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Abstract. In [16], J. Patarin designed a new scheme, called “Oil and
Vinegar”, for computing asymmetric signatures. It is very simple, can
be computed very fast (both in secret and public key) and requires very
little RAM in smartcard implementations. The idea consists in hiding
quadratic equations in n unknowns called “oil” and v = n unknowns
called “vinegar” over a finite field K, with linear secret functions. This
original scheme was broken in [10] by A. Kipnis and A. Shamir. In this
paper, we study some very simple variations of the original scheme where
v > n (instead of v = n). These schemes are called “Unbalanced Oil and
Vinegar” (UOV), since we have more “vinegar” unknowns than “oil”
unknowns. We show that, when v ' n, the attack of [10] can be extended,
but when v ≥ 2n for example, the security of the scheme is still an

open problem. Moreover, when v ' n2

2
, the security of the scheme is

exactly equivalent (if we accept a very natural but not proved property)

to the problem of solving a random set of n quadratic equations in n2

2

unknowns (with no trapdoor). However, we show that (in characteristic
2) when v ≥ n2, finding a solution is generally easy. Then we will see
that it is very easy to combine the Oil and Vinegar idea and the HFE
schemes of [14]. The resulting scheme, called HFEV, looks at the present
also very interesting both from a practical and theoretical point of view.
The length of a UOV signature can be as short as 192 bits and for HFEV
it can be as short as 80 bits.

Note: An extended version of this paper can be obtained from the authors.

1 Introduction

Since 1985, various authors (see [7], [9], [12], [14], [16], [17], [18], [21] for example)
have suggested some public key schemes where the public key is given as a set of
multivariate quadratic (or higher degree) equations over a small finite field K.

The general problem of solving such a set of equations is NP-hard (cf [8])
(even in the quadratic case). Moreover, when the number of unknowns is, say, n ≥
16, the best known algorithms are often not significantly better than exhaustive
search (when n is very small, Gröbner bases algorithms are more efficient, cf [6]).
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The schemes are often very efficient in terms of speed or RAM required in a
smartcard implementation. (However, the length of the public key is generally
≥ 1 Kbyte. Nevertheless, it is sometimes useful to notice that secret key compu-
tations can be performed without the public key). The most serious problem is
that, in order to introduce a trapdoor (to allow the computation of signatures
or to allow the decryption of messages when a secret is known), the generated
set of public equations generally becomes a small subset of all the possible equa-
tions and, in many cases, the algorithms have been broken. For example [7] was
broken by their authors, and [12], [16], [21] were broken. However, many schemes
are still not broken (for example [14], [17], [18], [20]), and also in many cases,
some very simple variations have been suggested in order to repair the schemes.
Therefore, at the present, we do not know whether this idea of designing public
key algorithms with multivariate polynomials over small finite fields is a very
powerful idea (where only some too simple schemes are insecure) or not.

In this paper, we will present two new schemes: UOV and HFEV. UOV is a
very simple scheme: the original Oil and Vinegar signature scheme (of [16]) was
broken (see [10]), but if we have significantly more “vinegar” unknowns than
“oil” unknowns (a definition of the “oil” and “vinegar” unknowns can be found
in section 2), then the attack of [10] does not work and the security of this more
general scheme (called UOV) is still an open problem. We will also study Oil and
Vinegar schemes of degree three (instead of two). Then, we will present another
scheme, called HFEV. HFEV combines the ideas of HFE (of [14]) and of vinegar
variables. HFEV looks more efficient than the original HFE scheme. Finally, in
section 13, we present what we know about the main schemes in this area of
multivariate polynomials.

2 The (Original and Unbalanced) Oil and Vinegar of
Degree Two

Let K = Fq be a small finite field (for example K = F2). Let n and v be two
integers. The message to be signed (or its hash) is represented as an element of
Kn, denoted by y = (y1, ..., yn). Typically, qn ' 2128 (in section 8, we will see
that qn ' 264 is also possible). The signature x is represented as an element of
Kn+v denoted by x = (x1, ..., xn+v).

Secret Key

The secret key is made of two parts:

1. A bijective and affine function s : Kn+v → Kn+v. By “affine”, we mean that
each component of the output can be written as a polynomial of degree one
in the n + v input unknowns, and with coefficients in K.

2. A set (S) of n equations of the following type:

∀i, 1 ≤ i ≤ n, yi =
∑

γijkaja
′
k+

∑
λijka′

ja
′
k+

∑
ξijaj+

∑
ξ′ija

′
j+δi (S).
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The coefficients γijk, λijk , ξij , ξ′ij and δi are the secret coefficients of these
n equations. The values a1, ..., an (the “oil” unknowns) and a′

1, ..., a′
v (the

“vinegar” unknowns) lie in K. Note that these equations (S) contain no
terms in aiaj .

Public Key

Let A be the element of Kn+v defined by A = (a1, ..., an, a′
1, ..., a

′
v). A is trans-

formed into x = s−1(A), where s is the secret, bijective and affine function from
Kn+v to Kn+v. Each value yi, 1 ≤ i ≤ n, can be written as a polynomial Pi of
total degree two in the xj unknowns, 1 ≤ j ≤ n + v. We denote by (P) the set
of the following n equations:

∀i, 1 ≤ i ≤ n, yi = Pi(x1, ..., xn+v) (P).

These n quadratic equations (P) (in the n + v unknowns xj) are the public key.

Computation of a Signature (with the Secret Key)

The computation of a signature x of y is performed as follows:
Step 1: We find n unknowns a1, ..., an of K and v unknowns a′

1, ..., a′
v of K such

that the n equations (S) are satisfied. This can be done as follows: we randomly
choose the v vinegar unknowns a′

i, and then we compute the ai unknowns from
(S) by Gaussian reductions (because – since there are no aiaj terms – the (S)
equations are affine in the ai unknowns when the a′

i are fixed).

Remark: If we find no solution, then we simply try again with new random
vinegar unknowns. After very few tries, the probability of obtaining at least one
solution is very high, because the probability for a n × n matrix over Fq to be
invertible is not negligible. (It is exactly

(
1− 1

q

)(
1− 1

q2

)
...

(
1− 1

qn−1

)
. For q = 2,

this gives approximately 30 %, and for q > 2, this probability is even larger.)

Step 2: We compute x = s−1(A), where A = (a1, .., an, a′
1, ..., a

′
v). x is a signature

of y.

Public Verification of a Signature

A signature x of y is valid if and only if all the (P) are satisfied. As a result,
no secret is needed to check whether a signature is valid: this is an asymmetric
signature scheme.

Note: The name “Oil and Vinegar” comes from the fact that – in the equations
(S) – the “oil unknowns” ai and the “vinegar unknowns” a′

j are not all mixed
together: there are no aiaj products. However, in (P), this property is hidden by
the “mixing” of the unknowns by the s transformation. Is this property “hidden
enough” ? In fact, this question exactly means: “is the scheme secure ?”. When
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v = n, we call the scheme “Original Oil and Vinegar”, since this case was first
presented in [16]. This case was broken in [10]. It is very easy to see that the
cryptanalysis of [10] also works, exactly in the same way, when v < n. However,
the cases v > n are, as we will see, much more difficult. When v > n, we call the
scheme “Unbalanced Oil and Vinegar”.

3 Cryptanalysis of the Case v = n (from [10])

The idea of the attack of [10] is essentially the following: In order to separate
the oil variables and the vinegar variables, we look at the quadratic forms of
the n public equations of (P), we omit for a while the linear terms. Let Gi for
1 ≤ i ≤ n be the respective matrix of the quadratic form of Pi of the public
equations (P). The quadratic part of the equations in the set (S) is represented

as a quadratic form with a corresponding 2n× 2n matrix of the form :
(

0 A
B C

)
,

the upper left n× n zero submatrix is due to the fact that an oil variable is not
multiplied by an oil variable. After hiding the internal variables with the linear

function s, we get a representation for the matrices Gi = S

(
0 Ai

Bi Ci

)
St, where

S is an invertible 2n × 2n matrix.

Definition 3.1: We define the oil subspace to be the linear subspace of all
vectors in K2n whose second half contains only zeros.

Definition 3.2: We define the vinegar subspace as the linear subspace of all
vectors in K2n whose first half contains only zeros.

Lemma 1. Let E and F be a 2n × 2n matrices with an upper left zero n × n
submatrix. If F is invertible then the oil subspace is an invariant subspace of
EF−1.

Proof: see [10]. ut

Definition 3.4: For an invertible matrix Gj , define Gij = GiG
−1
j .

Definition 3.5: Let O be the image of the oil subspace by S−1.
In order to find the oil subspace, we use the following theorem:

Theorem 3.1. O is a common invariant subspace of all the matrices Gij .

Proof:

Gij = S

(
0 Ai

Bi Ci

)
St(St)−1

(
0 Aj

Bj Cj

)−1

S−1 = S

(
0 Ai

Bi Ci

) (
0 Aj

Bj Cj

)−1

S−1

The two inner matrices have the form of E and F in lemma 1. Therefore, the
oil subspace is an invariant subspace of the inner term and O is an invariant
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subspace of GiG
−1
j . The problem of finding common invariant subspace of set

of matrices is studied in [10]. Applying the algorithms in [10] gives us O. We
then pick V to be an arbitrary subspace of dimension n such that V +O = K2n,
and they give an equivalent oil and vinegar separation. Once we have such a
separation, we bring back the linear terms that were omitted, we pick random
values for the vinegar variables and left with a set of n linear equations with n
oil variables. ut

Note: Lemma 1 is not true any more when v > n. The oil subspace is still
mapped by E and F into the vinegar subspace. However F−1 does not necessary
maps the image by E of the oil subspace back into the oil subspace and this is why
the cryptanalysis of the original oil and vinegar is not valid for the unbalanced
case.

4 Cryptanalysis when v > n and v ' n

In this section, we will describe a modification of the above attack, that is ap-
plicable as long as v − n is small (more precisely the expected complexity of the
attack is approximately q(v−n)−1 · n4).

Definition 4.1: We define in this section the oil subspace to be the linear
subspace of all vectors in Kn+v whose last v coordinates are only zeros.

Definition 4.2: We define in this section the vinegar subspace to be the linear
subspace of all vectors in Kn+v whose first n coordinates are only zeros.

Here in this section, we start with the homogeneous quadratic terms of the
equations: we omit the linear terms for a while. The matrices Gi have the rep-
resentation

Gi = S

(
0 Ai

Bi Ci

)
St

where the upper left matrix is the n× n zero matrix, Ai is a n× v matrix, Bi is
a v ×n matrix, Ci is a v × v matrix and S is a (n + v)× (n + v) invertible linear
matrix.

Definition 4.3: Define Ei to be
(

0 Ai

Bi Ci

)
.

Lemma 2. For any matrix E that has the form
(

0 A
B C

)
, the following holds:

a) E transforms the oil subspace into the vinegar subspace.
b) If the matrix E−1 exists, then the image of the vinegar subspace by E−1 is

a subspace of dimension v which contains the n-dimensional oil subspace in
it.
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Proof: a) follows directly from the definition of the oil and vinegar subspaces.
When a) is given then b) is immediate. ut

The algorithm we propose is probabilistic. It looks for an invariant subspace
of the oil subspace after it is transformed by S. The probability for the algorithm
to succeed on the first try is small. Therefore we need to repeat it with different
inputs. We use the following property: any linear combination of the matrices

E1, ..., En is also of the form
(

0 A
B C

)
. The following theorem explains why an

invariant subspace may exist with a certain probability.

Theorem 4.1. Let F be an invertible linear combination of the matrices E1,
..., En. Then for any k such that E−1

k exists, the matrix FE−1
k has a non trivial

invariant subspace which is also a subspace of the oil subspace, with probability
not less than q−1

q2d−1
for d = v − n.

Proof: See the extended version of this paper. ut

Note: It is possible to get a better result for the expected number of eigenvec-
tors and with much less effort: I1 is a subspace with dimension not less than n−d
and is mapped by FE−1

k into a subspace with dimension n. The probability for a
non zero vector to be mapped to a non zero multiple of itself is q−1

qn−1 . To get the
expected value, we multiply it by the number of non zero vectors in I1. It gives
a value which is not less than (q−1)(qn−d−1)

qn−1 . Since every eigenvector is counted
q − 1 times, then the expected number of invariant subspcaes of dimension 1 is
not less than qn−d−1

qn−1 ∼ q−d.

We define O as in section 3 and we get the following result for O:

Theorem 4.2. Let F be an invertible linear combination of the matrices G1,
..., Gn. Then for any k such that G−1

k exists, the matrix FG−1
k has a non trivial

invariant subspace, which is also a subspace of O with probability not less than
q−1

q2d−1 for d = v − n.

Proof:
FG−1

k = (α1G1 + ... + αnGn)G−1
k

= S(α1E1 + ... + αnEn)St(St)−1E−1
k S−1 = S(α1E1 + ... + αnEn)E−1

k S−1.

The inner term is an invariant subspace of the oil subspace with the required
probability. Therefore, the same will hold for FG−1

k , but instead of a subspace
of the oil subspace, we get a subspace of O. ut

How to find O ?
We take a random linear combination of G1, ..., Gn and multiply it by an

inverse of one of the Gk matrices. Then we calculate all the minimal invariant
subspaces of this matrix (a minimal invariant subspace of a matrix A contains
no non trivial invariant subspaces of the matrix A – these subspaces corresponds
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to irreducible factors of the characteristic polynomial of A). This can be done
in probabilistic polynomial time using standard linear algebra techniques. This
matrix may have an invariant subspace wich is a subspace of O.

The following lemma enables us to distinguish between subspaces that are
contained in O and random subspaces.

Lemma 3. If H is a linear subspace and H ⊂ O, then for every x, y in H and
every i, Gi(x, y) = 0 (here we regard Gi as a bilinear form).

Proof: There are x′ and y′ in the oil subspace such that x′ = xS and y′ = yS.

Gi(x, y) = xS

(
0 Ai

Bi Ci

)
Styt = x′

(
0 Ai

Bi Ci

)
(y′)t = 0.

The last term is zero because x′ and y′ are in the oil subspace. ut
Lemma 3 gives a polynomial test to distinguish between subspaces of O and

random subspaces. If the matrix we used has no minimal subspace which is also
a subspace of O, then we pick another linear combination of G1, ..., Gn, multiply
it by an inverse of one of the Gk matrices and try again. After repeating this
process approximately qd−1 times, we find with good probability at least one
zero vector of O. We continue the process until we get n independent vectors of
O. These vectors span O. The expected complexity of the process is proportional
to qd−1 ·n4. We use here the expected number of tries until we find a non trivial
invariant subspace and the term n4 covers the computational linear algebra
operations we need to perform for evey try.

5 The Cases v ' n
2

2
(or v ≥ n

2

2
)

Property

Let (A) be a random set of n quadratic equations in (n+v) variables x1, ..., xn+v.
(By “random” we mean that the coefficients of these equations are uniformly and
randomly chosen). When v ' n2

2 (and more generally when v ≥ n2

2 ), there is
probably – for most of such (A) – a linear change of variables (x1, ..., xn+v) 7→
(x′

1, ..., x
′
n+v) such that the set (A′) of (A) equations written in (x′

1, ..., x
′
n+v) is

an “Oil and Vinegar” system (i.e. there are no terms in x′
i · x′

j with i ≤ n and
j ≤ n).

An Argument to Justify the Property

Let 


x1 = α1,1x
′
1 + α1,2x

′
2 + · · · + α1,n+vx

′
n+v

...
xn+v = αn+v,1x

′
1 + αn+v,2x

′
2 + · · · + αn+v,n+vx′

n+v
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By writing that the coefficient in all the n equations of (A) of all the x′
i · x′

j

(i ≤ n and j ≤ n) is zero, we obtain a system of n · n · n+1
2 quadratic equations

in the (n + v) · n variables αi,j (1 ≤ i ≤ n + v, 1 ≤ j ≤ n). Therefore, when v ≥
approximately n2

2 , we may expect to have a solution for this system of equations
for most of (A).

Remarks:

1. This argument is very natural, but this is not a complete mathematical proof.
2. The system may have a solution, but finding the solution might be a difficult

problem. This is why an Unbalanced Oil and Vinegar scheme might be secure
(for well chosen parameters): there is always a linear change of variables that
makes the problem easy to solve, but finding such a change of variables might
be difficult.

3. In section 7, we will see that, despite the result of this section, it is not
recommended to choose v ≥ n2 (at least in characteristic 2).

6 Solving a Set of n Quadratic Equations in k Unknowns,
k > n, Is NP-hard

(See the extended version of this paper.)

7 A Generally (but Not Always) Efficient Algorithm for
Solving a Random Set of n Quadratic Equations in n2

(or More) Unknowns

In this section, we describe an algorithm that solves a system of n randomly
chosen quadratic equations in n + v variables, when v ≥ n2.

Let (S) be the following system:

(S)




∑
1≤i≤j≤n+v

aij1xixj +
∑

1≤i≤n+v

bi1xi + δ1 = 0

...∑
1≤i≤j≤n+v

aijnxixj +
∑

1≤i≤n+v

binxi + δn = 0

The main idea of the algorithm consists in using a change of variables such as:


x1 = α1,1y1 + α2,1y2 + ... + αn+v,1yn+v

...
xn+v = α1,n+vy1 + α2,n+vy2 + ... + αn+v,n+vyn+v

whose αi,j coefficients (for 1 ≤ i ≤ n, 1 ≤ j ≤ n + v) are found step by step, in
order that the resulting system (S′) (written with respect to these new variables
y1, ..., yn+v) is easy to solve.
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– We begin by choosing randomly α1,1, ..., α1,n+v.
– We then compute α2,1, ..., α2,n+v such that (S′) contains no y1y2 terms. This

condition leads to a system of n linear equations on the (n + v) unknowns
α2,j (1 ≤ j ≤ n + v):∑

1≤i≤j≤n+v

aijkα1,iα2,j = 0 (1 ≤ k ≤ n).

– We then compute α3,1, ..., α3,n+v such that (S′) contains neither y1y3 terms,
nor y2y3 terms. This condition is equivalent to the following system of 2n
linear equations on the (n + v) unknowns α3,j (1 ≤ j ≤ n + v):



∑
1≤i≤j≤n+v

aijkα1,iα3,j = 0 (1 ≤ k ≤ n)
∑

1≤i≤j≤n+v

aijkα2,iα3,j = 0 (1 ≤ k ≤ n)

– . . .
– Finally, we compute αn,1, ..., αn,n+v such that (S′) contains neither y1yn

terms, nor y2yn terms, ..., nor yn−1yn terms. This condition gives the fol-
lowing system of (n − 1)n linear equations on the (n + v) unknowns αn,j

(1 ≤ j ≤ n + v):


∑
1≤i≤j≤n+v

aijkα1,iαn,j = 0 (1 ≤ k ≤ n)

...∑
1≤i≤j≤n+v

aijkαn−1,iαn,j = 0 (1 ≤ k ≤ n)

In general, all these linear equations provide at least one solution (found by
Gaussian reductions). In particular, the last system of n(n − 1) equations and
(n + v) unknowns generally gives a solution, as soon as n + v > n(n − 1), i.e.
v > n(n − 2), which is true by hypothesis.

Moreover, the n vectors




α1,1

...
α1,n+v


, ...,




αn,1

...
αn,n+v


 are very likely to be

linearly independent for a random quadratic system (S).
The remaining αi,j constants (i.e. those with n + 1 ≤ i ≤ n + v and 1 ≤ j ≤

n + 1) are randomly chosen, so as to obtain a bijective change of variables.
By rewriting the system (S) with respect to these new variables yi, we are

led to the following system:

(S ′)




n∑
i=1

βi,1y
2
i +

n∑
i=1

yiLi,1(yn+1, ..., yn+v) + Q1(yn+1, ..., yn+v) = 0

...
n∑

i=1

βi,ny2
i +

n∑
i=1

yiLi,n(yn+1, ..., yn+v) + Qn(yn+1, ..., yn+v) = 0

where each Li,j is an affine function and each Qi is a quadratic function.
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We then compute yn+1, ..., yn+v such that:

∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n + v, Li,j(yn+1, ..., yn+v) = 0.

This is possible because we have to solve a linear system of n2 equations and v
unknowns, which generally provides at least one solution, as long as v ≥ n2. We
pick one of these solutions. In general, this gives the y2

i by Gaussian reduction.
Then, in characteristic 2, since x 7→ x2 is a bijection, we will then find easily

a solution for the yi from this expression of the y2
i . In characteristic 6= 2, it will

also succeed when 2n is not too large (i.e. when n ≤ 40 for example). When n
is large, there is also a method to find a solution, based on the general theory
of quadratic forms. Due to the lack of space, this method will be found in the
extended version of this paper.

8 A Variation with Twice Smaller Signatures

In the UOV described in section 2, the public key is a set of n quadratic equations
yi = Pi (x1, ..., xn+v), for 1 ≤ i ≤ n, where y = (y1, ..., yn) is the hash value of
the message to be signed. If we use a collision-free hash function, the hash value
must at least be 128 bits long. Therefore, qn must be at least 2128, so that the
typical length of the signature, if v = 2n, is at least 3 × 128 = 384 bits.

As we see now, it is possible to make a small variation in the signature design
in order to obtain twice smaller signatures. The idea is to keep the same poly-
nomial Pi (with the same associated secret key), but now the public equations
that we check are:

∀i, Pi(x1, ..., xn+v) + Li(y1, ..., yn, x1, ..., xn+v) = 0,

where Li is a linear function in (x1, ..., xn+v) and where the coefficients of Li are
generated by a hash function in (y1, ..., yn).

For example Li(y1, ..., yn, x1, ..., xn+v) = α1x1+α2x2+ ...+αn+vxn+v, where
(α1, α2, ..., αn+v) = Hash (y1, ..., yn||i). Now, n can be chosen such that qn ≥ 264

(instead qn ≥ 2128). (Note: qn must be ≥ 264 in order to avoid exhaustive search
on a solution x). If v = 2n and qn ' 264, the length of the signature will be
3 × 64 = 192 bits.

9 Oil and Vinegar of Degree Three

The Scheme

The quadratic Oil and Vinegar schemes described in section 2 can easily be
extended to any higher degree. In the case of degree three, the set (S) of hidden
equations are of the following type: for all i ≤ n,

yi =
∑

γijk`aja
′
ka′

` +
∑

µijk`a
′
ja

′
ka′

` +
∑

λijka′
ja

′
k

+
∑

νijka′
ja

′
k +

∑
ξijaj +

∑
ξ′ija

′
j + δi (S).
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The coefficients γijk, µijk`, λijk , νijk , ξij , ξ′ij and δi are the secret coefficients of
these n equations. Note that these equations (S) contain no terms in ajaka` or
in ajak: the equations are affine in the aj unknowns when the a′

k unknowns are
fixed.

The computation of the public key, the computation of a signature and the
verification of a signature are done as before.

First Cryptanalysis of Oil and Vinegar of Degree Three when v ≤ n

We can look at the quadratic part of the public key and attack it exactly as for
an Oil and Vinegar of degree two. This is expected to work when v ≤ n.

Note: If there is no quadratic part (i.e. is the public key is homogeneous of
degree three), or if this attack does not work, then it is always possible to apply
a random affine change of variables and to try again.

Cryptanalysis of Oil and Vinegar of Degree Three when
v ≤ (1 +

√
3)n and K Is of Characteristic 6= 2 (from an Idea of D.

Coppersmith, cf [4])

The key idea is to detect a “linearity” in some directions. We search the set V
of the values d = (d1, ..., dn+v) such that:

∀x, ∀i, 1 ≤ i ≤ n, Pi(x + d) + Pi(x − d) = 2Pi(x) (#).

By writing that each xk indeterminate has a zero coefficient, we obtain n ·(n+v)
quadratic equations in the (n + v) unknowns dj .

(Each monomial xixjxk gives (xj + dj)(xk + dk)(x` + d`) + (xj − dj)(xk −
dk)(x` − d`) − 2xjxkx`, i.e. 2(xjdkd` + xkdjd` + x`djdk).)

Furthermore, the cryptanalyst can specify about n− 1 of the coordinates dk

of d, since the vectorial space of the correct d is of dimension n. It remains thus
to solve n · (n + v) quadratic equations in (v + 1) unknowns dj . When v is not
too large (typically when (v+1)2

2 ≤ n(n + v), i.e. when v ≤ (1 +
√

3)n), this is
expected to be easy. As a result when v ≤ approximately (1 +

√
3)n and |K| is

odd, this gives a simple way to break the scheme.

Note 1: When v is sensibly greater than (1 +
√

3)n (this is a more unbalanced
limit than what we had in the quadratic case), we do not know at the present
how to break the scheme.

Note 2: Strangely enough, this cryptanalysis of degre three Oil and Vinegar
schemes does not work on degree two Oil and Vinegar schemes. The reason is
that – in degree two –writing

∀x, ∀i, 1 ≤ i ≤ n, Pi(x + d) + Pi(x − d) = 2Pi(x)

only gives n equations of degree two on the (n + v) dj unknowns (that we do
not know how to solve). (Each monomial xjxk gives (xj + dj)(xk + dk) + (xj −
dj)(xk − dk) − 2xjxk, i.e. 2djdk.)
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Note 3: In degree two, we have seen that Unbalanced Oil and Vinegar public
keys are expected to cover almost all the set of n quadratic equations when
v ' n2

2 . In degree three, we have a similar property: the public keys are expected
to cover almost all the set of n cubic equations when v ' n3

6 (the proof is similar).

10 Another Scheme: HFEV

In the “most simple” HFE scheme (we use the notations of [14]), we have b =
f(a), where:

f(a) =
∑
i,j

βija
qθij +qϕij +

∑
i

αia
qξi + µ0, (1)

where βij , αi and µ0 are elements of the field Fqn . Let v be an integer (v will
be the number of extra xi variables, or the number of “vinegar” variables that
we will add in the scheme). Let a′ = (a′

1, ..., a
′
v) be a v-uple of variables of K.

Let now each αi of (1) be an element of Fqn such that each of the n components
of αi in a basis is a secret random linear function of the vinegar variables a′

1,
..., a′

v. And in (1), let now µ0 be an element of Fqn such that each one of the
n components of µ0 in a basis is a secret random quadratic function of the
variables a′

1, ..., a′
v. Then, the n + v variables a1, ..., an, a′

1, ..., a′
v will be mixed

in the secret affine bijection s in order to obtain the variables x1, ..., xn+v. And,
as before, t(b1, ..., bn) = (y1, ..., yn), where t is a secret affine bijection. Then
the public key is given as the n equations yi = Pi(x1, ..., xn+v). To compute a
signature, the vinegar values a′

1, ..., a′
v will simply be chosen at random. Then,

the values µ0 and αi will be computed. Then, the monovariate equations (1) will
be solved (in a) in Fqn .

Example: Let K = F2. In HFEV, let for example the hidden polynomial be:

f(a) = a17 +β16a
16 +a12+a10+a9+β8a

8 +a6+a5+β4a
4 +a3+β2a

2+β1a+β0,

where a = (a1, ..., an) (a1, ..., an are the “oil” variables), β1, β2, β4, β8 and β16

are given by n secret linear functions on the v vinegar variables and β0 is given
by n secret quadratic functions on the v vinegar variables. In this example, we
compute a signature as follows: the vinegar variables are chosen at random and
the resulting equation of degree 17 is solved in a.

Note: Unlike UOV, in HFEV we have terms in oil×oil (such as a17, a12, a10,
etc), oil×vinegar (such as β16a

16, β8a
8, etc) and vinegar×vinegar (in β0).

Simulations

Nicolas Courtois did some simulations on HFEV and, in all his simulations, when
the number of vinegar variables is ≥ 3, there is no affine multiple equations of
small degree (which is very nice). See the extended version of this paper for more
details.
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11 Concrete Examples of Parameters for UOV

At the present, it seems possible to choose for example n = 64, v = 128 (or
v = 192) and K = F2. The signature scheme is the one of section 8, and the
length of a signature is only 192 bits (or 256 bits) in this case. More examples
of possible parameters are given in the extended version of this paper.

Note: If we choose K = F2 then the public key is often large. So it is often
more practical to choose a larger K and a smaller n: then the length of the public
key can be reduced a lot. However, even when K and n are fixed, it is always
feasible to make some easy transformations on a public key in order to obtain
the public key in a canonical way such that this canonical expression is slightly
shorter than the original expression. See the extended version of this paper for
details.

12 Concrete Example of Parameters for HFEV

At the present, it seems possible to choose a small value for v (for example v = 3)
and a small value for d (for example n = 77, v = 3, d = 33 and K = F2). The
signature scheme is described in the extended version of this paper (to avoid the
birthday paradox). Here the length of a signature is only 80 bits ! More examples
of possible parameters are given in the extended version of this paper.

13 State of the Art (in May 1999) on Public-Key
Schemes with Multivariate Polynomials over a Small
Finite Field

Recently, many new ideas have been introduced to design better schemes, such
as UOV or HFEV described in this paper. Another idea is to fix some variables
to hide some algebraic properties, and another idea is to introduce a few really
random quadratic equations and to mix them with the original equations: see
the extended version of this paper. However, many new ideas have also been
introduced to design better attacks on previous schemes, such as the – not yet
published – papers [1], [2], [3], [5]. So the field is fast moving and it can look
a bit confusing at first. Moreover, some authors use the word “cryptanalysis”
for “breaking” and some authors use this word with the meaning “an analysis
about the security” that does not necessary mean “breaking”. In this section,
we describe what we know at the present about the main schemes.

In the large families of the public key based on multivariate polynomials over
a small finite field, we can distinguish between five main families characterized
by the way the trapdoor is introduced or by the difficult problem on which the
security relies. In the first family are the schemes “with a Hidden Monomial”, i.e.
the key idea is to compute an exponentiation x 7→ xd in a finite field for secret key
computation. In the second family are the schemes where a polynomial function
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(with more than one monomial) is hidden. In the third family, the security
relies on an isomorphism problem. In the fourth family, the security relies on the
difficulty of finding the decomposition of two multivariate quadratic polynomials
from all or part of their composition. Finally, in the fifth family, the secret key
computations are based on Gaussian computations. The main schemes in these
families are described in the figure below. What may be the most interesting
scheme in each family is in a rectangle.

Family 1: C
� (1985-1995)

Schemes with a
Hidden Monomial
(ex: Dragons with
one monomial)

C
�

��

Family 2: HFE, (polynomial) Dragons, HM

HM
�HFE� HFEV, HFEV�

Family 3: IP

Family 4: (Original) Oil and Vinegar (1997-1998)

Unbalanced Oil and Vinegar (UOV)

Family 5: 2 Round schemes (2R) (D��, 2R with S-boxes, Hybrid 2R)

2R�

�
�
��

@
@
@@

– C∗ was the first scheme of all, and it can be seen as the ancestor of all these
schemes. It was designed in [12] and broken in [13].

– Schemes with a Hidden Monomial (such as some Dragon schemes) were
studied in [15], where it is shown that most of them are insecure. However,
C∗−− (studied in [20]) is (at the present) the most efficient signature scheme
(in time and RAM) in a smartcard. The scheme is not broken (but it may
seem too simple or too close to C∗ to have a large confidence in its security
...).

– HFE was designed in [14]. The most recent results about its security are in
[1] and [2]. In these papers, very clever attacks are described. However, at
the present, it seems that the scheme is not broken since for well chosen and
still reasonable parameters the computations required to break it are still
too large. For example, the first challenge of US $500 given in the extended
version of [14] has not been claimed yet (it is a pure HFE with n = 80 and
d = 96 over F2).
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– HFE− is just an HFE where some of the public equations are not published.
Due to [1] and [2], it may be recommended to do this (despite the fact that
original HFE may be secure without it). In the extended version of [14] a
second challenge of US $500 is described on a HFE−.

– HFEV is described in this paper. HFEV and HFEV− look very hard to
break. Moreover, HFEV is more efficient than the original HFE and it can
give public key signatures of only 80 bits !

– HM and HM− were designed in [20]. Very few analysis have been done
in these schemes (but maybe we can recommend to use HM− instead of
HM ?).

– IP was designed in [14]. IP schemes have the best proofs of security so far
(see [19]). IP is very simple and can be seen as a nice generalization of Graph
Isomorphism.

– The original Oil and Vinegar was presented in [16] and broken in [10].
– UOV is described in this paper. With IP, they are certainly the most simple

schemes.
– 2R was designed in [17] and [18]. Due to [3], it is necessary to have at least

128 bits in input, and due to [5], it may be wise to not publish all the
(originally) public equations: this gives the 2R− algorithms (the efficiency
of the decomposition algorithms given in [5] on the 2R schemes is not yet
completely clear).

Remark 1: These schemes are of theoretical interest but (at the exception of
IP) their security is not directly relied to a clearly defined and considered to be
difficult problem. So is it reasonable to implement them in real products ? We
think indeed that it is a bit risky to rely all the security of sensitive applications
on such schemes. However, at the present, most of the smartcard applications
use secret key algorithms (for example Triple-DES) because RSA smartcards
are more expensive. So it can be reasonable to put in a low-cost smartcard one
of the previous public key schemes in addition to (not instead of) the existing
secret key scheme. Then the security can only be increased and the price of
the smartcard would still be low (no coprocessor needed). The security would
then rely on a master secret key for the secret key algorithm (with the risk of
depending on a master secret key) and on a new low-cost public-key scheme (with
the risk that the scheme has no proof! ! ! of security). It can also be noticed that
when extremely short signature length (or short block encryption) are required,
there is no real choice: at the present only multivariate schemes can have length
between 64 and 256 bits.

Remark 2: When a new scheme is found with multivariate polynomials, we do
not necessary have to explain how the trapdoor has been introduced. Then we
will obtain a kind of “Secret-Public Key scheme” ! The scheme is clearly a Public
Key scheme since anybody can verify a signature from the public key (or can
encrypt from the public key) and the scheme is secret since the way to compute
the secret key computations (i.e. the way the trapdoor has been introduced) has
not been revealed and cannot be guessed from the public key. For example, we
could have done this for HFEV (instead of publishing it).
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14 Conclusion

In this paper, we have presented two new public key schemes with “vinegar
variables”: UOV and HFEV. The study of such schemes has led us to analyze
very general properties about the solutions of systems of general quadratic forms.
Moreover, from the general view presented in section 13, we see that these two
schemes are at the present among the most interesting schemes in two of the five
main families of schemes based on multivariate polynomials over a small finite
field. Will this still be true in a few years ?
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