
On Proving Safety Properties by Integrating

Static Analysis, Theorem Proving and
Abstraction ?

Vlad Rusu and Eli Singerman

SRI International, Menlo Park, California, USA
{rusu,singermn}@csl.sri.com

Abstract. We present a new approach for proving safety properties
of reactive systems, based on tight interaction between static analysis,
theorem proving and abstraction techniques. The method incrementally
constructs a proof or finds a counterexample. Every step consists of ap-
plying one of the techniques and makes constructive use of information
obtained from failures in previous steps. The amount of user intervention
is limited and is highly guided by the system at each step. We demon-
strate the method on three simple examples, and show that by using
it one can prove more properties than by using each component as a
stand-alone.

1 Introduction

Theorem proving [GM95, ORS+95, CCF+97]1 is a powerful and general way to
verify safety properties of reactive systems, but its use in mechanical verification
requires a serious amount of both insightful and labor-intensive manual guidance
from the human verifier. Model checking [BCM+92, H91, LPY97] is largely
automatic but it only addresses a limited class of essentially finite-state systems.
Abstraction [SUM96, DGG97, GS97, BLO98, CU98] can be used to translate an
infinite-state system to a finite-state system so as to preserve the property being
verified. This can reduce the manual burden of the verification but the discovery
of a suitable property-preserving abstraction takes considerable human ingenuity.
Furthermore, when the abstracted system fails verification, this could either be
because the abstraction was too coarse or because the system did not satisfy the
property. It takes deep insight to draw useful information from such a failure.
This paper addresses these problems by presenting a methodology for integrating
static analysis [CC77, HPR97, BL], theorem proving, and abstraction that does
not tax the patience and ingenuity of the human verifier. In this methodology

? This research was supported by National Science Foundation grant CCR-9509931.
The first author is also supported by a Lavoisier grant of the French Ministry of
Foreign Affairs.

1 Due to space limitations, we cite only a few of the relevant contributions in each
domain.

W.R. Cleaveland (Ed.): TACAS/ETAPS’99, LNCS 1579, pp. 178–192, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



On Proving Safety Properties by Integrating Static Analysis 179

1. The choice of the abstraction mapping can be guided by the subgoals in a
failed proof attempt.

2. A failed verification attempt at the abstract level suggests either strength-
ened invariants or a more refined abstraction.

3. The iterative process, when it terminates, yields a counterexample indicating
how the property is violated or a proof that the property is satisfied.

We also show that the combination of abstraction and theorem proving is strictly
more powerful than verification based on theorem proving with systematic dy-
namic invariant strengthening techniques.

In our method, the verification starts with a one-time use of static analysis,
generating true-by-construction invariants that are communicated to both the
theorem-proving and abstraction components. The rest of the process involves
a tight interaction between the prover and abstraction generator, in which each
step makes constructive use of information obtained from failures in previous
steps. The method assists the user in discovering relevant auxiliary invariants
and suitable abstraction mappings while progressing towards a proof or a coun-
terexample. Using this “small increments” approach the required amount of user
ingenuity is reduced. Instead of having to rely on keen insight of the problem
right from the start, the user gains increasing insight as she progresses in the
verification task, enabling her to conclude eventually.

The rest of the paper is organized as follows. In Section 2 we present some
basic terminology and an overview of the static analysis, theorem proving and
abstraction techniques that we are using. Section 3 presents our approach for
integrating these techniques, which we introduce through the verification of a
simple example. Section 4 contains a formal comparison of the relative power
of the theorem proving and abstraction techniques, together with an example
demonstrating that our method is strictly more powerful than using each com-
ponent as a stand-alone. We conclude in Section 5 and present some future work
directions.

2 The Components

We use transition systems as a computational model for reactive programs. A
transition system T consists of a finite set of typed variables V , an initial con-
dition Θ and a finite set of guarded transitions T . The variables can be either
control or data variables; the control variables are of a finite type Location. Each
transition τ ∈ T is labeled and consists of a guard and an assignment. A state
is a type-consistent valuation of the variables, and the initial condition Θ is a
predicate on states. Each transition τ induces a transition relation ρτ relating
the possible before and after states. The global transition relation of the system
is ρT =

⋃
τ∈T ρτ .

A computation of the transition system is an infinite sequence of states, in which
the first state satisfies the initial condition and every two consecutive states are
in the transition relation. The parallel (asynchronous) composition of transition
systems is defined using interleaving in the usual manner. For a transition τ



180 Vlad Rusu and Eli Singerman

and a state predicate ϕ, the predicate p̃reτ (ϕ) characterizes all the states from
which, after taking transition τ , the predicate ϕ holds:

p̃reτ (ϕ) : ∀s
′
.ρτ (s, s

′
) ⊃ ϕ(s

′
).

Likewise, postτ (ϕ) characterizes the states that can be reached by taking tran-
sition τ from some state satisfying ϕ:

postτ (ϕ) : ∃s.ρτ (s, s
′
) ∧ ϕ(s).

These predicates are also defined globally for the transition system T :

p̃reT (ϕ) : ∀s
′
.ρT (s, s

′
) ⊃ ϕ(s

′
), postT (ϕ) : ∃s.ρT (s, s

′
) ∧ ϕ(s).

In the sequel, we omit T when it is understood from the context.
We now briefly describe the static analysis, theorem proving and abstraction

techniques we integrate in our approach. In should be stressed that the identity
of the particular tools we use is not the main point here, but rather the way in
which we integrate them. One could, for example, use Polka [HPR97] as the
static analysis tool, InVesT [BLO98] as the abstraction tool, etc.

2.1 Static Analysis

For automatically generating invariants we use a method similar to that sug-
gested by [BLO98]. The analysis starts by computing local invariants at every
control location: the local invariant of a control location l is the disjunction
of postτ (true), for all transitions τ leading to l. Then, the local invariants are
propagated to other control locations of the system to obtain global invariants.
For example, in the simple transition system illustrated below, static analysis
yields the local invariant2(pc = 1 ⊃ x ≥ 0). Then, since x ≥ 0 is preserved by
transition inc, it is a global invariant.

dec:

inc:

pc = 2pc = 1

true → x := x + 1

x > 0 → x := x − 1

x = 0

2.2 Theorem Proving

We use PVS [ORS+95] for invariant strengthening [GS96, HS96]. Given a tran-
sition system T and a state predicate I, we say that I is inductive if I ⊃ p̃re(I).
Obviously, if I is inductive and holds at the initial state of T , then I is an invari-
ant of T . When I is not inductive, we can strengthen it by taking I ∧ p̃re(I) and



On Proving Safety Properties by Integrating Static Analysis 181

check if the latter is inductive, that is, whether I ∧ p̃re(I) ⊃ p̃re(I ∧ p̃re(I)); or
equivalently, whether I ∧ p̃re(I) ⊃ p̃re2(I). In general, this procedure terminates
if there exists an n such that

I ∧ p̃re(I) ∧ . . . ∧ p̃ren(I) ⊃ p̃ren+1(I). (1)

In this case, it follows that I ∧ p̃re(I) ∧ . . . ∧ p̃ren(I) is inductive: in particular,
I is an invariant.

This technique can be implemented in PVS as follows. We use a simple in-
variance rule stating that I is an invariant if it is true initially and is preserved by
all transitions. If I is inductive then applying the rule once would complete the
proof. Otherwise, the prover presents a number of pending (unproved) subgoals:
each subgoal results from the fact that I is not preserved by some transition. We
then apply the invariance rule to the predicate obtained by taking the conjunc-
tion of I and all the unproved subgoals: this amounts to attempting to prove that
I ∧ p̃re(I) is inductive. If there exists an n such that (1) holds, then repeating
this process n times would eliminate all the subgoals and complete the proof.
This leads to a fully automatic procedure (that is not guaranteed to halt).

2.3 Abstraction

We use the abstraction technique described in [GS97]. The abstraction of a
concrete transition system T relative to a finite set of state predicates B =
{B1, . . . , Bk} called boolean abstract variables, is a transition system denoted
T/B. The states of the abstract system T/B are called abstract states; every
abstract state is labeled with a valuation of the control variables of T and of the
abstract variables. Let us now briefly describe how T/B is constructed.

The initial abstract state is labeled with the initial control configuration of T
and with the truth values of the abstract variables at the initial concrete state.
Assume now that sA is an abstract state, the abstract transitions going out of
sA are then generated. Every concrete transition τ , originating from a concrete
state with the same control configuration as sA, can give rise to several abstract
transitions. Each of these transitions will have the same label as τ and lead to an
abstract state obtained by computing (with Pvs) the effect of τ (starting from
sA) on the control and abstract variables.

Consider, for example, the concrete system illustrated below. An abstraction
relative to B1 : (x = 0) and B2 : (x = 1) generates the abstract system (a);
while an abstraction only relative to B2 yields the abstract system (b), of which
only the initial portion is shown. Note that in the latter, simulating the concrete
transition inc gives rise to two successors. This is because starting at the initial
abstract state, where ¬(x = 1) holds, the transition inc performing x := x + 1
can either lead to a state in which (x = 1) is true, or to a state in which the
latter is false. Note also that in the abstract system (a), the only state labeled
pc = 2 is also labeled (x = 1); we say this abstraction “shows” the property
2(pc = 2 ⊃ (x = 1)). On the other hand, the abstraction (b) does not show
this property, since there exists an abstract state labeled pc = 2 and ¬(x = 1).



182 Vlad Rusu and Eli Singerman

dec:

inc:

pc = 1

(a)

¬(x = 0)(x = 0)

pc = 1 pc = 2

. . .
inc

(b)

(x = 1)¬(x = 1)

dec

x = 0

¬(x = 1)

(x = 1)

. . .
¬(x = 1)

inc

inc

true → x := x + 1

true → x := x − 1

pc = 2

pc = 1

pc = 2

pc = 2

To define the notion of “abstraction showing a property” we interpret the la-
belling of each abstract state sA as a predicate π(sA) on the concrete variables;
for instance, the predicate associated with the initial state of system (b) above is
(pc = 1)∧¬(x = 1). Let T/B be the abstraction of a concrete system T relative
to the set of abstract variables B = {B1, . . . , Bk}, and ϕ be a state predicate.
We say that an abstract state sA shows ϕ if π(sA) implies ϕ. We say that T/B
shows2ϕ, denoted T/B |=

ABS 2ϕ, if all abstract states show ϕ. The crucial
feature of these boolean abstractions, which is true by construction, is that for
every computation

s0
a0→ s1

a1→, . . .

of the concrete system T , there exists an abstract trace

sA
0

a0→ sA
1

a1→, . . .

such that for i = 0, 1, . . . , the labels of the abstract and concrete transitions
coincide, and the boolean values of the abstract variables in sA

i and in si coincide.
Consequently, boolean abstractions are useful for proving invariants, since

T/B |=
ABS 2ϕ ⇒ T |=2ϕ.

In general, an abstraction relative to a larger set of abstract variables can “show”
more properties, because the prover has more information at its disposal when
new abstract states are generated, therefore it can eliminate some of them, yield-
ing a finer abstraction. Also, constructing an abstraction with some known invari-
ants of the concrete system can assist in eliminating irrelevant abstract states.

3 The Integration

We introduce our approach for integrating the previously discussed static analy-
sis, theorem proving and abstraction techniques. The general scheme is presented
in Fig. 1.



On Proving Safety Properties by Integrating Static Analysis 183

program

subgoals
pending

No

No

Yes

invariants

newly proved conjecture

new invariant:
wishes granted

abstract
system

abstract

new conjecture

abstract
Abstraction
generator

Theorem 
prover

Invariant 
generator

trace?
violating

concrete
matches

trace?

new abstract
variables

new
wishes

wishes

Proof!

Yes

invariants

analyzer
Trace

trace

Trace 
simulator

variables

Counterexample!

property

Figure 1: Integration

We demonstrate the method on a simple mutual exclusion problem for three
identical processes (illustrated below), in which the semaphore S is a shared
variable. The property to be proved is that it is never the case that all three
processes are in their critical sections simultaneously; this is expressed as2I
with

I : ¬((pc1 = cs) ∧ (pc2 = cs) ∧ (pc3 = cs)).



184 Vlad Rusu and Eli Singerman

pci = nc pci = cs

truetrue

requesti :
S > 0 → S := S − 1

releasei :
true → S := S + 1

S = 2

The first step is to employ the Invariant generator. This yields the global in-
variant:2(S ≥ 0), which is fed to the Theorem prover and to the Abstraction
generator, since it contains relevant information that may be useful in the sequel.

The next step is to apply theorem proving in trying to prove that I is induc-
tive. In our case, I is not inductive, and therefore the proof is not completed.
Rather, we are presented with three (symmetric) pending subgoals, resulting
from transitions that do not preserve I. For example, the following subgoal is re-
lated to transition request3 when the third process attempts to enter the critical
section while the other two processes are already there:

Assuming:
– pc1 = cs
– pc2 = cs
– S > 0
Prove:
– ¬(pc

′
3 = cs)

Obviously, the only way to prove this implication is to show that the assumption
is contradictory; but I alone is too weak to prove it. The user now has two
alternatives: either to remain in the prover and try to strengthen I, or to try to
prove the pending subgoals using an abstraction. User-dependent decisions are
represented in the diagram of Fig. 1 by dashed lines. Here, we choose the latter
alternative. From the pending subgoals we identify the predicate (S > 0) as a
potentially relevant abstract variable and use the Abstraction generator to build
the abstract system T/{(S > 0)}. The generated abstract system is then passed
to the Trace analyzer together with a user-defined wish.

A wish is a transition-related state property to be checked on the abstract
system which, if shown correct, would enable to eliminate an unproved subgoal.
The transition to which a wish refers is that who gave rise to the corresponding
subgoal.
Formulating a wish is straightforward. For example, a wish corresponding to the
subgoal above is: “for every abstract transition labeled request3, if the origin
abstract state is labeled pc1 = cs and pc2 = cs then it is also labeled ¬(S > 0)”.

The role of the Trace analyzer is to find an abstract state that violates the
wish. If there is no violating state, then the wish is granted and this information
is passed back to the prover, allowing to complete the corresponding subgoal.
In our example, however, there exists a violating abstract state and the Trace



On Proving Safety Properties by Integrating Static Analysis 185

analyzer returns the following abstract trace (starting from the initial abstract
state) leading to it:

request2

S > 0 S > 0 S > 0

pc1 = nc

pc2 = nc

pc3 = nc

pc1 = cs

pc2 = nc

pc3 = nc pc3 = nc

pc2 = cs

pc1 = cs
request1 request3

This means that either mutual exclusion is not guaranteed by the program, or
that the abstraction is too coarse. To decide between these two we must check
whether this violating trace can be matched by a concrete computation.

This task is performed by the Trace simulator, by simulating the transitions
of the violating trace on the concrete system. It checks whether after every
transition the valuation of the abstract variables in the concrete and abstract
systems coincide. If this is the case, then we have a counterexample. Here, it is not
the case, since a miss-match is detected in the third abstract state: according
to the concrete computation, S = 0 should hold, but in the abstract system,
S > 0 holds. Thus, the abstraction is too coarse. In this situation, the simulator
outputs a warning message indicating what “went wrong” in the abstraction; this
information is obtained by computing the p̃re-images of the abstract variables
on the violating trace. In our example, the message suggests that the abstraction
“believes” that initially S > 2 holds.

The user has now two options to pursue. The first is to do another abstraction
relative to a larger set of abstract variables (obtained by adding the new ones
suggested by the trace simulator as “responsible” for the miss-matches). For
example, S > 2 is a new relevant abstract variable. The second option is to
formulate a conjecture and try to prove it in the theorem prover. A conjecture is
an auxiliary invariant that would assist in generating a finer abstraction. In our
case, an obvious conjecture is 2(S ≤ 2). If it was proved, then taking it into
account when the next abstraction is computed would eliminate some abstract
traces (e.g., the previous violating trace).

We pursue the latter alternative. The proof of2(S ≤ 2) does not succeed
in one invariant strengthening step. From the new unproved subgoals we extract
two new abstract variables: (S ≤ 2) and (S ≤ 1). We compute the abstract
system T/{(S > 0), (S ≤ 2)(S ≤ 1)}, which is fine enough to grant our orig-
inal wishes. Armed with this information the prover eliminates the (original)
unproved subgoals and completes the proof of mutual exclusion.

As another example, we consider a version of the alternating bit protocol
taken from [GS97] (see Fig. 2 below).



186 Vlad Rusu and Eli Singerman

not message_present or not
message_channel.bit = c -> 
ack_channel:=c,
ack_present:=true

Receive_oldmessage:

ENVIRONMENT:

Lose_message:Lose_ack:

message_present=false
ack_present:=false

ack_present=false
message_present=false

true -> message_channel:=(head(sent),b),
message_present:=true

New_message:
Receive_ack:

Send_message

Resend_message:
not(message_present and ack_channel=b) -> 

message_present:=true
message_channel:=(head(sent),b),

true -> b:=not(b),
sent:=add(get_new_message(),sent)

SENDER:
sent = null
b = false

true-> c:=not(c),
Send_ack:

ack_channel:=c,

and ack_channel=b 
->

message_present 

message_present and 
message_channel.bit = c -> 

Receive_message:

received:=

RECEIVER:
received=null
c=false

add(message_channel.message,
received)

Figure 2: An Alternating bit Protocol.

There are three processes: sender, receiver and environment. The sender gener-
ates messages, records them in the sent list, then sends them to the receiver over
the communication medium message channel. The latter is modeled as a one-
place buffer that can hold a message and a bit. The receiver records successfully
received messages in the received list and sends an acknowledgment through
the one-place buffer ack channel. The environment can lose messages and ac-
knowledgements by setting the boolean flags message present and ack present
to False. This causes the sender/receiver respectively to retransmit. The safety
property to be proved, is that the (unbounded) lists sent and received always
differ by at most one message:2(sent = received ∨ sent = tail(received)).

The first step, static analysis, yields two invariants that are fed to the prover
and to the abstraction generator. The next step is theorem proving, and since the
property is not inductive, the proof is not completed. There are three pending



On Proving Safety Properties by Integrating Static Analysis 187

subgoals, all of which are related to transitions that update the sent/received
lists.

For example, we have to prove that at the origin of transition receive message:
sent = tail(received). We take this predicate as an abstract variable, and formu-
late the above as a wish. (We also used two other similar abstract variables and
corresponding wishes which are omitted here.)

After the abstraction has been computed, the trace analyzer returns a violat-
ing trace in which a receive message transition is taken from the initial abstract
state. From the trace simulator we get a warning message indicating that the
problem occurred because the transition receive message should not have been
enabled initially, and that the predicate “responsible” for this is the conjunct
message channel.bit = c in the guard of the transition.

The obvious choice now is to take this predicate as a new abstract variable
and to redo an abstraction. Still, the second abstraction does not grant our
wishes; a new violating trace is detected and another abstract variable is sug-
gested by the same mechanism described above. The third abstraction grants all
original wishes, and then the prover completes the proof.

In [GS97] the same protocol is analyzed by an abstraction relative to a set
of sub-formulas of the guards, and human inspection of the generated abstract
system is necessary to conclude that the protocol is indeed correct. Our approach
is different: the abstract variables are suggested to the user by the failures of
previous proof attempts and abstractions; the analysis of the abstract system
is automatic and it issues information to the user; and in the end we obtain a
complete rigorous proof.

Our method can be automated in significant proportion. Indeed, all the com-
ponents in the diagram (Fig. 1) perform automatic tasks, and user intervention is
basically limited to choosing between abstraction and theorem proving. In both
cases, the user is assisted in providing the relevant abstract variables, wishes and
conjectures by the pending subgoals in the prover and by the warning messages
issued by the trace simulator. The method is incremental: progress is made in
each step, as every relevant abstract variable and conjecture reduces the search
space; and the user gains insight of the problem while progressing towards a
proof or a counterexample. Finally, we show in the next section that by inte-
grating the components it is possible to prove more properties than by automatic
invariant strengthening or automatic abstraction as stand-alones.

4 Integration is More Powerful

We now define the class of safety properties that can be proved to be invariant
by the automatic invariant strengthening technique described in Section 2.2. For
a transition system T and n = 0, 1, . . . consider the set

INVn(T ) = {2I | I ∧ p̃re(I) ∧ . . . ∧ p̃ren(I) ⊃ p̃ren+1(I)} (2)



188 Vlad Rusu and Eli Singerman

Definition 1. The class INV (T ) of safety properties that can be proven by p̃re-
invariant strengthening is

⋃
n≥0 INVn(T ).

Next, we define a particular class of properties that can be shown by the abstrac-
tion mechanism described in Section 2.3. Given a state predicate I, we consider
the set of predicates

AV (I) = {I, p̃re(I), . . . , p̃ren(I), . . . , }

Definition 2. The class ABS(T ) of safety properties that can be shown by p̃re-
abstraction is the class of properties 2I for which there exists a finite subset
B ⊂ AV (I) such that T/B |=

ABS 2I.

It should be stressed that choosing the abstract variables from I, p̃re(I), . . . ,
p̃ren(I) is not arbitrary: the guards of transitions, which in many cases allow
to generate useful control abstractions [GS97] are just sub-formulas of these
predicates.

Note that both p̃re-invariant strengthening and p̃re-abstraction are fully au-
tomatic techniques. Under the assumption that the same “reasoning power” is
used for both p̃re-invariant strengthening and p̃re-abstraction (for example, both
use the same theorem prover), the following result holds.

Theorem 1. A safety property can be proved by p̃re-invariant strengthening iff
it can be shown by p̃re-abstraction.

Proof (sketch). First, for every n = 0, 1, . . . , define the finite set of predicates
AVn(I) as

AVn(I) = {I, p̃re(I), . . . , p̃ren(I)}.
Then, the set ABSn(T ) of safety properties that can be shown by abstraction
relative to a subset of AVn(I) is

ABSn(T ) = {2I | ∃n ≥ 0, B ⊆ AVn(I) s.t. T/B |=
ABS 2I}.

Thus, by Definition 2, ABSn(T ) =
⋃

n≥0 ABSn(T ). Next, recall that by Defini-
tion 1, the class of properties that can be proved by p̃re-invariant strengthening
is

⋃
n≥0 INVn(T ). Finally, it is not difficult to prove that

ABSn(T ) ⊆ INVn(T ) ⊆ ABSn+1(T )

and the result follows. 2

In our method, when trying to prove a safety property 2I, the abstract
variables and conjectures are also variants of sub-formulas of AV (I). As is
shown in the following example, however, our method is strictly more power-
ful than the fully automatic techniques of p̃re-invariant strengthening and of
p̃re-abstractions.

The example is a mutual-exclusion algorithm taken from [BGP97], and is
based on the same principle as the well-known Bakery Algorithm: using “tickets”
to control access to the critical section. The program is illustrated in Fig. 3: two
global variables t1 and t2 are used for keeping record of ticket values, and two
local variables a and b control the entry to the critical sections.



On Proving Safety Properties by Integrating Static Analysis 189

init

nc

cs

init

nc

cs
t1 := t1 + 1 t1 := t1 + 1

b ≤ t1a ≤ t1

out-a:
in-a: in-b:out-b:

true → a := t2,

true → true →

true → b := t2,
t2 := t2 + 1

assign-b:

t2 := t2 + 1
assign-a:

t1 = t2

Figure 3: The Ticket Protocol.

The mutual-exclusion property is formulated as2I where

I : ¬(pc1 = cs ∧ pc2 = cs). (3)

We employ our method to prove this property. Static analysis generates the local
invariants pc1 = cs ⊃ a ≤ t1 and pc2 = cs ⊃ b ≤ t1, which are then passed to
the theorem prover and to the abstraction generator. Theorem proving yields
two unproved subgoals, from which we identify the predicates (a ≤ t1) and
(b ≤ t1) as relevant abstract variables (note that these predicates are simply
the guards). The wish associated with the transition in-a is: “any abstract state
labeled pc1 = nc, pc2 = cs is also labeled ¬(a ≤ t1) ”. That is, the guard (a ≤ t1)
should prevent the first process from entering its critical section while the second
is already there. A similar wish is associated with the transition in-b.

The first abstraction does not grant these wishes. A violating trace is pro-
duced by the trace analyzer and fed to the trace simulator, which identifies it as
not corresponding to a concrete computation; thus, the abstraction is too coarse.
By computing p̃re-images of the abstract variable (a ≤ t1), the system outputs
a warning message indicating that the error occurred since the abstraction “be-
lieves” that initially: t1 ≤ t2 − 1.

The user now has two options. The first is to add t1 ≤ t2 − 1 as a new
abstract variable and do another abstraction. The second is to formulate a con-
jecture and try to prove it. Choosing the former alternative is reasonable since
it would undoubtedly result in a finer abstraction. When it is not too difficult
to come up with a conjecture, however, the latter is preferred. This is because a
proved (stronger) conjecture usually eliminates more violating traces in further
abstractions, and therefore significantly reduces the number of iterations.

In our example this is the case, since it is easy to see that whenever both
processes are at their init location, the stronger relation t1 = t2 (rather than
t1 ≤ t2−1) should hold (this is true initially, and any loop that goes back to the



190 Vlad Rusu and Eli Singerman

init locations increases both t1 and t2 by one). So, we formulate the conjecture

2(pc1 = init ∧ pc2 = init ⊃ t1 = t2). (4)

In the prover, (4) is proved by three iterations of invariant strengthening. We
then use it in a second abstraction (also relative to (a ≤ t1) and (b ≤ t1)). This
time, the wishes are granted, and the prover can discharge the unproved subgoals
and complete the proof.

An interesting conclusion can be drawn from this simple example. While the
conjecture (4) can be proved by invariant strengthening, this is not the case
for the mutual-exclusion property2I itself. As shown in [BGP97], backwards
analysis for this property does not converge, and hence (3) cannot be proved by
p̃re-invariant strengthening. Therefore, by Theorem 1, mutual exclusion cannot
be shown by p̃re-abstraction, either.

Moreover, it is not difficult to prove that even an abstraction relative to any
finite set of sub-formulas of p̃re-images of I (such as the guards of the transitions)
cannot show (3). The reason for this is that to prove (3) it is important to
know when t1 = t2 holds, but the p̃re-images of I express only weaker relations
between t1 and t2. (In the example we have obtained this information by proving
the conjecture (4) instead of 2(pc1 = init ∧ pc2 = init ⊃ ¬(t1 ≤ t2 − 1)) as
suggested by the system.)

This demonstrates a typical use of the methodology, in which the detailed
feedback from the system together with moderate amount of user ingenuity
yields the relevant auxiliary invariant. This is in contrast to an ordinary theorem
proving process, in which the user usually has to invest much more effort to come
up with suitable auxiliary invariants.

5 Conclusion and Future Work

As an attempt to address the problem of the significant user ingenuity that is
required to come up with appropriate auxiliary invariants or with suitable ab-
straction mappings, we have presented a new methodology for integrating static
analysis, theorem proving and abstractions. The key features of our approach
are

– It is incremental: each step is based on information obtained from failures
of previous steps. When the iterative process terminates, it yields a proof or
a counterexample.

– It is goal-directed: abstractions are guided by a subgoals in a failed proof
attempt.

– It is partially automatic: each component performs an automatic task, the
user chooses which component to invoke at each step and how to apply it.

– User input is highly guided by information provided by the system.
– It is general, in principle, and not dependent on a particular implementation

of the components.



On Proving Safety Properties by Integrating Static Analysis 191

For the experiments described in the paper we have used Pvs [ORS+95] for the-
orem proving and the Invariant Checker [GS97] for static analysis and abstrac-
tion. We are currently building a tool that would incorporate Smv [BCM+92] for
trace analysis and simulation, and would also offer a connection to other static
analysis tools [HPR97] as well as more general abstraction techniques [BLO98].

Acknowledgments. We wish to thank John Rushby and Natarajan Shankar
for valuable comments, Sam Owre for lending us help with Pvs, and Hassen
Saidi for assisting us with the Invariant Checker.

References

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Compu-
tation, 98(2):142-170, 1992.

[BGP97] T. Bultan, R. Greber, and W. Pugh. Symbolic model checking of infinite
state systems using Presburger arithmetic. In Proc. of the 9th Conference
on Computer-Aided Verification, CAV ’97, LNCS 1254, pages 400–411.

[BL] S. Bensalem and Y. Lakhnech. Automatic generation of invariants. To
appear in Formal Methods in System Design.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Constructing abstractions of
infinite state systems compositionally and automatically. In Proc. of the
10th Conference on Computer-Aided Verification, CAV ’98, LNCS 1427,
pages 319–331.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proc. of the 4th ACM Symposium on Principles of Program-
ming Languages, POPL ’77, pages 238–252.

[CCF+97] C. Cornes, J. Courant, J.-C. Filliâtre, G. Huet, P. Manoury, C. Paulin-
Mohring, C. Muñoz, C. Murthy, C. Parent, A. Säıbi, and B. Werner. The
Coq Proof Assistant Reference Manual Version 6.1. Technical Report
RT-0203, INRIA, July 1997.

[CU98] M.E. Colòn and T.E. Uribe. Generating finite-state abstractions of reac-
tive systems using decision procedures. In Proc. of the 10th Conference
on Computer-Aided Verification, CAV ’98, LNCS 1427, pages 293–304.

[DGG97] D. Dams, R. Gerth and O. Grümberg. Abstract interpretation of reactive
systems. ACM Transactions in Programming Languages and Systems,
19(2):253-291, 1997.

[GM95] M. Gordon and T.F. Melham. Introduction to the HOL system. Cam-
bridge University press, 1994.

[GS96] S. Graf and H. Saidi. Verifying invariants using theorem proving. In
Proc. of the 8th Conference on Computer-Aided Verification, CAV ’96,
LNCS 1102, pages 196–207.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
Proc. of the 9th Conference on Computer-Aided Verification, CAV ’97,
LNCS 1254, pages 72–83.

[H91] G.J. Holzmann. Design and validation of communication protocols. Pren-
tice Hall, 1991.



192 Vlad Rusu and Eli Singerman

[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time
systems using linear relation analysis. Formal Methods in System Design,
11(2):157–185, 1997.

[HS96] K. Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. In Formal Methods Europe, FME ’96,
LNCS 1051, pages 662–681.

[LPY97] K. G. Larsen, P. Petersson, and W. Yi. Uppaal: Status & Developments.
In Proc. of the 9th Conference on Computer-Aided Verification, CAV ’97,
LNCS 1254, pages 456–459.

[ORS+95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107-125, 1995.

[SUM96] H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model checking. In
Proc. of the 8th Conference on Computer-Aided Verification, CAV ’96,
LNCS 1102, pages 208–219.

10.1007/b107031130013


	Introduction
	The Components
	Static Analysis
	Theorem Proving
	Abstraction

	The Integration
	Integration is More Powerful
	Conclusion and Future Work

