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Abstract. Traceability schemes for broadcast encryption are defined by
Chor, Fiat and Naor in [f] to protect against a possible coalition of users
producing an illegal decryption key. Their scheme was then generalized
by Stinson and Wei in [[E4]. These schemes assume that every user can
decrypt the secret value. In this paper we discuss key preassigned trace-
ability schemes, in which only the users in a specified privileged subset
can decrypt. A new scheme is presented in this paper, which has bet-
ter traceability than previous schemes. We also present a new threshold
traceability scheme by using ramp scheme. All the constructions are ex-
plicit and could be implemented easily.
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1 Introduction

Most networks can be thought of as broadcast networks, in that any one con-
nected to the network can access to all the information that flows through it. In
many situations, such as a pay-per-view television broadcast, the data is only
available to authorized users. To prevent an unauthorized user from accessing
the data, the trusted authority (TA) will encrypt the data and give the au-
thorized users keys to decrypt it. Some unauthorized users might obtain some
decryption keys from a group of one or more authorized users (called traitors).
Then the unauthorized users can decrypt data that they are not entitled to. To
prevent this, Chor, Fiat and Naor [H] devised a traitor tracing scheme, called a
traceability scheme, which will reveal at least one traitor on the confiscation of
a pirate decoder. This scheme was then generalized by Stinson and Wei in [E4].
There are some other recent papers discussing this topic (see [EIEES]).

The basic idea of a traceability scheme is as follows. Suppose there are a total
of b users. The TA generates a set T of v base keys and assigns ¢ keys chosen
from T to each user. These ¢ keys comprise a user’s personal key, and we will
denote the personal key for user ¢ by U;. A broadcast message, M, consists of an
enabling block, B, and a cipher block, Y. The cipher block is the encryption of
the actual plaintext data X using a secret key, S. That is, Y = eg(X), where e(+)
is the encryption function for some cryptosystem. The enabling block consists of
data which is encrypted by some method, using some or all of the v keys in
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the base set, the decryption of which will allow the recovery of the secret key
S. Every authorized user should be able to recover S using his or her personal
key, and then decrypt the cipher block using S to obtain the plaintext data, i.e.,
X =ds(Y), where d(+) is the decryption function for the cryptosystem.

Some traitors may conspire and give an unauthorized user a pirate decoder,
E. FE will consist of a subset of base keys such that £ C U;ccU;, where C' is the
coalition of traitors. An unauthorized user may be able to decrypt the enabling
block using a pirate decoder. The goal of the TA is to assign keys to the users
in such a way that when a pirate decoder is captured and the keys it possesses
are examined, it should be possible to detect at least one traitor in the coalition
C, provided that |C| < ¢ (where ¢ is a predetermined threshold).

In all the traceability schemes discussed in [CAREICY it is assumed that
every user can decrypt the enabling block. This means that the data supplier
should assign the keys after he or she has determined who the authorized users
are. In practice, however, this restriction may be inconvenient, as changes be-
tween authorized and unauthorized users may be frequent.

In this paper, we investigate traceability schemes in which the personal keys
can be assigned before the authorized users are determined. We will call these
schemes key preassigned schemes. Key preassigned schemes (for broadcast en-
cryption) have been discussed by several researchers. The first scheme was in-
troduced by Berkovits in [il]. Several recent papers have studied broadcast en-
cryption schemes (see [EEEIEEAED], for example). Broadcast schemes enable
a TA to broadcast a message to the users in a network so that a certain speci-
fied subset of authorized users can decrypt it. However, most of these broadcast
schemes have not considered the question of traceability. We will briefly review
the traceability of these schemes and then give some key preassigned schemes
which have better traceability than the previous schemes. We will also discuss
threshold tracing schemes which are more efficient but less secure in some re-
spect. We will use combinatorial methods to describe the schemes and give some
explicit constructions. The efficiency of the schemes is measured by considering
the information rate and broadcast information rate.

There are two aspects of security in our schemes. One property of the scheme
is to prevent unauthorized users from decrypting the enabling block; this is the
usual question investigated in broadcast encryption. The second property is the
ability of tracing a pirate decoder which is made by a coalition of users (which of
course could be authorized users). Although these two properties both protect
against coalitions, they have different effects. The first property can prevent the
coalition of unauthorized users from decrypting the enabling block, but it does
not protect against construction of a pirate decoder. The second property cannot
prevent a coalition from decrypting the enabling block, but it enables the TA to
trace at least one traitor if the decoder is found.

We will discuss unconditionally secure (in an information theoretic sense)
schemes. These schemes do not depend on any computational assumption.
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2 Definitions and notations

In this section, we give basic definitions and the notations used in this paper.

2.1 Broadcast encryption schemes

The definition of a broadcast encryption scheme we use in this paper will be
the same as the one given in [E]. As in a traceability scheme, there is a trusted
authority (TA) and a set of users U = {1,2,---,b}, and the TA generates a
set of v base keys and assigns a subset of the base keys to each user as his or
her personal key. At a later time, a privileged subset, P, of authorized users is
determined. The TA chooses a secret key S and broadcasts an enabling block
Bp (which is an encryption of S) that can be decrypted by every authorized
user, but which cannot be decrypted by certain forbidden subsets disjoint from
P.

Let P denote the collection of possible privileged subsets and let F denote
the collection of possible forbidden subsets. In this paper, we will consider the
case when P = 2Y so P contains all subsets of users, and F contains all f-
subsets of users, where f is a fixed integer. To make things simpler (and since
we want to focus on the traceability first), we will mainly consider the situation
when f = 1. In the case P = 2¥ and f = 1, the privileged subset can be chosen
to be any subset of users, and the enabling block cannot be decrypted by an
individual unauthorized user. (It may be possible for subsets of unauthorized
users to jointly decrypt the message, however.)

For 1 <1 < b, let U; denote the set of all possible subsets of base keys that
might be distributed to user i by the TA. Thus the personal key U; € U;. Let
S denote the set of possible secret keys, so S € S. Let Bp be the set of possible
enabling blocks for privileged subset P; thus Bp € Bp. Usually, U;, S and Bp
consist of tuples from a finite field F,. We define the information rate to be

logS
pmin{looggU :1§i§b}.

%

and the broadcast information rate to be

log S

= min :PeP;.
re { logBp }

In general, to decrease the size of the broadcast, i.e., to increase pp, it is
necessary to decrease p, and vice versa. Since it is trivial to construct a broadcast
encryption scheme with p = 1 and pp = 1/b, we are mainly interested in schemes

with pPB > 1/b

2.2 Traceability

Suppose a “pirate decoder” E is found. (We assume that the pirate decoder
can be used to decrypt some enabling blocks.) If there exists a user ¢ such that
|[ENU;| > |[ENU;| for all users j # i, then ¢ is defined to be an ezposed user. A
c-traceability scheme is defined as follows.
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Definition 21 Suppose any exposed user i is a member of the coalition C when-
ever a pirate decoder E is produced by C (so E C U;ecU;) and |C| < ¢. Then
the scheme is called a c-traceability scheme.

When a scheme is c-traceable, P = 2Y, and the forbidden subsets consist
of all f-subsets of users, we call it a (¢, f)-key preassigned traceability scheme
and denote it as a (¢, f)-KPTS. For the case f = 1, we denote the scheme as a
KPTS.

Remark. The difference between Definition Bl and the one in [ is that the
size of the pirate decoder is not specified here. For example, the pirate decoder
might be smaller or larger than a legitimate decoder. The only requirement is
that a pirate decoder should be able to decode some enabling blocks.

A set system is a pair (X, .A), where X is a set of points and A is a collection
of subsets of X called blocks. We will use set systems with the following property,
which is modified from [E4, Theorem 2.2].

Definition 22 A traceability scheme system is a set system (X, .A), where every
block has size k for some integer k, with the property that for every choice of
¢/ < cblocks Ay, As, -+, As € A, and for any t-subset E C Ug/:lAj, where t > k,
there does not exist a block A € A\{A1, Ay, ---, A} such that |[ENA;| < |ENA]
for 1 < 57 <. Such a system will be denoted by (c, k)-TSS.

In this definition, the blocks correspond to legitimate decoders and E corre-
sponds to a pirate decoder. We will be able to assume that |E| > k due to the
encryption scheme we use.

2.3 Secret sharing schemes

Let U be the set of b users, I' C 2Y be a set of subsets called authorized subsets,
and let A C 2¥ be a set of subsets called unauthorized subsets. In a (I', A)-secret
sharing scheme, the TA has a secret value K. The TA will distribute secret
information called shares to each user of U in such a way that any authorized
subset can compute K from the shares they jointly hold, but no unauthorized
subset has any information about K. The paper [E2] contains an introduction to
secret sharing schemes.

Let r < t < b. An (r,t,b)-ramp scheme is a secret sharing scheme in which
the authorized subsets are all the subsets of & with cardinality at least ¢t and the
unauthorized subsets are all the subsets of U with cardinality at most r. When
r =t — 1, the ramp scheme becomes a threshold scheme which is denoted by
(t,b)-threshold scheme. The Shamir scheme provides a construction of a (t,b)-
threshold scheme in which each share is an element of F,; and the secret is also
an element of Fy, for any prime power ¢ > b+ 1.
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2.4 Key predistribution schemes

Fiat-Naor key predistribution schemes (or KPS) (see [H]) are used in the KIO
construction for broadcast encryption schemes given in [E5]. Let f < b be an
integer. The forbidden subsets consist of all subsets of size at most f. In a Fiat-
Naor scheme, the TA chooses a secret value x  for each possible forbidden subset
F, and gives that value to each user in U\ F. Let P C Y. The value

Kp: Z Trrp

FNP=0

is the key for the privileged subset P. Kp can be computed by any member of P,
but Kp cannot be computed by any forbidden subset F' disjoint from P (where
[F[ < f).

3 Traceability of previous broadcast schemes

Since key preassigned broadcast encryption schemes were proposed in [, several
constructions have been given. A summary of these results can be found in
Stinson [E]. In [E, the KIO construction is described, and which is further
discussed in [Ed]. We will not review these schemes here — we only wish to
indicate that these schemes usually do not have any traceability, or have, at
most, 1-traceability. (However, note that if in a scheme, every user has disjoint
keys, then the scheme is “totally traceable”. Thus the trivial scheme in 2] has
b-traceability.)

Staddon first discussed the traceability of key preassigned broadcast schemes
in her PhD thesis [i]. She constructed some schemes called “OR protocols”
that have higher traceability. We briefly review the OR protocols now. In OR
protocols, the size of a forbidden subset is f and the size of the privileged subset
is w = b — f. These values are fixed ahead of time. The TA produces a key K;
for each subset P; of U, where |P;| = [%], and gives that key to every user in P,
where n is a given positive integer. When the TA wants to broadcast an enabling
block for a privileged subset P, he uses the n keys in the set

CP:{KtIPtgP}

to encrypt it, in such a way that any user who has at least one of these n keys
is able to decrypt it.

It is shown in ] that the OR protocol construction has ©(y/n)-traceability
for n > 2 and b sufficiently large relative to n and f. However, the proof is based
on the assumption that the pirate decoder always is the same size as a personal

key, i.e., that it always contains
b—1
[1-1

keys. This assumption may not be practical. In fact, unauthorized users who
possess even one key might be able to decrypt the enabling block if the key
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happened to belong to the set Lp. Thus the OR protocol has no traceability if
we consider the traceability under Definition Bl where we allow a pirate decoder
to have fewer keys than a personal key.

The traceability schemes in [BJEA] have the desirable property that any pos-
sible decoder must consist of the keys from the base key set, otherwise they will
be useless for decoding. In some other proposed schemes, an enabling block can
be decrypted using keys not in the base set. In such a scheme, the traceability
property is defeated. We describe the traceability scheme proposed in [ to
illustrate this point.

In the scheme of [if] (which is not key preassigned), the TA chooses a random
polynomial

f(x) = ap +a12 + agx® + - - + a.x°.

The TA then computes f(i) and gives it to user i secretly, so that the personal
key of user ¢ will be (i, f(i)). When TA wants to encrypt the secret key S, he
broadcasts the enabling block (S+ag, a1, as,- - -, a.). If a pirate decoder contains
a pair (u, f(u)), then u will be the exposed user. However, two users ¢ and j can
construct a pirate decoder as follows. They choose two random non-zero numbers
«a and B and compute the following:

o WfOBIG) | aitBi e
aJr/B b aJr/B’ s Ye a+/3 .
Since
ag =bg —aiby —--- —acbe,

the (¢ + 1)-tuple (bo,...,b.) can be used as a decoder. In this scenario, the
traitors ¢ and j cannot be exposed by the usual traitor tracing method.

4 The new scheme

In this section, we present our traceability schemes which will use a KIO type
construction. The basic idea of the KIO construction is that the secret key is split
into shares, using a threshold scheme (or a ramp scheme), and then the shares
are encrypted, thus forming the enabling block. Our scheme is a key preassigned
broadcast encryption scheme where U = {1,...,b}, P = 2“ and F consists of
all f-subsets of U. We consider the case f =1 first.

Suppose (X, A) isa (¢, k)-TSS, where X = {1,2,---,v} and A = {41, A3, - -,
Ap}. The block A; determines the personal key given to user j, for 1 < j <b.
For each v € X, let

R,={jelU :uec A}

The main steps in the protocol are as follows:
1. For every set R, as defined above, the TA constructs a Fiat-Naor key pre-

distribution scheme on user set R, with 7, = {{j} : 7 € R,} U {0} and
P, = 28« Thus, for each u, 1 < u < v, the TA chooses |R,| + 1 secret
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values, denoted zg, and zg, ; (j € Ry). These values are chosen at random
from a finite field F,. The value xg, is given to each ¢ € R, and zg, ; is
given to each ¢ € R,\{j}. These keys form the personal key for user i.

We will assume the existence of a function Index on the set of base keys such
that Index(z) = j if = is a key from the jth Fiat-Naor scheme. These keys
might be stored as pairs, e.g., (zr,,u) and (g, ;, u), so that the users know
which keys are from which Fiat-Naor scheme.

2. Suppose the TA wants to encrypt the secret key S € F, for a privileged
subset P. For the purposes of illustration, suppose P = {1,2,---,w}. The
TA first uses a (k,n)-threshold scheme to split S into n shares y1, Y2, - -, Yn,
where Ap = U A; and n = |Ap| (note that n < v, so a (k, v)-threshold
scheme can be used here, if desired).

3. For each j € Ap, the TA computes the secret key K; of Fiat-Naor scheme
on R; for the privileged subset R; N P, i.e.,

Kj =g, + E : TR;i-
1€ER;\P

4. Each share y; is encrypted using an encryption function e(-) with key Kj.
The enabling block consists of the list of encrypted values

(ex;(yj) : j € Ap).

Since each user in P has k values in Ap, he can compute k keys K;,, K;,, - -,
K, and then obtain k shares, y;,, ¥i,, - - -, ¥i,,- Using the reconstruction function
of the threshold scheme, the user is able to recover the value of the secret key,
S.

A user not in P cannot compute any of the keys Kj;, since the Fiat-Naor
scheme is secure against individual unauthorized users. Thus, the user cannot
get any information about the n shares.

Now we consider traceability. Suppose a pirate decoder E is found. The TA
can compute the Index of the decoder as

Index(E) = {Index(x) : x € E}.

Note that the cardinality of the set Index(FE) is at least k, otherwise the decoder
will be useless. The TA can then use this Index to find an exposed user, since
the set system (X, A) is a (c, k)-TSS.
The information rate of this scheme is
1

= fr

where 7, is the number of blocks containing z, i.e., r, = |R;|, and r = max{r, :
x € X}. The broadcast information rate is

S|
SEN

pPB=—2
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The following theorem summarizes the properties of the scheme.

Theorem 41 Suppose (X, A) is a (c,k)-TSS in which |X| = v and |A| = b.
Then there is a c-KPTS for a set of b users, having information rate p > 1/(kr)
and broadcast information rate pg > 1/v.

Remark. For the case f > 1, we need only change the construction of the Fiat-
Naor scheme on each R, so that the possible forbidden subsets are all subsets
of R,, having size at most f. This will cause the information rate of the scheme
to decrease, while the broadcast information rate remains the same.

The following small example will illustrate the scheme.
Example 41 A 2-KPTS with 82 users.

Let X = {0,1,---,40} and suppose A contains the following 82 blocks, where
the calculations are in Zy;, for ¢ =0,1,2,---,40:

A; ={1+i,10+4,18+1,16 +14,37 + 1}
Agipi = {36 +1,32414,33+4,2+14,20 + i}

The set system (X, .A) is a (41, 5, 1)-balanced incomplete block design (see [@]).
This set system has the property that each pair of points appears in exactly one
block, and every point appears in exactly 10 blocks. It is in fact a (2, 5)-TSS (see
Theorem EJ).

The block A; is associated with user i. For each u € X, the TA constructs a
Fiat-Naor scheme on R,,. For example, for u = 1, it can be seen that

Ry = {0,32,24,26,5,47, 51,50, 81, 63},

so |Ri| = 11. The TA will choose 11 secret values in Fy for some prime power
q, and every user in R; will receive 10 of the 11 values. A Fiat-Naor scheme is
implemented in this way on each R,,, and thus every user has 50 values in his or
her personal key.

Now, suppose the TA wants to encrypt a secret key S € F,, where the
privileged subset is P = {0,1,2,---,59}, so w = 60. The TA uses a (5,41)-
threshold scheme to split S into 41 shares, yo, ..., y40. For example,

Ky =R, + %R, 63+ TR, 81
The enabling block will be the list of encrypted values

(ero(¥0), 5 €K (Ya0))-

Any user in P can decrypt the enabling block. For example, consider user 5.
The block Bs = {6, 15,23,21,42}. Then user 5 obtains five of the 41 secret keys,
namely, K¢, K15, K23, K21 and Ko, and recovers the five shares g, 415, 923,
121 and y42. From these five shares S can be obtained.
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Any user not in P cannot decrypt the enabling block. For example, let us
consider user 63. If j & Bgs, then user 63 does not have Kr; and cannot compute
K;. On the other hand, if j € Bgs, then user 63 does not have Kg, g3 and
cannot compute K either. Thus user 63 cannot compute any of the shares in
the threshold scheme.

Finally, let’s show that the scheme is 2-traceable. If a pirate decoder F is
found, then the TA can compute Index(F) as described above. Index(E) must
contain at least 5 numbers, otherwise it cannot decode anything. Suppose that
the decoder was made by two users, say ¢ and j. Since Index(E) C (B; U B;) it
must be the case that |Index(E) N B;| > 3 or |Index(E) N Bj| > 3. Since any two
blocks intersect in at most one point, |Index(E) N Bp| < 2 if h # 4, j. Thus user
i or user j (or both) will be exposed users.

5 Threshold tracing

In the schemes of Section B the Index of any pirate decoder should contain
at least k values, otherwise the decoder cannot get any information from the
broadcast. However, as indicated in [5] (the final version of [H]), such security
is not needed in many applications. For example, in pay-TV applications pirate
decoders which decrypt only part of the content are probably useless. Thus [
defined the concept of a threshold traceability scheme. In a threshold traceability
scheme, the tracing algorithm only can trace the decoders which decrypt with
probability greater than some threshold p. In this section, we discuss some key
preassigned threshold traceability schemes, denoted by KPTTS. Our approach
is quite different from the methods used in [&i]. We will use ramp schemes to
construct KPTTS.
We can obtain a ramp scheme from an orthogonal array.

Definition 51 An orthogonal array OA(t, k, s) is an s* x k array, with entries
from a set Y of s > 2 symbols, such that in any ¢ columns, every t x 1 row vector
appears exactly once.

The following lemma ([l, Chapter VI.7]) provides infinite classes of orthogo-
nal arrays, for any integer .

Lemma 51 If q is a prime power and t < q, then there exists an OA(t,q+1,q).

Suppose there is an OA(t, v + ¢ — r, ¢) which is public knowledge. The secret
information K is a (¢ — r)-tuple from ;. The TA chooses secretly a row in the
OA such that the last t — r columns of that row contains the tuple K. It is easy
to see that there are ¢" such rows. The TA then gives each of the v users one
value from the first v columns of that row. Since any t of these values determine
a row of the OA uniquely, ¢ users can get K by combining their shares. However,
from any r values, the users cannot obtain any information about K, since these
r values together with last ¢ — r columns of any row in the OA determine that
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row. (For more detailed description of this construction, the reader can consult

m.

Our KPTTS is similar to the KPTS constructed in Section B The only
difference is that we use a (0, k, n)-ramp scheme to split the message into shares
in a KPTTS, instead of the (k,n)-threshold scheme used in the KPTS.

In the KPTTS, the base key set and preassigned keys are the same as in the
KPTS. However, when the TA wants to send a secret message M € (F,)* to a
privileged subset, the TA uses a (0, k, n)-ramp scheme to split M into n shares.
The TA uses the same method of KPTS to encrypt the n values, and broadcasts
the resulting list of n values. Similar to the KPTS, any user in the privileged
subset can compute k keys, so he or she can recover the n values from the ramp
scheme, but the users not in the privileged subset cannot get any information
from the encryption.

Now suppose that a pirate decoder E is found. If the size of Index(FE) is not
less than k, then the TA can find an exposed user as he did in the KPTS. When
the size of Index(F) is less than k, the TA may not be able to trace the users in
the coalition. So let us see what a decoder E could do, if the Index(E) contains
k — 1 values. Note that the ramp scheme is constructed from an OA(k, k+ v, q).
For any k — 1 values, there are ¢ rows which contain these k — 1 values. Among
these g rows, only one row carries the secret message M. Hence the decoding

threshold of the KPTTS is 1

p=-.
q

The information rate of the KPTTS is the same as that of the KPTS, but
the broadcast information rate of the KPTTS is much better. In the KPTTS,
we have

k_ k
pB = — 2 —.
n - w
Similar to the KPTS, the KPTTS is also based on the set systems TSS. We
will discuss the construction of T'SS in the next section.

6 Constructions of traceability set systems

To construct our traceability schemes, we need to find traceability set systems.
Some constructions for these types of set systems were given in []; they are
based on certain types of combinatorial designs. (A comprehensive source for
information on combinatorial designs is Colbourn and Dinitz [@].) We present a
useful lemma for constructing T'SS, and mention some applications of it.

Lemma 61 Suppose there exists a set system (X, A) satisfying the following
conditions:

1. |Al =k >c2u+1 for any A€ A;
2. |A;NAj| <pforany Ai, Aj € A, i # j.

Then the set system is a (c, k)-TSS.
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Proof. Let E C US_;A; with |E| > k. Since k > ¢?u + 1, there is a block Aj,
1 < s <¢,such that |[ENAg| > cpu+ 1. For any A € A\{A;, Ag,--- A.}, we have

|[ENAl <]JAN (U 4;)]
<cu
<cu+1
<|EN A

Hence, the set system is a (¢, k)-TSS. 0

As a first application of Lemma [l we give a construction using t-designs.

Definition 61 A t-(v, k, \) design is a set system (X, A), where | X| = v and
|A| =k for all A € A, such that every t-subset of X appears in exactly A blocks
of A.

Theorem 62 Suppose there exists a t-(v, k, 1) design. Then there exists a (c, k)-
TSS, where c = |/(k—1)/(t —1)].

Proof. Any two blocks of a t-(v, k, 1) design intersect in at most ¢ — 1 points.
Apply Lemma Bl with =t — 1. 0

There are many results on ¢-(v, k, 1) designs for small values of t, i.e., for
2 <t < 6. See [] for a summary of known results. We can construct interesting
TSS using designs with ¢t = 2. For example, it is known that there is a 2-(v, 5, 1)
design for all v > 5, v = 1,5 mod 20. These designs give rise to an infinite family
of (2,5)-TSS. Applying Theorem El we have the following KPTS.

Theorem 63 There exists a 2-KPTS for all v > 5, v = 1,5 mod 20, for a set
of b=wv(v —1)/20 users, having p = ﬁ and pp = L.

Note that Example EElis the case v = 41 of the above theorem.
Similarly, we have

Theorem 64 There exists a 2-KPTTS for allv > 5,

of b =wv(v —1)/20 users, having p = —5(1,4,1)

v =1,5mod 20, for a set
5

A 3-(¢> + 1,q + 1,1) design, known as an inversive plane, exists for any
prime power g. The following result concerns the KPTS and KPTTS that can
be constructed from inversive planes.

Theorem 65 For any prime power q, there exist a c-KPTS and a ¢-KPTTS,

where ¢ = L\/gJ , with information rate p ~ q% and broadcast information rates

pPB ~ qiz for KPTS and pp =~ % for KPTTS.
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In [[£1], it is proved that there exists a threshould traceability scheme with
broadcast information rate pp = O(ﬁ). However, the proof of that is not ex-
plicit. Our construction is explicit and the threshold of our scheme is usually
better than that of the scheme in [id]. Also our scheme is key preassigned.

Many other constructions of T'SS can be given using combinatorial objects
such as packing designs, orthogonal arrays, universal hash families, etc. The
constructions are similar to those found in [EECH).

7 Some remarks

We make a couple of final observations in this section.

— The (¢, f)-KPTS scheme discussed in this paper is a generalization of the
traceability schemes in [AJE]. The schemes in & are in fact the case of
f =0 of our main construction. When f = 0, there is no protection against
an unauthorized user decrypting the enabling block.

— Most broadcast schemes and traceability schemes in the literature are de-
scribed as unconditionally secure schemes. If the encryption function e(-)
used in the scheme in this paper is addition in a finite field Iy, then our
scheme is also unconditionally secure. However, the drawback of using the
above unconditionally secure encryption scheme is that the resulting KPTS
and KPTTS will be a one-time scheme. On the other hand, if we desire only
computational security, then we can replace e(-) by any cryptosystem that is
computationally secure against a known plaintext attack, and we will obtain
a KPTS that can be used for many broadcasts. This simple modification
can be applied to other one-time schemes described in previously published
papers.
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