScript programs — and it pays to compress these structured files to obtain
faster transmission or fewer CD’s. Structure-specific compression methods give
much better compression results than conventional compression methods such as
the Unix compress utility [BJE4. For example, Unix compress typically requires
four bits per byte of Pascal program code, whereas Cameron [reports compres-
sion results of one bit per byte of Pascal program code. Algorithmic Research
B.V. [sells compressors for structured data, and reports impressive results.
Structured compression is also used in heap compression and binary I/O [E8].

The basic idea of the structure-specific compression methods is simple: parse
the input file into a structured value (an abstract syntax tree), and construct a

S.D. Swierstra (Ed.): ESOP/ETAPS’99, LNCS 1576, pp. 273l 1999.
© Springer-Verlag Berlin Heidelberg 1999

274 Patrik Jansson and Johan Jeuring

compact representation of the abstract syntax tree. For example, consider the
datatype of binary trees

data Tree a = Leaf a | Bin (Tree a) (Tree a)
The following (rather artificial) example binary tree

tree :: Tree ()
tree = Bin (Bin (Leaf () (Bin (Leaf () (Leaf ()))) (Leaf ())

can be pretty printed to an (admittedly rather wasteful) text description of tree
requiring 55 bytes. But since the datatype Tree a has two constructors, each
constructor can be represented by a single bit. Furthermore, the datatype () has
only one constructor so the single element can be represented by 0 bits. Thus
we get the following representations:

Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())
1 1 0 1 0 0 0

The compact representation consists of 7 bits, so only 1 byte is needed to store
this tree. Of course, we are not always this lucky, but the average case is still
very compact.

This idea has been around since the beginning of the 1980s, but as far as we
are aware, there does not exist a general description of the program, only exam-
ple instantiations appear in the literature. One of the goals of this paper is to
describe the compact printing part, together with its inverse, of the compression
program generically. It defines a polytypic program (a program that works for
large classes of datatypes) for compact printing. Together with a parser genera-
tor this program is a generic description of the structured compression program.
The implementation (as PolyP code) can be obtained from

http://www.cs.chalmers.se/ patrikj/poly/

The compression achieved by our compact printing algorithm, is through a com-
pact representation of the structure of the data using only static information
— the type of the data. Traditional (bit stream) compressors using dynamic
(statistical) properties of the data are largely orthogonal to our approach and
thus the best results are obtained by composing the compact printer with a bit
stream compressor.

The fundamental property of the compact printing function print is that it
has a left inversell: the parsing function parse. This is a very common specifi-
cation pattern: all of the example data conversion problems above are specified
as pairs of inverse functions with some additional properties. Another example
can be found in Haskell’s prelude, which contains functions show and its inverse
read of type:

show :: Show a = a — String
read :: Read a = String — a

! That is, parse o print = id, but print o parse need not be id. In the rest of the paper
we will write just inverse, when we really mean left inverse.

Polytypic Compact Printing and Parsing 275

Unfortunately, it is very hard to see from their definitions why read is the inverse
of show. In this paper, the driving force behind the construction of the functions
print and parse is inverse function construction. Thus correctness of print and
parse is guaranteed by construction. Interestingly, when we forced ourselves to
only construct pairs of inverse functions, we managed to reduce the size and
complexity of the resulting program considerably compared with our previous
attempts.

A second desired property of the compact printing function is that given an
element z, the length of print x is less than the length of prettyprint x, where
prettyprint is a function that prints a value in a standard fashion, like the show
function of Haskell. This is in general difficult or impossible to prove, and beyond
the scope of this paper. More information can be found in the literature [E4].

Summarising, this paper has the following goals:

— construct a polytypic compact printing program together with its inverse;
— show how to construct and calculate with polytypic functions;
— take a first step towards a theory of polytypic data conversion.

This paper is organised as follows. Section [l briefly introduces polytypic pro-
gramming. Section [l defines some basic types and classes, and introduces the
compact printing program. Section ll sketches the construction and correctness
proof of the compact printing program. Section H concludes. Appendix Bl de-
scribes the laws we need in the proofs.

2 Polytypic programming

The compact printing and parsing functions are polytypic functions. This section
briefly introduces polytypic functions in the context of the Haskell extension
PolyP [H], and defines some basic polytypic concepts used in the paper. We
assume that the reader is familiar with the initial algebra approach to datatypes,
and not completely unfamiliar with polytypic programming. For an introduction
to polytypic programming, see [HJE|.

A polytypic function is a function parametrised on type constructors. Poly-
typic functions are defined either by induction on the structure of user-defined
datatypes, or defined in terms of other polytypic (and non-polytypic) functions.
In the definition of a function that works for an arbitrary (as yet unknown)
datatype we cannot use the constructors to build values, nor to pattern match
against values. Instead, we use two built-in functions, inn and out, to construct
and destruct a value of an arbitrary datatype from and to its top level compo-
nents. With a recursive datatype d a as a fixed point of a pattern functor @, a,
inn and out are the fold and unfold isomorphisms showing d a = @4a (d a).

inn :: Regqular d = (FunctorOf d)a(da) — da
out :: Reqular d = da — (FunctorOf d) a (d a)

The pattern functor is used to capture the (top level) structure of a datatype, for
example, a list is either empty or contains one element and a recursive occurrence

276 Patrik Jansson and Johan Jeuring

of a list. Hence: FunctorOf List = Empty + (Par * Rec). Similarly, the pattern
functor of the datatype Treea is Par + (Rec * Rec). As a last example, the
datatype Rose a of rose trees over a:

data Rose a = Node a (List (Rose a))

has the pattern functor FunctorOf Rose = Par x (List @ Rec), where @ denotes
functor composition. In general, PolyP’s pattern functors are generated by the
following grammar:

fig,h == g+h | gxh | Empty | Par | Rec | d@g | Constt

where d generates regular datatype constructors, and ¢ generates types. The
pattern functor Const t denotes a constant functor with value ¢t. The type context
Bifunctor f = is used to indicate that f is a pattern functor.

Using the polytypic construct a polytypic function can be defined by induc-
tion over the structure of pattern functors. As an example we take the function
psum defined in figure ll (The subscripts indicating the type are included for

psum :: Regulard = dInt — Int
psum = fsum o fmap id psum o out

polytypic fsum; :: Bifunctorf = f IntInt — Int
= case f of
g+h — either fsum, fsum,,
gxh — Xaz,y) — fsum, x + fsum,y
Empty — X)—0
Par — M —n
Rec — As—s
d@Qg — psumg,o (pmap, fsum,)
Constt — Az — 0

pmap :: Regulard = (a—b) —da—db
fmap :: Bifunctorf = (a—c¢)— (b—d)—fab—fcd

Fig. 1. The definition of psum

readability and are not part of the definition.) Function psum sums the inte-
gers in a datatype with integers. We use the naming convention that recursive
polytypic functions start with a ‘p’ (as in polytypic) but non-recursive polytypic
definitions start with an ‘f’ (as in functor). The ‘polytypic map’, pmap, takes a
function f :: @ — b and a value x :: d a, and applies f to all a values in x, giving
a value of type d b. The ‘functor map’, fmap, takes two functions ¢ :: ¢ — ¢ and
h::b— dand a value x :: f a b, and applies g to all a values in z, and h to all
b values in z, giving a value of type f ¢ d. The definitions of pmap and fmap can
be found in the distribution of PolyP.

Polytypic Compact Printing and Parsing 277

Note that function psum is only defined for Regular datatypes d a. A data-
type d a is regular (satisfies Regular d) if it contains no function spaces, and
if the argument of the type constructor d is the same on the left- and right-
hand side of its definition. In the rest of the paper we always assume that d a
is a regular datatype and that f is a pattern functor but we omit the contexts
(Regular d = or Bifunctor f =) from the types for brevity.

3 Basic types and classes

Compact printing. A natural choice for the type of a compact printing func-
tion for type a is a — Text, where Text is the type of printed values, for example
String or [Bit]. Since we want to define print as a recursive function, this would
lead to quadratic behaviour when repeatedly concatenating intermediate results.
The standard solution for printing functions is to add an accumulating param-
eter (to which the output is prepended) thus changing the type to a — Text —
Text, or equivalently, to (a, Text) — Text.

Parsing. Parsing is the inverse of printing, and hence a first approximation of
its type is Text — a. Since we want to apply parsers one after the other, we
need both a parsed result and the remaining part of the input string, which can
be passed to the next parser. The standard solution for parsing functions is to
change the type to Text — (a, Text).

Side effects as functions. We can make the types for printing and pars-
ing more symmetric by pairing the single Text component with a unit type to
get the isomorphic type (a, Text) — ((), Text) for printing and ((), Teat) —
(a, Text) for parsing. Both these types are instances of the more general type
TextStateArr a b:

newtype TextStateArra b = TS ((a, Text) — (b, Teat))

An element of type TextStateArr a b models a function that takes a value of
type a and returns a value of type b, and possibly has a side effect on the state
Text. Thus a compact printer (for a-values) has type TextStateArra(), and a
corresponding parser has type TextStateArr () a.

The first steps. Our goal is to construct two functions and a proof:

— A function pe (‘polytypic compacting’) that takes a compact printing pro-
gram on the element level a to a compact printing program on the datatype
level d a:

pe = TextStateArr a () — TextStateArr (d a) ()

For example, the function that compresses the tree in the introductory sec-
tion is obtained by instantiating the polytypic function pc to Tree and ap-
plying the instance to a (trivial) compact printing program for the type ().

278 Patrik Jansson and Johan Jeuring

— A function pu (‘polytypic uncompacting’) that takes a parsing program on
the element level a to a parsing program on the datatype level d a:

pu :: TextStateArr () a — TextStateArr () (d a)

For the Tree example the element level parsing program is a function that
parses nothing, and returns (), the value of type ().

— A proof that if ¢ and u are inverses on the element level a, pc ¢ and pu u are
inverses on the datatype level d a.

In the following section, instead of using the type TextStateArr a b in the defi-
nitions of pc and pu, we will use the more abstract type a ~ b, where (~) is an
arrow type constructor.

The class Arrow. The type TextStateArr a b encapsulates functions from a to
b that manipulate a state of type Text. Since a parser could easily use a more
complicated type, for example to store statically available information [E4], and
also the printer could use a more complicated type, we will go one step further
in the abstraction by introducing the constructor class Arrow [8]:

class Arrow (~) where
arr ::(a—b) — (a~b)
) m(a~b) — (b~c)— (a~c¢)
(&) 1 (a~¢) = (b~ d) — (Either a b~ Either cd)
first (a~ b) = (g ¢) ~ (b, ©))

The method arr of the class Arrow embeds functions as arrows and arr id to-
gether with (>>) form the signature of the category with types as objects, and
elements of a ~ b as arrows from a to b. This category has a binary (sum) func-
tor (the method (<)) and a “half-product” functor (first). Below we write
as a shorthand notation for arrf. In the appendix we formalise the properties
we need from Arrows to construct the definitions of functions pc and pu along
with the proof of their correctness.

As an example of programming with arrows, we define second — the other
half-product — in terms of first :

second :: (a~b) — ((¢,a) ~ (¢, b))

second f = swap >> first f >> swap

swap :: (a,b) — (b, a)
swap (a, b) = (b, a)
Using first and second we can define two candidates for being product functors,
but when the arrows have side-effects, neither of these are functors as they fail
to preserve composition.
() = (a~e €)= (b~ d) = ((a,b) ~ (¢, d))
f#1 g = first f >> second g
f #a g = second f >> first g

Polytypic Compact Printing and Parsing 279

Type constructor TextStateArr can be made an instance of Arrow as follows:

mapFst :: (a — b) — (a,¢) — (b, ¢)
mapFst (a,¢) = (f 0, ¢

instance Arrow TextStateArr where

arr f TS (mapFst f)

TSf> TSg=TS(gof)

TSf < TSg= TS (\(z,t) — either (\a — mapFst Left (f (a,1)))
(Ab — mapF'st Right (g (b,t)))
7)

first (TS f) = TS (A((a,¢),t) — let (b, t') = f (a, t)

in (b, 0),t")

Printing constructors. To construct the printer and the parser we need a little
more structure than provided by the Arrow class — we need a way of handling
constructors. Since a constructor can be coded by a single natural number, we
can use a class ArrowNat to characterise arrows that have operations for printing
and parsing constructor numbers:

class Arrow (~) = ArrowNat (~) where
printCon :: Nat ~ ()
parseCon :: () ~ Nat
-- Requirement: printCon >> parseCon = id

With Text = [Nat], the instances for TextStateArr are straightforward, and the
printing algorithm constructed in the following section will in its simplest form
just output a list of numbers given an argument tree of any type. A better solu-
tion is to code these numbers as bits and here we have some choices on how to
proceed. We could decide on a fixed maximal size for numbers and store them
using their binary representation but, as most datatypes have few constructors,
this would waste space. We will instead statically determine the number of con-
structors in the datatype and code every single number in only as many bits
as needed. For an n-constructor datatype we use just [log,n| bits to code a
constructor. An interesting effect of this coding is that the constructor of any
single constructor datatype will be coded using 0 bits! We obtain better results
if we use Huffman coding with equal probabilities for the constructors, resulting
in a variable number of bits per constructor. Even better results are obtained
if we analyse the datatype, and give different probabilities to the different con-
structors. However, our goal is not to squeeze the last bit out of our data, but
rather to show how to construct the polytypic program. Since the number of
bits used per constructor depends on the type of the value that is compressed,
printCon and parseCon need in general be polytypic functions. Their definitions
are omitted, but can be found in the code on the web page for this paper.

In the sequel (~) will always stand for an arrow type constructor in the class
ArrowNat but, as with Regular, we often omit the type context for brevity.

280 Patrik Jansson and Johan Jeuring

4 The construction of the program

We want to construct a function pc that takes a compact printing program on
the element level a to a compact printing program on the datatype level d a,
together with a parsing function pu, which takes a compact parsing program on
the element level a to a compact parsing program on the datatype level d a, and
a proof that pu is the inverse of pc:

pei(a~ () = (da~()
pu(()~a) = (()~da)

c>u=1id = pce>>puu=pid(c> u)=1id (1)

In the proofs below we will assume that the arrows ¢ and wu satisfy ¢ >> u = id.

Overview of the construction. The construction can be interpreted either
as fusing the printer pc ¢ with the parser pu w to get an identity arrow id or,
equivalently, as splitting the identity arrow into a composition of a printer and
a parser. As both the printer and the parser are polytypic functions, and both
lift an argument level arrow to a datatype level arrow, we start by presenting a
polytypic “identity function” pid that lifts an element level identity arrow to a
datatype level identity arrow. Function pid is constructed below together with
pc and pu and the proof of equation ll but the resulting definition is presented
already here, in figurelll, to aid the reading. The proof that pid id = id is simple

: pid :: (a~»b) — (da~s db) '
pidi = out >> fid i (pid i) > inn

polytypic fid :: (a~c¢) = (b~ d) — (fab~ fcd)
= \ij — case f of
g+h — fidij < fidij
gxh — (fidij) =1 (fidij)
Empty — @
Par — 1
Rec — j

dQg — pid(fidij)

Fig. 2. The definition of pid and fid.

and omitted. As we are defining polytypic functions the construction follows the
structure of regular datatypes: A regular datatype is a fix-point of a pattern
functor, the pattern functor is a sum of products, and the products can involve
type parameters, other types, etc.

The arrow pc c prints a compact representation of a value of type da. It
does this by recursing over the value, printing each constructor by computing

Polytypic Compact Printing and Parsing 281

its constructor number, and each element by using the argument printer ¢. The
constructor number is computed by means of function feSum, which also takes
care of passing on the recursion to the children. An arrow printCon prints the
constructor number with the correct number of bits. Finally, function fcProd
makes sure the information is correctly threaded through the children.

Top level recursion. We want function pc to be ‘on-line’ or lazy: it should
output compactly printed data immediately, and given part of the compactly
printed data, pu should reconstruct part of the input value. Thus functions pc
and pu can also be used to compactly print infinite streams, for example. We
have not been able to define function pc with a standard recursion operator such
as the catamorphism: threading the side effects in the right order turned out to
be a problem. Instead of a recursion operator we use explicit recursion on the
top level, guided by fc and fu.

As pc decomposes its input value, and compactly prints the constructor and
the children by means of a function fe (defined below), pu must do the opposite:
first parse the components using fu and then construct the top level value:

pee=fee(pec) < oul
-—
puu = fuu(puu) > inn
Here f < g = g > f is used to reveal the symmetry of the definitions. Thus

we need two new functions, fc and fu, and we can already guess that we will
need a corresponding fusion law:

fe:(a~ () = (b~ () = (Fab~()
fuz ()~ a) = (0~ b) = ()~ fab)

feed > fuun = fid (¢ > u) (>) (2)
We will use the following variant of fixed-point fusion [EIE]I
pf>>pg=ph < fd > gu =h(d>u) (3)

Given (B we can now prove (Hl).
pe e >> puu = pid (¢ > u)
“= Definitions of pc, pu, fixed-point theorem (@)
oul 3> fecd s> fuud > i =h(c >)
= Equation @).
oul > fid (¢ > u) (¢ > ') > m:h(c’>>>u’)
= oDeﬁnehj:Ef>>>ﬁd(c>>>u)j>>>m
True

The resulting definition of function pid can be found in figure B

2 Strictly speaking the variables ¢’ and v’ on the right hand side of the implication
should be V-quantified over {f* L | i € N} and {¢* L | i € N} respectively.

282 Patrik Jansson and Johan Jeuring

Printing constructors. We want to construct functions fc and fu such that (B
holds. Furthermore, these functions should do the actual compact printing and
parsing of the constructors using printCon :: Nat ~ () and parseCon :: () ~ Nat
from the ArrowNat class:

feccd = printCon < feSum c ¢’

fuuu' = parseCon > fuSum u u’

The arrow feSum ¢ ¢’ prints a value (using the argument printers ¢ and ¢’ for the
parameters and the recursive structures, respectively) and returns the number
of the top level constructor, by determining the position of the constructor in
the pattern functor (a sum of products). The arrow printCon prepends the con-
structor number to the output. As printCon >> parseCon = id by assumption,
the requirement that function fu can be fused with fc is now passed on to fuSum
and feSum:

feSum : (a~ () = (b~ () — (f a b~ Nat)
fuSum :: () ~ a) = (() ~ b) — (Nat ~ f ab)

feSum ¢’ > fuSumu v’ = fid (¢ > u) (¢ > ') (4)

The arrow parseCon reads the constructor number and passes it on to the arrow
JuSum u v’ which selects the desired constructor and uses its argument parsers
u and v’ to fill in the parameter and recursive component slots in the functor
value.

Calculating constructor numbers. The pattern functor of a Haskell data-
type with n constructors is an n-ary sum (of products) on the outermost level.
This sum is in PolyP represented by a nested binary sum, which associates to
the right. Consequently, we define feSum by induction over the nested sum part
of the pattern functor and defer the handling of the product part to fcProd:

polytypic fcSum :: (a~ ()) = (b~ ()) — (f a b~ Nat)
= Xcc — casef of
g+h — (fcProd cc <> feSum cc') >> imnyat
g — fcProdcc > \)—0

polytypic fuSum :: (() ~ a) — (() ~ b) — (Nat ~ fab)
= \uu’ — casef of
g+h — (fuProduv <> fuSumuv') < out Nat
g — fuProduu < A0 — ()

The types for fcProd and fuProd and the corresponding fusion law are unsur-
prising:

feProd :: (a~ () = (b~ () = (fab~())

fuProd :: ()~ a) = ()~ b) = () ~ f ab)

Polytypic Compact Printing and Parsing 283

feProd ¢ ¢’ >> fuProd uwu' = fid (¢ >> u) (¢ > u') (5)

We prove equation (@) by induction over the nested sum structure of the functor.
The induction hypothesis is that () holds for the feSumy,.

The sum case: g+ h

feSum g, cc” > fuSum), uu
= Definitions

(feProd, c ¢’ <> feSumy, cc') >> Mg >

Ul Nar > (fuProd ; wu' <& fuSum,, uu')
= oUt Ngt © NN Ng: = id

(feProd, c ¢ <& fcSumy, cc') > (fuProd,uu' <> fuSum, uu')
= (<) is a bifunctor

(feProd, c ¢’ > fuProd,uu') <> (feSumy, c ¢’ >> fuSum, uu')
= Equation (@) and the induction hypothesis

fidy (c>>u) (" > ') < fid, (c > u) (' >)
= e Define fid .,

fidgip (¢ > u) (¢ >)

The base case: g

feProd,cc > A) — 0 > X0 — () > fuProd, uu'
= A)—=0>X0—()=id:= ()~ ()

feProd, c ¢’ >> fuProd, uu'
= Equation (@)

fid, (¢ >>u) (' >)

Sequencing the parameters. The last part of the construction of the program
is the two functions feProd and fuProd defined in figure [l The earlier functions
have calculated and printed the constructors, so what is left is “arrow plumbing”.
The arrow fcProd ¢ ¢’ traverses the top level structure of the data and inserts
the correct compact printers: ¢ at argument positions and ¢’ at substructure
positions. The structure of fuProd is very similar but as it is the inverse of fcProd,
all arrows are composed in the opposite order. The inverse proof is a relatively
straightforward induction over the pattern functor structure, but omitted here
due to space constraints.

284

Patrik Jansson and Johan Jeuring

polytypic fcProd :: (a~+ () = (b~ () = (fab~ () '
= Ac ¢’ — case f of

gxh — (feProd cc') #2 (fcProd cc') >> X((), () — ()

Empty — i
Par — ¢
Rec — ¢

d@g — pc(fcProdcc')

polytypic fuProd :: (() ~ a) — (() ~ b) — (() ~ f ab)
= Auu' — casef of

gxh — (fuProduu’) »:1 (fuProduu') << A\() — ((), ())

Empty — i
Par — u
Rec — o’

d@g — pu(fuProduu’)

5

Fig. 3. The definition of fcProd and fuProd.

Conclusions

Results

We have constructed a polytypic program for compact printing and parsing
of structured data. As far as we are aware, this is the first generic description
of a program for compact printing (structured data compression).

The pair of functions for compact printing and parsing are inverse functions
by construction. Since we started applying the inverse function requirement
rigorously in the construction of the program, the size and the complexity
of the code have been reduced considerably. We think that such a rigorous
approach is the only way to obtain elegant solutions to involved polytypic
problems.

Another concept that simplified the construction and form of the program
is arrows. In our first attempts we used monads instead of arrows. Although
it is perfectly well possible to construct the compact printing and parsing
functions with monads [E], the inverse function construction, and hence the
correctness proof, is much simpler with arrows.

We have shown how to convert data to and from a bit stream. This is an
example of a data conversion program, and we hope that the construction
in this paper is reusable in solutions for other data conversion problems.

Future work

The current program produces compact, but not human-readable, output. A
pretty printer for structured data has a very similar structure, and we want
to investigate how to introduce the right abstractions to obtain a single
program for both pretty printing and compact printing of structured data.

Polytypic Compact Printing and Parsing 285

— In the future we want to investigate whether or not relations can help to

simplify the construction even more, by specifying compact printing as a
relation, and letting parsing be its relational converse [A].

We have presented a calculation of a polytypic program. We think that
calculating with polytypic functions is still rather cumbersome, and we hope
to obtain more theory, in the style of [, to further simplify calculations
with polytypic programs.

We want to construct polytypic programs for other data conversion problems
such as encryption and database communication.

Acknowledgements. Roland Backhouse helped with the fixed point calcula-
tion. Joost Halenbeek implemented a polytypic data compression program using
monads. The anonymous referees suggested many improvements for contents
and presentation.

References

1.

2.

10.

11.

12.
13.

14.

15.

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming —
an introduction. To appear in AFP’98, LNCS, Springer-Verlag, 1998.

R.C. Backhouse, P.J. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and
J.C.S.P. van der Woude. Relational catamorphisms. In B. Mdller, editor, Con-
structing Programs from Specifications, pages 287-318. North-Holland, 1991.
Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text Compression. Prentice
Hall, 1990.

R.S. Bird and O. de Moor. Algebra of Programming. Prentice-Hall International,
1996.

Algorithmic Research B.V. SDR compression products. See http://
www.algoresearch.com/, 1998.

Robert D. Cameron. Source encoding using syntactic information source models.
IEEE Transactions on Information Theory, 34(4):843-850, 1988.

J. Halenbeek. Comparing approaches to generic programming. Master’s thesis,
Department of Computer Science, Utrecht University, 1998. To appear.

John Hughes. Generalising monads. Invited talk at MPC’98, 1998. Slides available
from http://www.md.chalmers.se/Conf/MPC98/talks/JohnHughes/.

P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension.
In POPL’97, pages 470-482. ACM Press, 1997.

J. Jeuring and P. Jansson. Polytypic programming. In AFP’96, volume 1129 of
LNCS, pages 68-114. Springer-Verlag, 1996.

L. Meertens. Calculate polytypically! In PLILP’96, volume 1140 of LNCS, pages
1-16. Springer Verlag, 1996.

Erik Meijer. Calculating compilers. PhD thesis, Nijmegen University, 1992.
Mathematics of Program Construction Group (Eindhoven Technical University).
Fixed-point calculus. Information Processing Letters, 53(3):131-136, 1995.
Swierstra S.D. and L. Duponcheel. Deterministic, error-correcting combinator
parsers. In John Launchbury, Erik Meijer, and Tim Sheard, editors, Advanced
Functional Programming, LNCS 1129, pages 184-207. Springer-Verlag, 1996.
R.G. Stone. On the choice of grammar and parser for the compact analytical
encoding of programs. The Computer Journal, 29(4):307-314, 1986.

286 Patrik Jansson and Johan Jeuring

16. M. Wallace and C. Runciman. Heap compression and binary I/O in haskell. In
2nd ACM Haskell Workshop, 1997.

17. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337-343, 1977.

A Properties of Arrows

The properties we need from an Arrow type constructor for the definitions of the
generic printer and parser are most succinctly described using category theoretic
terminology. We work in a base category C of (Haskell-) types and functions and
a type constructor ~ is an Arrow if we have a category A with the same types
as objects, but with elements of a ~ b as arrows:

C= (Ha (*))a (O)a Zd)
A= (Ha (M)a (<<<)a Zd)

Furthermore A must have a binary (sum) functor ((<=) : A x A — A), “half-
product” functors (first, : A — A) and there must be a functor (7 : C — A)
lifting functions to arrows. A set of laws sufficient for the proof of the correct-
ness of the print-parse-pair is given in figure ll We do not require the stronger

'A is a category d< f=f=f<xid (< id)’

(K9 Kh=f<(gKh) &)
TiC— A id = id (7, id)
T =a fog:?<<<?) (7, <)
(@) AxA— A id <> id = id (<, id)
a <> b=Fitherab (fSg<(fSd)=(<f)>Kyg) @<
first, : A— A first, id = id (first,, id)
first. a = (a, c) first, (f < g) = first, [< first, g (first., <)

first, (f <> g) = first, [<> first, g (first,, <),

Fig. 4. Laws for Arrows.

requirements that (<) should be a true categorical sum or that first, (com-
bined with second.) should give a categorical product as this would rule out
many useful arrow type constructors. In fact, the proof goes through even with
slightly weaker conditions on the arrows than those in figure ll, and thus we may
be able to extend the class of possible arrows further.

We denote reverse composition in A with (>>) and we often use the obvious
variants of the laws for this operator. When translating the Arrow requirements
back to a Haskell class we omit id as it is equal to id. The resulting code is
shown in figure Bl where we also introduce some useful abbreviations.

Polytypic Compact Printing and Parsing

287

class Arrow a where

arr (b ->
(>>>) abc
arn abd
(<+>) abd
first :: abec
second :: abc
-- Defaults:
f <> g = (£ >>
flll g=(f<+>
second f = arr
first £ = arr

-- Utilities

(<<<) :: Arrow a

g<KKf=1>>g

swap ::

swap " (x,y) =

data Nat

c) >abec
->acd->

abd

->acd->a (Either b c) d

->ace ->a (Either b c) (Either 4 e)
-> a (b,d) (c,d)

->a (d,b) (d,c)

arr Left) ||| (g >>> arr Right)

g) >>> arr (either id id)

(a,b) -> (b,a)
(y,%)

innNat ::

innNat

outNat ::

outNat
outNat

Z | S Nat

Either () Nat -> Nat
either (comnst Z) S

Nat
(2)
(S n)

->

swap >>> first £ >>> arr swap
swap >>> second f >>> arr swap

= acd->abc->abd

Either () Nat

Left
Right

O

n

-- Either and either are predefined in Haskell
Left a | Right b

data Either a b

either ::

(a ->c) —>
either f g (Left x)
either f g (Right x)

(b => ¢) -> Either a b -> ¢
f x

g X

Fig. 5. The Arrow operations as Haskell code.

	Introduction
	Polytypic programming
	Basic types and classes
	The construction of the program
	Conclusions
	Properties of ensuremath {@mathit {Arrow}}s

