
Unfolding and Event Structure Semantics

for Graph Grammars?

Paolo Baldan, Andrea Corradini, and Ugo Montanari

Dipartimento di Informatica - University of Pisa

Corso Italia, 40, 56125 Pisa, Italy

E-mail: fbaldan, andrea, ugog@di.unipi.it

Abstract. We propose an unfolding semantics for graph transformation
systems in the double-pushout (DPO) approach. Mimicking Winskel's
construction for Petri nets, a graph grammar is unfolded into an acyclic
branching structure, that is itself a (nondeterministic occurrence) graph
grammar describing all the possible computations of the original gram-
mar. The unfolding can be abstracted naturally to a prime algebraic do-
main and then to an event structure semantics. We show that such event
structure coincides both with the one de�ned by Corradini et al. [3] via a
comma category construction on the category of concatenable derivation
traces, and with the one proposed by Schied [13], based on a determin-
istic variant of the DPO approach. This results, besides con�rming the
appropriateness of our unfolding construction, unify the various event
structure semantics for the DPO approach to graph transformation.

1 Introduction

Since many (natural or arti�cial) distributed structures can be represented (at
a suitable level of abstraction) by graphs, and graph productions act on those
graphs with local transformations, it is quite obvious that graph transformation
systems are potentially interesting for the study of the concurrent transformation
of structures. In particular, Petri nets [11], the �rst formal tool proposed for the
speci�cation of the behaviour of concurrent systems, can be regarded as graph
transformation systems that act on a restricted kind of graphs, namely discrete,
labelled graphs (to be interpreted as sets of tokens labelled by place names).

In recent years, various concurrent semantics for graph rewriting systems
have been proposed in the literature, some of which are inspired by the mentioned
correspondence with Petri nets (see [2] for a tutorial introduction to the topic and
for relevant references). A classical result in the theory of concurrency for Petri
nets, due to Winskel [15], shows that the event structure semantics of safe nets
can be given via a chain of adjunctions starting from the category Safe of safe
nets, through category Occ of occurrence nets (this result has been generalized
to arbitrary P/T nets in [9]). In particular, the event structure associated with

? Research partially supported by MURST project Tecniche Formali per Sistemi Soft-
ware, by TMR Network GETGRATS and by Esprit WG APPLIGRAPH.

W. Thomas (Ed.): FOSSACS’99, LNCS 1578, pp. 73-89, 1999.
c Springer-Verlag Berlin Heidelberg 1999

a net is obtained by �rst constructing a \nondeterministic unfolding" of the net,
and then by extracting from it the events (which correspond to the transitions)
and the causal and con
ict relations among them.

In the present paper we propose a similar unfolding construction for DPO
graph grammars, which can be considered as a �rst contribution to a functo-
rial semantics in Winskel's style. After recalling in Section 2 the basics of typed
graph transformation systems and their correspondence with Petri nets, we in-
troduce, in Section 3, the notion of nondeterministic occurrence grammar , a
generalization of the deterministic occurrence grammars of [4], representing in
a unique \branching" structure several possible \acyclic" computations. Inter-
estingly, unlike the case of Petri nets, the relationships among productions of
an occurrence graph grammar cannot be captured completely by two binary
relations representing causality and symmetric con
ict. Firstly, due to the pos-
sibility of preserving some items in a rewriting step an asymmetric notion of
con
ict has to be considered. The way we face the problem is borrowed from [1],
where we addressed an analogous situation arising in the treatment of contex-
tual nets . Secondly, further dependencies among productions are induced by the
application conditions, which constrain the applicability of the rewrite rules in
order to preserve the consistency of the graphical structure of the state.

Next in Section 4 we present an unfolding construction that, when applied
to a given grammar G, yields a nondeterministic occurrence grammar UG , which
describes its behaviour. The idea consists of starting from the initial graph of
the grammar, applying in all possible ways its productions, and recording in the
unfolding each occurrence of production and each new graph item generated by
the rewriting process. Our unfolding construction is conceptually similar to the
unfolding semantics proposed for graph rewriting in the single-pushout approach
by Ribeiro in [12]. However, here the situation is more involved and the two
approaches are not directly comparable, due to the absence of the application
conditions (dangling and identi�cation) in the single-pushout approach.

In Section 5 we show how a prime algebraic domain (and therefore a prime
event structure) can be extracted naturally from a nondeterministic occurrence
grammar. Then the event structure semantics ES (G) of a grammar G is de�ned as
the event structure associated to its unfolding UG . In Section 6 such semantics is
shown to coincide with two other event structure semantics for graph rewriting
in the literature: the one by Corradini et al. [3], built on top of the abstract,
truly concurrent model of computation of a grammar (a category having abstract
graphs as objects and concatenable derivation traces as arrows), and the one by
Schied [13], based on a deterministic variation of the DPO approach. Finally, in
Section 7 we conclude and present some possible directions of future work.

2 Typed Graph Grammars

This section brie
y summarizes the basic de�nitions about typed graph gram-
mars [4], a variation of classical DPO graph grammars [6, 5] where the rewriting
takes place on the so-called typed graphs, namely graphs labelled over a structure

74 Paolo Baldan et al.

(the graph of types) that is itself a graph. Besides being strictly more general
than usual labelled graphs, typed graphs will also allow us to have a clearer
correspondence between graph grammars and Petri nets.

Formally, a (directed, unlabelled) graph is a tuple G = hN;E; s; ti, where N
is a set of nodes, E is a set of arcs, and s; t : E ! N are the source and target
functions. A graph morphism f : G ! G0 is a pair of functions f = hfN : N !
N 0; fE : E ! E0i preserving sources and targets, i.e., such that fN � s = s0 � fE
and fN � t = t0 � fE . Given a graph of types TG, a typed graph is a pair hG; tGi,
where G is a graph and tG : G! TG is a morphism. A morphism between typed
graphs f : hG1; tG1

i ! hG2; tG2
i is a graph morphisms f : G1 ! G2 consistent

with the typing, i.e., such that tG1
= tG2

� f . The category of TG-typed graphs
and typed graph morphisms is denoted by TG-Graph.

Fixed a graph TG of types, a (TG-typed graph) production (L
l
 K

r
! R)

is a pair of injective typed graph morphisms l : K ! L and r : K ! R. It is
called consuming if morphism l : K ! L is not surjective. The typed graphs
L, K, and R are called the left-hand side, the interface, and the right-hand
side of the production, respectively. A (TG-typed) graph grammar G is a tuple
hTG;Gin; P; �i, where Gin is the initial (typed) graph, P is a set of production
names, and � a function which associates a graph production to each production
name in P . We denote by Elem(G) the set NTG[ETG[P . Moreover, sometimes

we shall write q : (L
l
 K

r
! R) for �(q) = (L

l
 K

r
! R).

Since in this paper we work only with typed notions, we will usually omit the
quali�cation \typed", and we will not indicate explicitly the typing morphisms.
Moreover, we will consider only consuming grammars, namely grammars where
all productions are consuming: this corresponds, in the theory of Petri nets, to
the common requirement that transitions must have non-empty preconditions.

Given a typed graph G, a production q : (L
l
 K

r
! R), and a match (i.e.,

a graph morphism) g : L! G, a direct derivation � from G to H using q (based
on g) exists, written � : G)q H , if and only if the diagram

Lq :

g

��

K
l�� r ��

k

��

R

h

��
G D

b
��

d
�� H

can be constructed, where both squares have to be pushouts in TG-Graph.
Roughly speaking, the rewriting step removes from the graph G the items of

the left-hand side which are not in the image of the interface, namely L� l(K),
producing in this way the graph D. Then the items in the right-hand side which
are not in the image of the interface, namely R�r(K), are added to D, obtaining
the �nal graph H . Notice that the interface graph K (common part of L and R)
speci�es both what is preserved and how the added subgraph has to be connected
to the remaining part.

It is worth recalling here that given an injective morphism l : K ! L and
a match g : L ! G as in the above diagram, their pushout complement (i.e., a

75Unfolding and Event Structure Semantics for Graph Grammars

graph D with morphisms k and b such that the left square is a pushout) only
exists if the gluing conditions are satis�ed. These consist of two parts:

{ the identi�cation condition, requiring that if two distinct nodes or arcs of L
are mapped by g to the same image, then both must be in the image of l;

{ the dangling condition, stating that no arc in G�g(L) should be incident to
a node in g(L� l(K)) (because otherwise the application of the production
would leave such an arc \dangling").

Notice that the identi�cation condition does not forbid the match to be non-
injective on preserved items. Intuitively this means that preserved (read-only)
resources can be used with multiplicity greater than one.

A derivation over a grammar G is a sequence of direct derivations (over G)
� = fGi�1)qi�1 Gigi2f1;:::;ng. The derivation is written as � : G0)�

fq0;:::;qn�1g
Gn or simply as � : G0)� Gn. The graphs G0 and Gn are called the starting
and the ending graph of �, and are denoted by �(�) and �(�), respectively.

Relation with Petri nets. To conclude this section it is worth explaining
the relation between Petri nets and DPO graph grammars. The fact that graph
transformation systems can model the behaviour of Petri nets has been �rst
formalized by Kreowski in [8]. The proposed encoding of nets into grammars
represents the topological structure of a marked net as a graph, in such a way
that the �ring of transitions is modelled by direct derivations.

Here we use a slightly simpler modelling, discussed, among others, in [2].
The basic observation is that a P/T Petri net is essentially a rewriting system
on multisets, and that, given a set A, a multiset of A can be represented as a
discrete graph typed over A. In this view a P/T Petri net can be seen as a graph
grammar acting on discrete graphs typed over the set of places, the productions
being (some encoding of) the net transitions: a marking is represented by a set
of nodes (tokens) labelled by the place where they are, and, for example, the
unique transition t of the net in Fig. 1.(a) is represented by the graph production
in the top row of Fig. 1.(b). Notice that the interface is empty since nothing is
explicitly preserved by a net transition.

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

t t

��
��
��

��
��
��

��
��
��

��
��
��

C D

��
��
��

��
��
��

��
��
��

��
��
��

A B

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
� �

�
�
�
��
��
��
��

D

1

2 1

BA

C
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

A

(b)(a)

B
2 1

11

A

C D

B
A A

A A B B AC B D

[t >
1

Fig. 1. Firing of a transition and corresponding DPO direct derivation.

It is easy to check that this representation satis�es the properties one would
expect: a production can be applied to a given marking if and only if the corre-

76 Paolo Baldan et al.

sponding transition is enabled and, in this case, the double pushout construction
produces the same marking as the �ring of the transition. For instance, the �ring
of transition t, leading from the marking 3A+2B to the marking A+B+C+D

in Fig. 1.(a), becomes the double pushout diagram of Fig. 1.(b).
The considered encoding of nets into grammars enlightens the dimensions in

which graph grammars properly extend nets. First of all grammars allow for a
more structured state, that is a general graph rather than a multiset (discrete
graph). Perhaps more interestingly, graph grammars allow for productions where
the interface graph may not be empty, thus specifying a \context" consisting of
items that have to be present for the productions to be applied, but are not
a�ected by the application. In this respect, graph grammars are closer to some
generalizations of nets in the literature, called nets with read (test) arcs or
contextual nets (see e.g. [7, 10, 14]), which generalize classical nets by adding the
possibility of checking for the presence of tokens which are not consumed.

3 Nondeterministic occurrence grammars

The notion of derivation introduced in the previous section formalizes how a
single computation of a grammar can evolve. Nondeterministic occurrence gram-
mars are intended to represent the computations of graph grammars in a more
static way, by recording the events (production applications) which can appear
in all possible derivations and the dependency relations between them.

Analogously to what happens for nets, occurrence grammars are \safe" gram-
mars, where the dependency relations between productions satisfy suitable acyclic-
ity and well-foundedness requirements. However, while for nets it su�ces to take
into account only the causal dependency and the con
ict relations, the greater
complexity of grammars makes the situation much more involved. On the one
hand, the fact that a production application not only consumes and produces,
but also preserves a part of the state leads to a form of asymmetric con
ict
(or weak dependency) between productions. On the other hand, because of the
dangling condition, also the graphical structure of the state imposes some prece-
dences between productions.

A �rst step towards a de�nition of occurrence grammar is a suitable notion
of safeness for grammars [4], generalizing the usual one for P/T nets, which
requires that each place contains at most one token in any reachable marking.

De�nition 1 ((strongly) safe grammar). A grammar G = hTG;Gin; P; �i
is (strongly) safe if, for all H such that Gin)� H, H has an injective typing
morphism.

Strongly safe graph grammars (hereinafter called just safe grammars) admit
a natural net-like pictorial representation, where items of the type graph and
productions play, respectively, the rôle of places and transitions of Petri nets.
The basic observation is that typed graphs having an injective typing morphism
can be safely identi�ed with the corresponding subgraphs of the type graph
(just thinking of injective morphisms as inclusions). Therefore, in particular,

77Unfolding and Event Structure Semantics for Graph Grammars

each graph hG; tGi reachable in a safe grammar can be identi�ed with the sub-
graph tG(G) of the type graph TG, and thus it can be represented by suitably
decorating the nodes and arcs of TG. Concretely, a node is drawn as a �lled cir-
cle if it belongs to tG(G) and as an empty circle otherwise, while an arc is drawn
as a continuous line if it is in tG(G) and as a dotted line otherwise (see Fig. 2).
This is analogous to the usual technique of representing the marking of a safe
net by putting one token in each place which belongs to the marking.

With the above identi�cation, in each computation of a safe grammar starting
from the initial graph a production can only be applied to the subgraph of
the type graph which is the image via the typing morphism of its left-hand
side. Therefore according to its typing, we can safely think that a production
produces, preserves or consumes items of the type graph. This is expressed by
drawing productions as arrow-shaped boxes, connected to the consumed and
produced resources by incoming and outcoming arrows, respectively, and to the
preserved resources by undirected lines. Fig. 2 presents two examples of safe
grammars, with their pictorial representation. Notice that the typing morphisms
for the initial graph and the productions are represented by suitably labelling
the involved graphs with items of the type graph.

Using a net-like language, we speak of pre-set �q, context q and post-set q� of
a production q, de�ned in the obvious way. Similarly for a node or arc x in TG

we write �x, x and x� to denote the sets of productions which produce, preserve
and consume x. For instance, for grammar G2 in Fig. 2, the pre-set, context and
post-set of production q1 are �q1 = fCg, q1 = fBg and q1

� = fA;Lg, while for
the node B, �B = ;, B = fq1; q2; q3g and B� = fq4g.

Although the notion of causal relation is meaningful only for safe grammars,
it is technically convenient to de�ne it for general grammars. The same holds
for the asymmetric con
ict relation introduced below.

De�nition 2 (causal relation). The causal relation of a grammar G is the
binary relation < over Elem(G) de�ned as the least transitive relation satisfying:
for any node or arc x in the type graph TG, and for productions q1; q2 2 P

1. if x 2 �q1 then x < q1;
2. if x 2 q1� then q1 < x;
3. if q1

� \ q2 6= ; then q1 < q2;

As usual � is the re
exive closure of <. Moreover, for x 2 Elem(G) we denote
by bxc the set of causes of x in P , namely fq 2 P : q � xg.

The �rst two clauses of the de�nition of relation < are obvious. The third one
formalizes the fact that if an item is generated by q1 and it is preserved by q2,
then q2, to be applied, requires that q1 had already been applied.

Notice that the fact that an item is preserved by q1 and consumed by q2,
i.e., q1 \ �q2 6= ; (e.g., the node B in grammar G1 of Fig. 2), does not imply
q1 < q2. Actually, since q1 must precede q2 in any computation where both
appear, in such computations q1 acts as a cause of q2. However, di�erently from
a true cause, q1 is not necessary for q2 to be applied. Therefore we can think of

78 Paolo Baldan et al.

Grammar G1

q2

���
���
���

���
���
���

B
q1

��
��
��
��

��
��
��
��

A
L

q2
�
�
�

�
�
�
B

q3
�
�
�

�
�
�
A

q1
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

B BLA B

inGTG = =
�
�
�

�
�
�

��
��
��

��
��
��

A L B

q3

Grammar G2

q3

q4

q2

q1

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

C

L BA

q3
�
�
�

�
�
�
B

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

AA BL BA

q2
�
�
�

�
�
�
B

�
�
�

�
�
�
B

�
�
�

�
�
�

�
�
�

�
�
�

L BA

q4
�
�
�

�
�
�
B

q1
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�AB C B

B
L

Gin =
�
�
�
�

�
�
�
�

CBTG =
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

LA CB

Fig. 2. Two safe grammars and their net-like representation.

the relation between the two productions as a weak form of causal dependency.
Equivalently, we can observe that the application of q2 prevents q1 to be applied,
so that q1 can never follow q2 in a derivation. But the converse is not true, since
q1 can be applied before q2. Thus this situation can also be interpreted naturally
as an asymmetric con
ict between the two productions (see [1]).

De�nition 3 (asymmetric con
ict). The asymmetric con
ict relation of a
grammar G is the binary relation % over the set of productions, de�ned by:

1. if q1 \ �q2 6= ; then q1 % q2;
2. if �q1 \ �q2 6= ; and q1 6= q2 then q1 % q2;
3. if q1 < q2 then q1 % q2.

Condition 1 is justi�ed by the discussion above. Condition 2 essentially expresses
the fact that a situation of \classical" symmetric con
ict is coded, in this setting,
as an asymmetric con
ict in both directions. Finally, since < represents a global
order of execution, while% determines an order of execution only locally to each
computation, it is natural to impose % to be an extension of < (Condition 3).

A nondeterministic occurrence grammar is an acyclic grammar which repre-
sents, in a branching structure, several possible computations starting from its
initial graph and using each production at most once.

79Unfolding and Event Structure Semantics for Graph Grammars

De�nition 4 ((nondeterministic) occurrence grammar). A (nondetermin-
istic) occurrence grammar is a graph grammar O = hTG;Gin; P; �i such that

1. its causal relation � is a partial order, and for any q 2 P , the set bqc is
�nite and asymmetric con
ict % is acyclic on bqc;

2. the initial graph Gin coincides with the set Min(O) of minimal elements of
hElem(O);�i (with the graphical structure inherited from TG and typed by
the inclusion);

3. each arc or node x in TG is created by at most one production in P , namely
j �x j� 1.

4. for each production q : hL; tLi
l
 hK; tKi

r
! hR; tRi, the typing tL is injec-

tive on the \consumed part" L � l(K), and similarly tR is injective on the
\produced part" R� r(K).

Since the initial graph of an occurrence grammar O is determined by Min(O),
we often do not mention it explicitly.

One can show that, by the de�ning conditions, each occurrence grammar is safe.
Intuitively, conditions (1){(3) recast in the framework of graph grammars

the analogous conditions of occurrence nets (actually of occurrence contextual
nets [1]). In particular condition (1) requires causality to be acyclic and each
production q to have a �nite set of causes bqc. Acyclicity of asymmetric con
ict
on bqc corresponds to the requirement of irre
exivity for the con
ict relation in
occurrence nets. In fact, notice that if a set of productions forms an asymmetric
con
ict cycle q0 % q1 % : : : % qn % q0, then such productions cannot appear
in the same computation, otherwise the application of each production should
precede the application of the production itself; this fact can be naturally in-
terpreted as a form of n-ary con
ict. Condition (2) forces the set of minimal
items of the type graph to be a graph, coinciding with the initial graph of the
grammar and Condition (3) requires the absence of backward con
icts. Condi-
tion (4), instead, is closely related to safeness and requires that each production
consumes and produces items with multiplicity one. Together with acyclicity of
%, it disallows the presence of some productions which surely could never be
applied, because they fail to satisfy the identi�cation condition with respect to
the typing morphism.

On the contrary, the de�nition does not imply that every production of an
occurrence grammar will ever satisfy the dangling condition. This fact deserves
some comments since the dangling condition, which requires the absence of arcs
pointing to nodes which are removed by the production, induces precedence re-
lations on productions. For example, in the grammar G2 of Fig. 2 the application
of production q1 \disables" q4, since q4 would remove the node B, leaving the
arc L dangling. The production q4 becomes enabled again only after q2 or q3
has been applied. The reason why we de�ned occurrence grammars in this way
is that the dangling condition is not purely syntactical and cannot be checked
\locally" by looking only at the causes of the considered production. Checking
such negative (non monotonic) condition on a production, would require to �nd
a possible computation allowing for the execution of productions which remove

80 Paolo Baldan et al.

the potentially dangling arcs, and to verify the consistency of such computation
with the production at hand. It can be shown that such veri�cation is, in general,
exponential in the size of the occurrence grammar in the �nite case. Even worse,
for in�nite occurrence grammars (which can be obtained as unfolding of �nite
grammars), the problem is undecidable, as it can be shown by using the Turing
completeness of DPO graph grammars.

Disregarding the dangling condition has as a consequence the fact that, dif-
ferently from what happens for occurrence nets, not every production in an
occurrence grammar is guaranteed to be applicable at least in one derivation
starting from the initial graph. The restrictions to the behaviour imposed by
the dangling condition are considered when de�ning the con�gurations of an
occurrence grammar, which represent exactly, in a sense formalized later, all the
possible deterministic runs of the grammar.

De�nition 5 (con�guration). A con�guration of an occurrence grammar O =
hTG; P; �i is a subset C � P such that

1. if %C denotes the restriction of the asymmetric con
ict relation to C, then
(%C)

� is a partial order, and fq0 2 C : q0(%C)
�qg is �nite for all q 2 C;1

2. C is left-closed w.r.t. �, i.e. for all q 2 C, q0 2 P , q0 � q implies q0 2 C;
3. for all e 2 TG and n 2 fs(e); t(e)g, if n�\C 6= ; and �e � C then e�\C 6= ;.

If C satis�es conditions (1) and (2), then it is called a pre-con�guration.

The notion is reminiscent of that of con�guration of asymmetric event structures
and thus of occurrence contextual nets [1]. The �rst part of Condition 1 ensures
that in C there are no %-cycles, and thus excludes the possibility of having
in C a subset of productions in con
ict. The second part guarantees that each
production has to be preceded only by �nitely many other productions in the
computation represented by the con�guration. Condition 2 requires the presence
of all the causes of each production, while Condition 3 formalizes the dangling
condition. If a con�guration contains a production q consuming a node n and a
production q0 producing an arc e (i.e. �e = fq0g) with source (or target) n, then
a production q00 removing such an arc must be present as well, otherwise, due to
the dangling condition, q could not be executed. Notice that in this situation the
production q00 can coincide with q itself; otherwise it surely preserves the node
n and thus q00 % q, i.e. q00 correctly precedes q in the computation represented
by the con�guration. Similar considerations apply if the arc e is present in the
initial graph, i.e., �e = ;. For example the set of con�gurations of the grammar G2
in Fig. 2 is Conf (G2) = f;; fq1g; fq1; q2g; fq1; q3g; fq1; q2; q4g; fq1; q3; q4g; fq4gg.
The set S = fq1; q4g, is instead only a pre-con�guration, since for the node B
we have B = t(L), q4 2 B�, �L = fq1g � S, but the intersection of S with
L� = fq2; q3g is empty.

The fact that con�gurations represent all and only the deterministic runs of
an occurrence grammar is formalized by the following result.

1 As usual, for a binary relation r, with r
� we denote its transitive and re
exive closure.

81Unfolding and Event Structure Semantics for Graph Grammars

Proposition 1 (con�gurations and derivations). For any con�guration C

of an occurrence grammar O, there exists a subgraph GC of the type graph TG

such that Min(O))�
C GC with a derivation which applies exactly once every

production in C, in any order consistent with (%C)
�. Viceversa for each deriva-

tion Min(O))�
S G in O, the set of productions S it applies is a con�guration.

As an immediate consequence of the previous result, a production which does
not satisfy the dangling condition in any graph reachable from the initial graph
is not part of any con�guration. For example, q3 does not appear in the set of
con�gurations of G1, Conf (G1) = f;; fq1g; fq2g; fq1; q2gg.

In the theory of Petri nets the notion of occurrence grammar is strictly re-
lated to that of process. A (non)deterministic net process is a (non)deterministic
occurrence net with a morphism to the original net. Similarly, nondeterministic
occurrence grammars can be used to de�ne a suitable notion of nondeterminis-
tic graph processes, generalizing the deterministic graph processes of [4]. Then,
the unfolding of a grammar, introduced in the next section, could be seen as a
\complete" nondeterministic process of the grammar. Unfortunately, these no-
tions cannot be discussed here because of space limitations.

4 Unfolding

This section introduces the unfolding construction which, applied to a consuming
grammar G, produces a nondeterministic occurrence grammar UG describing the
behaviour of G. The unfolding is equipped with a mapping �G to the original
grammar G which allows to see productions in UG as instances of production
applications in G, and items of the type graph of UG as instances of items of the
type graph of G.

The idea consists of starting from the initial graph of the grammar, then
applying in all possible ways its productions, and recording in the unfolding each
occurrence of production and each new graph item generated in the rewriting
process, both enriched with the corresponding causal history. According to the
discussion in the previous section, during the unfolding process productions are
applied without considering the dangling condition. Moreover we adopt a notion
of concurrency which is \approximated", again in the sense that it does not take
care of the precedences between productions induced by the dangling condition.

De�nition 6 (quasi-concurrent graph). Let O = hTG; P; �i be an occur-
rence grammar. A subgraph G of TG is called quasi-concurrent if

1.
S
x2Gbxc is a pre-con�guration;

2. :(x < y) for all x; y 2 G.

The intuitive idea is that each quasi-concurrent graph is contained in a graph
reachable in a \lax version" of the DPO rewriting, where the dangling condition
is not tested.

Another basic ingredient of the unfolding is the gluing operation. It can be
interpreted as a \partial application" of a rule to a given match, in the sense that

82 Paolo Baldan et al.

it generates the new items as speci�ed by the production (i.e., items of right-
hand side not in the interface), but items that should have been deleted are
not a�ected: intuitively, this is because such items may still be used by another
production in the nondeterministic unfolding. In the following we assume that
for each production name q its associated production is Lq Kq ! Rq , where
the injections lq and rq are inclusions (and not generic injective morphisms).

De�nition 7 (gluing). Let q be a production, G a graph and m : Lq ! G a
graph morphism. We de�ne, for any symbol �, the gluing of G and Rq along
Kq, according to m and marked by �, denoted by glue�(q;m;G) as the graph
hN;E; s; ti, where:

N = NG [m�(NRq
) E = EG [m�(ERq

)

with m� de�ned by: m�(x) = m(x) if x 2 Kq and m�(x) = hx; �i otherwise. The
source and target functions s and t, and the typing are inherited from G and Rq.

The gluing operation keeps unchanged the identity of the items already in G, and
records in each newly added item from Rq the given symbol �. We remark that
the gluing, as just de�ned, is a concrete deterministic de�nition of the pushout

of the arrows G
m
 Lq

lq
 - Kq and Kq

rq
,! Rq .

Now the unfolding of a grammar G = hTG;Gin; P; �i can be as follows.
For each n, we construct a partial unfolding U(G)(n) = hU (n); �(n)i, where
U (n) = hTG(n); P (n); �(n)i is an occurrence grammar and the mapping �(n) =
hfp(n); fg(n)i consists of two components: a function fp(n) : P (n) ! P map-
ping the productions of the unfolding into productions of G, and a morphism
fg(n) : TG(n) ! TG from the type graph of U (n) to TG. Intuitively, the occur-
rence grammar generated at level n contains all possible computations of the
grammar with \causal depth" at most n.

{ (n = 0) hTG(0); fg(0)i = Gin, while P
(0), �(0) and fp(0) are empty.

{ (n! n+ 1) Given U(G)(n), the partial unfolding U(G)(n+1) is obtained by
extending it with all the possible production applications to quasi-concurrent
subgraphs of the type graph of U (n). More precisely, for each production
q 2 P and match m : Lq ! hTG(n); fg(n)i satisfying the identi�cation
condition, with m(Lq) quasi-concurrent subgraph of TG(n):

� Add to P (n) an occurrence of the production q, with name q0 = hq;mi.
The match m is needed to record the \history" of q0. Now let P (n) :=
P (n) [fq0g, and extend fp(n) so that fp(n)(q0) = q. The production
�(n)(q) coincides with �(q) except for the typing.

� Glue the type graph TG(n), typed over TG by fg(n), with the right-
hand side Rq of q along Kq, according to the mapping m and marked by
q0; in this way the new items generated by the production contain the
name q0 of the occurrence of the production and thus their history. The
morphism fg(n) is updated consequently.

After all the applicable productions have been considered we obtain U(G)(n+1).

83Unfolding and Event Structure Semantics for Graph Grammars

The deterministic gluing construction ensures that, at each step, the order
in which productions are applied does not in
uence the �nal result of the step.
Moreover if a production is applied twice (also in di�erent steps) at the same
match, the generated items are always the same and thus they appear only once
in the unfolding.

De�nition 8 (unfolding). The unfolding U(G) = hUG ; �Gi of the grammar G
is de�ned as

S
n U(G)

(n), where union is applied componentwise.

It is not di�cult to verify that for each n, U (n) is a (�nite) nondeterministic
occurrence grammar, and U(G)(n) � U(G)(n+1), componentwise. Therefore UG is
an occurrence grammar. Moreover the unfolding process applied to an occurrence
grammar yields a grammar which is isomorphic to the original one.

Finally, we notice that, as already remarked, not all productions in the un-
folding are executable in some computation and thus correspond to occurrences
of production of the original grammar. This is due to the fact that only the
identi�cation condition is tested and an \approximated notion" of concurrent
subgraph is used. We stress that this is needed to have a decidable unfolding,
a fact which, besides being pleasant from a purely theoretical point of view, is
essential if one wants to use the unfolding in practice to prove properties of the
modelled system.

5 Domain and event structure semantics

In the seminal work of Winskel on (safe) Petri nets, the unfolding semantics of a
net, given in terms of a nondeterministic occurrence net, is further abstracted to
an event structure semantics, by forgetting the \real structure" of the unfolding
and recording only the relationships induced by such structure on the transitions
of the unfolding itself. In this section we show that a similar construction can
be carried out for graph grammars.

Recall that a prime event structure with binary con
ict (PES), consists of
a set of events endowed with two binary relations: a partial order relation �,
modelling causality, and a symmetric and irre
exive relation #, hereditary w.r.t.
causality, modelling con
ict. A con�guration of a PES is a subset of events left-
closed w.r.t. � and con
ict free, representing a possible computation of the sys-
tem modelled by the event structure. The set of con�gurations of a PES, ordered
by subset inclusion, is a �nitary prime algebraic domain, i.e. a coherent, prime
algebraic, �nitary partial order, brie
y a domain, and the set of prime elements
of a domain (with the induced partial order as causality and the inconsistency
relation as con
ict) is a PES.

We already observed that the notion of con�guration of an occurrence gram-
mar allows us to recover exactly the di�erent possible deterministic computations
of the grammar. Following the ideas suggested for asymmetric event structures
and contextual nets in [1], an order can be de�ned on con�gurations which cap-
tures the idea of computational extension. The main point is that, di�erently

84 Paolo Baldan et al.

from what happens for classical event structures and Petri nets, due to the pres-
ence of the asymmetric con
ict such an order is not simply set-inclusion: in fact,
a con�guration C cannot be extended with a production inhibited by some of
the productions already present in C.

De�nition 9 (poset of con�gurations). Given an occurrence grammar O,
we denote by Conf (O) the set of its con�gurations, ordered by the relation v
de�ned as C v C 0 if C � C 0 and :(q0 % q), for all q 2 C and q0 2 C 0 � C.

The partial order of con�gurations of an occurrence grammar exhibits a very nice
algebraic structure, i.e., it is a domain. The proof (that we skip here) follows the
same outline as in [1], but more e�ort is needed to take care of the additional
requirement in the de�nition of con�guration, related to the dangling condition.

Theorem 1 (from occurrence grammars to domains). Given an occur-
rence grammar O, the partial order of con�gurations Conf (O) is a domain.

By the relation between domains and event structures sketched above, Conf (O)
determines indirectly an event structure ES (O), namely, the unique (up to iso-
morphisms) PES having Conf (O) as domain of con�gurations. Di�erently from
what happens for Petri nets, there is not a one to one correspondence between
events of ES (O) and productions in O. Instead, a di�erent event is generated
for any possible \history" of each production of O. This phenomenon of \dupli-
cation of events" is related to the fact that the new precedence relations arising
between productions in graph grammars are represented via causality and con-

ict in classical PES's. Basically, a situation of asymmetric con
ict like q1 % q2
in grammar G1 of Fig. 2, is coded in the PES by the insertion of a single event
e1 corresponding to q1, and two \copies" e02 ad e002 of q2, the �rst one in con
ict
with e1 and the second one caused by e1 (see Fig. 3.(a)). For what concerns
the dangling condition, consider the grammar G2 in Fig. 2. In this case three
con
icting events are generated corresponding to q4: e4 representing the execu-
tion of q4 from the initial graph, which inhibits all other productions, and e04, e

00
4

representing the execution of q4 after q2 and q3, respectively.

e
0
2

e1

�

��
e
00
2

e1
�

��� � �
� � �

��❈❈
❈❈❈

e4

e2

� ��

e3

���
e
0
4 e

00
4

Fig. 3. Coding asymmetric con
ict and dangling condition in prime event structures.

As a �nal simple step, a domain and an event structure semantics for a graph
grammar are readily de�ned via the unfolding construction.

85Unfolding and Event Structure Semantics for Graph Grammars

De�nition 10 (event structure semantics). For any grammar G, we de-
note by Conf (G) the domain of con�gurations of the unfolding of G, namely
Conf (UG), and by ES (G) the corresponding event structure ES (UG).

6 Relation with other event structure semantics

This section brie
y reviews two other event structure semantics proposed in
the literature for DPO graph transformation systems. The �rst one [3] is built
on top of the \abstract truly concurrent model of computation" of a grammar.
The other one [13] is based on a deterministic variation of the DPO approach.
Nicely, these two alternative event structures turn out to coincide with the one
obtained from the unfolding, which thus can be claimed to give \the" event
structure semantics of DPO graph transformation.

Event structure semantics from abstract derivations. The derivations of
a grammar G are easily equipped with a simple algebraic structure which turns
them into a category, called the concrete model of computation for G and denoted
Der[G]. Objects in Der[G] are graphs, and each derivation � is seen as an arrow
from �(�) to �(�). Given two derivations � and �0 such that the ending graph
of � and the starting graph of �0 coincide, i.e., �(�) = �(�0), their sequential
composition � ; �0 is the derivation obtained by identifying �(�) with �(�0).

The concrete model contains a lot of redundant information and it is far
from representing what one has in mind as truly concurrent behaviour of the
system modeled by the grammar. A more reasonable model, called the abstract,
truly concurrent model of computation of a grammar G, and denoted by Tr[G], is
the category obtained by imposing a suitable equivalence on objects and arrows
of the concrete model. In particular, the objects of Tr[G] are abstract graphs
(i.e., isomorphism classes of graphs), while its arrows are concatenable deriva-
tion traces, i.e., equivalence classes of derivations with respect to the concaten-
able truly concurrent equivalence [3]. This equivalence is the least equivalence on
derivations containing both the abstraction equivalence, a re�nement of the ob-
vious notion of derivation isomorphism compatible with sequential composition,
and the shift equivalence, which equates two derivations if one can be obtained
from the other by repeatedly shifting independent derivation steps.

The category Tr[G] is used in [3] to de�ne a domain and a prime event
structure semantics for graph transformation systems. More precisely, for any
consuming graph grammar G = hTG;Gin; P; �i, one considers the comma cate-
gory ([Gin] # Tr[G]), where objects are concatenable derivation traces of Tr[G]
with source in [Gin], and given two such traces �0 and �1, an arrow from �0 to
�1 is a concatenable derivation trace � satisfying �0; � = �1. Such category can
be shown to be a preorder PreDom[G], i.e., there is at most one arrow between
any pair of objects. Moreover the ideal completion of PreDom[G] is a domain,
denoted byDom[G] and proposed as truly concurrent semantics of the grammar.

As announced such domain semantics can be proved to coincide with the
one obtained from the unfolding U(G). In fact, we know from [3] that the �nite

86 Paolo Baldan et al.

elements of the domainDom[G] are one-to-one with derivation traces of G having
the initial graph as source. Then the result is proved by showing that a bijection
can be de�ned between �nite elements of Conf (G) and such derivation traces. In
one direction, given a �nite con�guration C 2 Conf (G), consider any derivation
Min(UG))�

C GC in UG which applies exactly once every production in C, in
any order consistent with the asymmetric con
ict %. Such derivation, typed
over the type graph of G via the mapping �G , gives a derivation d in G, which
determines the derivation trace associated to C. Viceversa, given a derivation
trace [d] of G, the corresponding con�guration of UG is determined as the set
of productions needed to \simulate" d in the unfolding of G. The fact that the
ordering on con�gurations is not simply set-inclusion then plays a key rôle in
the proof that such bijection is an isomorphism of partial orders.

Theorem 2. For any (consuming) graph grammar G, the domains Conf (G) and
Dom[G] are isomorphic.

Event structure semantics from deterministic derivations. Schied in [13]
proposes a construction for de�ning an event structure semantics for distributed
rewriting systems, an abstract uni�ed model where several kind of rewriting
systems, such as graph grammars and term rewriting systems, naturally �t.
He shows that, given a distributed rewriting system R, a domain TR can be
obtained as the quotient, with respect to shift equivalence, of the collection of
derivations starting from the initial state, ordered by the pre�x relation. To
prove the algebraic properties of TR he constructs, as an intermediate step, a
trace language based on the shift equivalence, and applies general results to
extract an event structure ER from the trace language. Finally he shows that
TR is isomorphic to the domain of con�gurations of ER.

The main interest in Schied's paper is for the application to graph grammars.
Let us sketch how, according to Schied, the above construction instantiates to the
case of grammars. Graph grammars are modeled as distributed rewriting systems
by considering a deterministic variation of the DPO approach, where at each
direct derivation the derived graph is uniquely determined by the host graph,
the applied production and the match. The idea consists of working on concrete
graphs, where each item records his causal history. Formally the de�nition of
deterministic direct derivation (adapted to the typed case) is as follows.

De�nition 11 (deterministic derivation). Let q : Lq Kq ! Rq be a pro-
duction and let m : Lq ! G be a match. Then a deterministic direct derivation
G;q;m H exists if m satis�es the gluing conditions and

H = gluehq;mi(q;m;G)�m(Lq � l(Kq)).

Let G = hTG;Gin; P; �i be a typed graph grammar. A deterministic derivation
in G is a sequence of deterministic direct derivations Gin ;q1;m1

G1 ;q2;m2

: : :;qn;mn
Gn, starting from the initial graph and applying productions of G.

The construction of the domain of a grammar is based on the partial order
of deterministic derivations with the pre�x relation, and on shift equivalence.

87Unfolding and Event Structure Semantics for Graph Grammars

De�nition 12 (Schied's domain). The Schied's domain for a consuming gram-
mar G, denoted by TG, is de�ned as the quotient, w.r.t. shift equivalence, of the
partial order of deterministic derivations of a grammar G.

It is not di�cult to see that the (ideal completion of) Schied's domain for a
grammar coincides with the domain of con�gurations of its unfolding Conf (G),
and thus with the domain Dom[G] of [3]. The bijection between TG and the
�nite elements of Conf (G) associates to the class of shift equivalent determin-
istic derivations containing d : Gin ;q1;m1

G1 ;q2;m2
: : : ;qn;mn

Gn the set
fhqi;mii : i 2 ng, which can be shown to be a con�guration in the unfolding of
G, independently of the particular derivation picked up in the class.

Theorem 3. For any graph grammar G, the ideal completion of TG and the
domain Conf (G) are isomorphic.

7 Conclusions and future work

This paper introduces a notion of nondeterministic occurrence grammar for
graph transformation systems in the algebraic DPO approach, by extending
the work developed in [4] for the deterministic case. The phenomenon of asym-
metric con
ict between productions, caused by the possibility of performing
\context sensitive" rewritings, cannot be ignored in this nondeterministic set-
ting, and comes into play as an essential ingredient. A new kind of dependency
between productions is also induced by the dangling condition, which imposes
precedences among productions �nalized at preserving the consistency of the
graphical structure of the state.

Following the classical idea proposed by Winskel [15] for Petri nets, an un-
folding semantics for DPO graph rewriting systems has been de�ned as a nonde-
terministic occurrence grammar, representing, in a single \branching" structure,
all the possible computations of the grammar. The dangling condition, being a
negative (non monotone) condition, can hardly be veri�ed during the unfold-
ing process. As a consequence the generated unfolding contains some garbage of
which we get rid only when considering the set of con�gurations.

Interestingly, the set of con�gurations Conf (G) of (the unfolding of) a gram-
mar G, suitably ordered using the asymmetric con
ict relation, turns out to be
a (�nitary pairwise coherent) prime algebraic domain, one of the most widely
used mathematical structures in the semantics of concurrency, equivalent to
prime event structures (with binary con
ict). Such domain is shown to coincide
both with the domain Dom[G], built from the category of concatenable deriva-
tion traces and proposed as semantics of a grammar in [3], and with the domain
de�ned by Schied [13] and based on a concrete formulation of the DPO rewriting.

Finally, it is worth mentioning that the original work of Winskel shows that
the unfolding construction extends to a core
ection from the category of safe
nets to the category of domains, while our construction has been de�ned, up to
now, only at \object level". We are working to obtain a full correspondence with
Winskel's construction for nets, by extending the results presented in this paper

88 Paolo Baldan et al.

to a categorical \in the large" level. Some suggestions can surely come from [1],
where Winskel's construction has already been fully extended to contextual nets.

Acknowledgements

The authors wish to thank Roberto Bruni and Fabio Gadducci for helpful discus-
sions and the anonymous referees for their comments on the submitted version
of this paper.

References

1. P. Baldan, A. Corradini, and U. Montanari. An event structure semantics for P/T
contextual nets: Asymmetric event structures. Proceedings of FoSSaCS '98, volume
1378, pages 63{80. Springer, 1998.

2. A. Corradini. Concurrent Graph and Term Graph Rewriting. Proceedings CON-

CUR'96, volume 1119 of LNCS, pages 438{464. Springer, 1996.
3. A. Corradini, H. Ehrig, M. L�owe, U. Montanari, and F. Rossi. An Event Structure

Semantics for Graph Grammars with Parallel Productions. Proceedings of the 5th

International Workshop on Graph Grammars and their Application to Computer

Science, volume 1073 of LNCS. Springer, 1996.
4. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-

maticae, 26:241{265, 1996.
5. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. L�owe. Algebraic

Approaches to Graph Transformation I: Basic Concepts and Double Pushout Ap-
proach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing

by Graph Transformation. Volume 1: Foundations. World Scienti�c, 1997.
6. H. Ehrig. Tutorial introduction to the algebraic approach of graph-grammars.

Proceedings of the 3rd International Workshop on Graph-Grammars and Their

Application to Computer Science, volume 291 of LNCS, pages 3{14. Springer, 1987.
7. R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and Compu-

tation, 123:1{16, 1995.
8. H.-J. Kreowski. A comparison between Petri nets and graph grammars. Proceedings

of the Workshop on Graphtheoretic Concepts in Computer Science, volume 100 of
LNCS, pages 306{317. Springer, 1981.

9. J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics
for Place/Transition Petri nets. Theoret. Comput. Sci., 153(1-2):171{210, 1996.

10. U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32, 1995.
11. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer, 1985.
12. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.

PhD thesis, Technische Universit�at Berlin, 1996.
13. G. Schied. On relating Rewriting Systems and Graph Grammars to Event Struc-

tures. Proceedings of the Dagstuhl Seminar 9301 on Graph Transformations in

Computer Science, volume 776 of LNCS, pages 326{340. Springer, 1994.
14. W. Vogler. E�ciency of asynchronous systems and read arcs in Petri nets. Tech-

nical Report 352, Instit�ut f�ur Mathematik, Augsburg University, 1996.
15. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to

Other Models of Concurrency, volume 255 of LNCS, pages 325{392. Springer, 1987.

89Unfolding and Event Structure Semantics for Graph Grammars

	Introduction
	Typed Graph Grammars
	Nondeterministic occurrence grammars
	Unfolding
	Domain and event structure semantics
	Relation with other event structure semantics
	Conclusions and future work

