
Automatic Verification of
Abstract State Machines

(Extended Abstract)

Marc Spielmann

LuFG MGdI, RWTH Aachen, D-52056 Aachen, Germany
spielmann@informatik.rwth-aachen.de

Abstract. Abstract state machines (ASMs) provide the basis of a suc-
cessful methodology for specification and verification of software and
hardware systems. Nevertheless, computer aided verification of ASM-
programs has not yet been well-developed. In this paper we try to shed
some light on the limits of automatic verifiability of ASM-programs.

We introduce a class of restricted ASM-programs, which are called
nullary programs, and provide an algorithm that decides whether a given
nullary program satisfies a given correctness property (expressible in a
CTL∗-like temporal logic) on all inputs. Our decision algorithm runs in
Pspace and we show that this is optimal. We also show that straight-
forward generalizations of nullary programs cannot be verified algorith-
mically, as some basic verification problems become undecidable.

1 Introduction

Abstract state machines (ASMs) [Gur95,Gur97], formerly known as evolving al-
gebras, provide the formal foundation of a method to design and analyze complex
hardware and software systems. When designing such a system one usually starts
with a high-level description of the system and, by stepwise refining intermediate
stages, eventually obtains a low-level description which is close to executable
code. The ASM-method proposes to describe each stage of the refinement pro-
cess in terms of ASM-programs. (That ASM-programs really suffice to express
all levels of abstraction of a dynamic system is witnessed by many large-scale ap-
plications of the ASM-method [BH98].) The advantage of this approach is that
ASM-programs are close to logic (see Theorem 5 in Section 3), which makes
them easily accessible for well-understood mathematical methods. Essentially
this mathematical foundation of ASM-programs supports the formal verification
of systems designed by means of the ASM-method. For an introduction to the
ASM-method the reader is referred to [Bör95]. Although there do exist nume-
rous verification examples in the ASM-literature [BH98], one can hardly find an
example where all or part of the verification process is mechanized. That is, com-
puter aided verification of ASM-programs has not yet been well-developed. In
this paper we investigate the problem of verifying ASM-programs automatically.

In its full generality, automatic verification of programs (not necessarily in
ASM-syntax) is the following decision problem. Given a program Π and a cor-
rectness property ϕ (expressed in some appropriate specification formalism),

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 431–442, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

432 M. Spielmann

decide whether for every input I the computation of Π on I satisfies ϕ. Ob-
viously, decidability of this problem crucially depends on the expressiveness of
the programming language and the specification formalism one has in mind.

Here, we present a class of restricted ASM-programs and a specification for-
malism resembling the branching-time logic CTL∗ [CES86,Eme90] for which the
above decision problem is decidable, i.e., which can be verified automatically.
We call our programs nullary programs because the main restriction we impose
on ASM-programs is that every dynamic function must have arity 0. (Roughly
speaking, a nullary dynamic function v is nothing but a program variable in the
usual sense. During a computation step the value of v, i.e., the interpretation of
the function symbol v, may change. This corresponds to assigning a new value to
the ‘program variable’ v.) As a possible field of application for nullary programs
we suggest the high-level ASM-descriptions that naturally occur when designing
a complex dynamic system via the ASM-method. The decision algorithm we
provide can then be used to verify such high-level ASM-descriptions.

Aside from possible applications we think that the technique underlying our
decision algorithm is also of independent interest, as in some sense our algorithm
performs symbolic model checking of software. By software we here mean pro-
grams that get a priori unbounded input and whose computations depend on a
‘non-trivial’ part of the input. Nullary programs are software in this sense. For
example, one can write a nullary program ΠR that solves the reachability pro-
blem for all finite graphs. Given an arbitrary finite graph with two distinguished
nodes source and target as input, ΠR decides whether target is reachable from
source (see Example 3 in Section 3). ΠR also indicates that nullary programs go
beyond the scope of finite state systems. One can hardly imagine a finite state
system which ‘faithfully’ represents all computations of a reachability algorithm
on all possible input graphs.

To make our verification technique more precise let us reconsider model
checking. Can we use model checking for automatic verification of programs
(again, not necessarily in ASM-syntax)? That is, is it possible to model-check
whether a given program Π satisfies a given correctness property ϕ for all possi-
ble inputs? The answer is yes if there are only finitely many inputs to be checked
and the space (or time) complexity of Π is bounded by some function in the
size of the input. For instance, repeat the following steps for each input I. First
run Π on I and this way obtain the computation graph of Π on I, i.e., the
graph whose nodes are the reachable configurations of Π on I and whose edges
represent transitions from one configuration to a successor configuration. This
graph is clearly finite and can be viewed as a Kripke structure whose labels are
complete descriptions of configurations of Π. Using standard techniques one can
(model-) check whether Π satisfies ϕ on I. Since there are only finitely many
inputs we can indeed decide whether Π satisfies ϕ on every input. From the
theoretical point of view there is no principle difference between finite states
systems and resource-bounded programs running on a finite number of inputs.

‘Real’ programs, however, are supposed to be correct for infinitely many
inputs, e.g., for all finite graphs. In this case a naive application of model checking

Automatic Verification of Abstract State Machines 433

fails simply because one cannot construct for all inputs the corresponding com-
putation graphs. The main idea in this paper is to avoid an explicit construction
of the computation graphs by translating a given program Π into a logical for-
mula which can be seen as a symbolic representation of all computation graphs of
Π (independent of a particular input). Combining this formula with the correc-
tness property ϕ to be checked, one can reduce the problem of (model-) checking
whether Π satisfies ϕ on all inputs to the problem of deciding finite validity of
a logical formula.

We demonstrate the new technique for nullary programs and correctness
properties definable in a specification logic called CGL∗ – a straightforward ad-
aption of CTL∗ for reasoning about computation graphs. It turns out that the
one-step semantics of a given nullary program Π can be expressed in terms of
an existential first-order formula. Employing a translation of CTL∗ into transi-
tive closure logic (FO+TC) by Immerman and Vardi [IV97], one can combine
this existential formula with an arbitrary CGL∗-formula ϕ so that the resulting
(FO+TC)-formula is finitely valid iff all computation graphs of Π satisfy ϕ. The
latter means that Π satisfies ϕ on all inputs. We then observe that finite va-
lidity (resp. finite satisfiability) of the obtained (FO+TC)-formula is decidable
in Pspace if Π takes relational input and ϕ is an existential (resp. universal)
CGL∗-formula. Hence, in order to decide whether Π satisfies ϕ on all inputs
our algorithm first turns the instance (Π,ϕ) of the verification problem into a
(FO+TC)-formula and then decides finite validity of this formula.

After showing this positive result about nullary programs with relational
input we prove that for nullary programs with functions in their input most basic
verification problems (like reachability of a safe state and being constantly in safe
states) become undecidable. This even holds for very simple nullary programs.
Also, the situation does not change when we restrict attention to relational
input and instead increase the computational power of nullary programs (e.g.,
by allowing first-order quantifiers in guards or dynamic functions of arity > 0).

2 Preliminaries

A vocabulary is a set Υ of relation and function symbols each associated with an
arity. Nullary function symbols are usually referred to as constant symbols. All
vocabularies we consider here are finite and contain at least the two constant
symbols 0 and 1 (which we usually do not include explicitly). A Υ -structure A
consists of a set A, called the universe of A, an interpretation RA ⊆ Ak for each
k-ary relation symbol R ∈ Υ , and an interpretation fA : Ak → A for each k-ary
function symbol f ∈ Υ . We will always assume that 0A 6= 1A. Fin(Υ) denotes
the set of all finite Υ -structures.

A k-ary query on Fin(Υ) is a mapping Q that assigns to every A ∈ Fin(Υ)
a k-ary relation QA ⊆ Ak such that the following holds: every isomorphism
between A and B, A,B ∈ Fin(Υ), is also an isomorphism between (A,QA) and
(B,QB). In the special case k = 0 we call Q a boolean query and view Q as a
subset of Fin(Υ) closed under isomorphism. As an example, recall that every

434 M. Spielmann

first-order formula ϕ(x1, . . . , xk) over Υ (where all free variables of ϕ occur
among x1, . . . , xk) defines a k-ary query on Fin(Υ) mapping A ∈ Fin(Υ) to
ϕA := {(a1, . . . , ak) ∈ Ak : A |= ϕ[a1, . . . , ak]}.

Transitive closure logic, (FO+TC), is the closure of first-order logic under
the transitive closure operator TC. More formally, (FO+TC)(Υ) is the set of all
Υ -formulas derivable from the usual formula-formation rules of first-order logic
(with equality) and the following rule.

(TC) If ϕ is a formula, x̄ and x̄′ are two k-tuples of variables, and t̄ and t̄′ are
two k-tuples of terms, then [TCx̄,x̄′ ϕ](t̄, t̄′) is a formula.

The meaning of [TCx̄,x̄′ ϕ](t̄, t̄′) is as follows. Regard [TCx̄,x̄′ ϕ] as a new 2k-ary
relation symbol whose interpretation is the transitive, reflexive closure of the
image of the 2k-ary query defined by ϕ(x̄, x̄′). If, e.g., ϕ(x, y) := Exy ∨ Eyx
and G = (V,E) is a directed graph with two distinguished nodes s and t, then
(G, s, t) |= [TCx,y ϕ](s, t) iff there is an undirected path in G connecting s and
t. For a formal definition of the semantics of (FO+TC) see, e.g., [EF95].

The existential fragment of (FO+TC), (E+TC), is the set of all (FO+TC)-
formulas without occurrence of a universal quantifier and where all negated
subformulas are quantifier-free.

Deciding finite validity and finite satisfiability of (E+TC)-formulas over a
fixed vocabulary will be of particular interest for us. For every vocabulary Υ ,
finvalΥ (E+TC) (resp. finsatΥ (E+TC)) is the following decision problem. Gi-
ven a sentence ϕ ∈(E+TC)(Υ), decide whether A |= ϕ for every A ∈ Fin(Υ)
(resp. for some A ∈ Fin(Υ)).

Theorem 1. Let Υ be a vocabulary that contains relation and constant symbols
only. Then both finvalΥ (E+TC) and finsatΥ (E+TC) are Pspace-complete.

3 Nullary Programs

In this section we introduce nullary programs. Basically, a nullary program is
a nondeterministic basic ASM-program (in the sense of [Gur97]) where every
dynamic function (i.e., a function that can be redefined during a computation)
is nullary. We show that nullary programs have the same expressive power as the
logic (E+TC). An immediate consequence is that on ordered input structures
they compute exactly all NLogspace computable functions.

Let Υ be a finite vocabulary. A program vocabulary that extends Υ , denoted
ΥP, is obtained from Υ by adding some new constant symbols v1, . . . , vk to Υ .
Nullary programs over ΥP (which we will define below) take finite Υ -structures as
input; we frequently refer to Υ as the input vocabulary. Each vi will play the role
of a program variable. The value, i.e., the interpretation, of vi may change during
a computation step of a nullary program. We call vi a dynamic (abbreviating
the official ASM-term “nullary dynamic function symbol”).

Definition 2. Let ΥP = Υ ∪̇ {v1, . . . , vk} be a program vocabulary. Nullary
programs over ΥP are defined inductively:

Automatic Verification of Abstract State Machines 435

1. Update: For every dynamic vi and every ΥP-term t the assignment vi := t
is a nullary program.

2. Conditional: If ϕ is a quantifier-free ΥP-formula and Π a nullary program,
then (if ϕ then Π) is a nullary program (with guard ϕ).

3. Parallel execution: If Π0 and Π1 are nullary programs, then Π0||Π1 is a
nullary program. (For readability, Π0||Π1 is sometimes written as Π0

Π1
).

4. Choice: Let z̄ be a tuple of variables, ϕ a quantifier-free ΥP-formula, and
Π a nullary program. If ∃z̄ϕ is finitely valid, i.e., if it holds in all finite ΥP-
structures for all interpretations of the free variables of ∃z̄ϕ, then (choose z̄ :
ϕ Π) is a nullary program (with guard ϕ).

(Intuitively, the semantics of (choose z̄ : ϕ Π) is as follows. Choose nondeter-
ministically values for the variables in z̄ so that the guard ϕ is satisfied. Finite
validity of ∃z̄ϕ guarantees the existence of such values. The actual program to
be executed is then obtained from Π by replacing every occurrence of zi in Π
with the value chosen for zi. Note that in many cases ϕ := true suffices as guard.
However, if for your favorite guard ϕ, ∃z̄ϕ is not finitely valid, you can often
replace ϕ with ϕ′ := ϕ ∨ z̄ = 0̄ and sort out ‘invalid’ choices of 0̄ inside Π.)

A nullary program is deterministic if it is derivable from the above rules
without using the choice rule. ut

The free and bound variables of a nullary program are defined in the obvious
way. For instance, in the nullary program (choose z̄ : ϕ Π) each variable in
z̄ occurs bounded. We can restrict attention to nullary programs without free
variables if we substitute every free variable by a new constant symbol. For
simplicity we will do so from now on.

The semantics of ASM-programs is usually given by means of update sets
[Gur97,Gur95]. We define the semantics of nullary programs in a different way,
which will be more convenient for our purposes. Nevertheless, our semantics
coincide with the standard semantics.

Semantics of Nullary Programs. Consider a nullary program Π over ΥP,
ΥP = Υ ∪̇ {v1, . . . , vk}. Π takes finite Υ -structures as input. A state of Π on
an input A ∈ Fin(Υ) is a finite ΥP-structure (A, a1, . . . , ak), where a1, . . . , ak

are the interpretations (or values) of the dynamics v1, . . . , vk, respectively. The
initial state of Π on A is (A, 0, . . . , 0). As with a Turing machine program, the
‘program text’ Π is viewed as a description of how to modify the current state
of Π in order to obtain a possible successor state. Formally, Π induces a 2k-ary
relation ΠA ⊆ Ak × Ak so that (ā, ā′) ∈ ΠA means that if Π is currently in
state (A, ā) then in the next step it may change to state (A, ā′).

To the definition of ΠA. By induction on the construction of Π, we define
an existential Υ -formula ϕΠ(x̄, x̄′), all of whose free variables occur among x̄ =
x1, . . . , xk and x̄′ = x′

1, . . . , x
′
k. For a better understanding assume that the

interpretation of xi (resp. x′
i) equals the current value of vi (resp. the value

of vi in a successor state). We write [v̄/x̄] to denote the substitution of every
occurrence of vi by xi.

436 M. Spielmann

If Π = vi := t let ϕΠ := x′
i = t[v̄/x̄].

If Π = if ϕ then Π0 let ϕΠ := ϕ[v̄/x̄] → ϕΠ0 .
If Π = Π0||Π1 let ϕΠ := ϕΠ0 ∧ ϕΠ1 .
If Π = choose z̄ : ϕ Π0 let ϕΠ := ∃z̄(ϕ[v̄/x̄] ∧ ϕΠ0).

Consider two states (A, ā) and (A, ā′) of Π. Intuitively, A |= ϕΠ [ā, ā′] means
that, if Π is currently in state (A, ā) and (vi := t) is an update in Π (possibly
occurring in the scope of guards all of which are satisfied in (A, ā)), then a′

i =
t(A,ā) is the new value of vi in successor state (A, ā′). ϕΠ describes all those
updates which must be performed in the next step.

ϕΠ is not yet the desired definition of ΠA. This is because ϕΠ does not
say that dynamics not effected by any update must not change – which is the
intended meaning of Π. (Suppose, e.g., that vi does not occur in Π. Then A |=
ϕΠ [ā, ā′] may hold even when ai 6= a′

i.) We fix this as follows. For every Γ ⊆
{x′

1 = x1, . . . , x
′
k = xk} let ϕΠ,Γ (x̄, x̄′) := ϕΠ ∧ ∧Γ (where, by convention,∧

∅ ≡ true). Call Γ maximal w.r.t. to state (A, ā) if A |= ∃x̄′ϕΠ,Γ [ā, x̄′] and
there is no Γ ∗, Γ (Γ ∗, such that A |= ∃x̄′ϕΠ,Γ ∗ [ā, x̄′]. Finally, let (ā, ā′) ∈ ΠA

iff either

– there exists a Γ maximal w.r.t. (A, ā) such that A |= ϕΠ,Γ [ā, ā′], or
– ā = ā′ and A 6|= ∃x̄′ϕΠ [ā, x̄′].

In the latter case we say that Π is inconsistent in state (A, ā). If (ā, ā′) ∈ ΠA

then (A, ā′) is called a successor state of (A, ā). Notice that every state has at
least one successor state. If Π is deterministic then every state has a unique
successor state.

A run of Π on A is an infinite sequence of states such that the first state in
the sequence is the initial state of Π on A and the (i+ 1)th state is a successor
of the ith state. Every run of Π on A can be embedded in the computation graph
of Π on A, denoted CΠ(A), which is the finite graph (S,R, s0) consisting of

– state set S := {(A, ā) : ā ∈ Ak},
– reachability relation R := {((A, ā), (A, ā′)) : (ā, ā′) ∈ ΠA}, and
– initial state s0 := (A, 0̄).

Assume that ΥP contains the distinguished dynamic accept . We say that Π
accepts A if in CΠ(A) there exists a path from s0 to a state where the value of
the dynamic accept is 1. Π computes a boolean query Q ⊆ Fin(Υ) if for every
A ∈ Fin(Υ), Π accepts A iff A ∈ Q.

Example 3. Consider the following decision problem known as reachability.
Given a finite directed graph G = (V,E) and two nodes s and t in G, decide
whether there exists a path from source s to target t in G. reachability can
be seen as a boolean query on finite structures of the from (G, s, t). We present
a nullary program ΠR that computes this boolean query.

The input vocabulary of ΠR is Υ := {E, s, t}, where E denotes the binary
edge relation of the input graph and s and t the source and the target, res-
pectively. (Recall that by our general assumption we also have 0, 1 ∈ Υ .) ΠR

Automatic Verification of Abstract State Machines 437

as defined below is a nullary program over the program vocabulary ΥP :=
Υ ∪̇ {mode, pebble, accept}; it employs the three dynamics mode, pebble, and
accept . (For readability we use a slightly relaxed syntax and omit parentheses.)

ΠR := if mode = 0 then
pebble := s
mode := 1

if mode = 1 then
if pebble 6= t then

choose z : true
if E(pebble, z) then pebble := z

else
accept := 1

On an input A = (G, s, t), the states of ΠR are ΥP-structures of the form
(A, am, ap, aa), where am, ap, and aa are the values of mode, pebble, and accept ,
respectively. Initially, ΠR is in state (A, 0, 0, 0). In the first step, ΠR moves to
state (A, 1, s, 0). Then, as long as the value of pebble does not equal t, ΠR choo-
ses a node a in G, checks whether (pebble, a) is an edge in G, and updates pebble
with a if so; otherwise it performs no update. If pebble is ever updated with t,
ΠR accepts by updating accept with 1. In this case ΠR becomes idle; it repeats
the accepting state infinitely often. ut

Lemma 4. For every nullary program Π over ΥP, ΥP = Υ ∪̇ {v1, . . . , vk}, there
is an existential first-order formula χΠ(x̄, x̄′) over Υ with 2k free variables x̄, x̄′

such that for every A ∈ Fin(Υ) and all ā, ā′ ∈ Ak, A |= χΠ [ā, ā′] iff (ā, ā′) ∈ ΠA.
χΠ can be obtained from Π in time polynomial in the size of Π.

One can view χΠ in the previous lemma as a symbolic representation of the
reachability relations of all possible computation graphs of Π (independent of a
specific input). In fact, for every input A, there exists a path from s0 to (A, ā)
in CΠ(A) iff A |= [TCx̄,x̄′ χΠ(x̄, x̄′)][0̄, ā].

Theorem 5. A boolean query Q is computable by a nullary program iff Q is
definable in the logic (E+TC).

Proof. (Sketch.) Suppose Π computes Q. Let χΠ(x̄, x̄′) be obtained from Π ac-
cording to Lemma 4, where xi (resp. x′

i) represent the value of accept . Then
∃x̄′([TCx̄,x̄′ χΠ(x̄, x̄′)](0̄, x̄′) ∧ x′

i = 1) defines Q. For the other direction as-
sume that the sentence ϕ ∈ (E+TC)(Υ) defines Q. There exists a quantifier-free
formula ψ(x̄, x̄′) such that ϕ is equivalent to [TCx̄,x̄′ ψ(x̄, x̄′)](0̄, 1̄) (see, e.g.,
[GM96]). Redefine ΠR in Example 3 by replacing pebble, z, s, t, and E(pebble, z)
with p̄, z̄, 0̄, 1̄, and ψ(p̄, z̄), respectively, where p̄ is now a sequence of dynamics.
The obtained program is a nullary program over Υ ∪̇ {mode, p̄, accept} and com-
putes Q. ut

Immerman [Imm87] showed that on ordered structures a boolean query Q
is NLogspace computable iff Q is definable in (E+TC). This gives us the first
part of the next corollary. The second part follows from a result in [GS99].

438 M. Spielmann

Corollary 6. Let Q be a boolean query on ordered structures. (1) Q is compu-
table by a nullary program iff Q is NLogspace computable. (2) Q is computable
by a deterministic nullary program iff Q is Logspace computable.

4 Verifying Nullary Programs

Verification of nullary programs only makes sense in the context of a specification
formalism suitable to express correctness properties of nullary programs. Since
all runs of a nullary program Π on an input A are embedded in CΠ(A) it is
reasonable to express correctness properties of nullary programs as properties of
their computation graphs. Below we present a straightforward adaption of the
branching-time logic CTL∗ [CES86,Eme90] to the computation graph setting.
The new logic is called CGL∗ (computation graph logic ‘star’), alluding to CTL∗.

Definition 7. Let ΥP be a program vocabulary. State formulas over ΥP and
path formulas over ΥP are defined by simultaneous induction:

(S1) Every sentence in (E+TC)(ΥP) is a state formula.
(S2) If α is a path formula, then Eα is a state formula.
(P1) Every state formula is also a path formula.
(P2) If α and β are path formulas, then so are α ∨ β, α ∧ β, and ¬α.
(P3) If α and β are path formulas, then so are Xα, αUβ, and αBβ.

An existential state formula is a state formula which can derived from the above
rules without using in rule (P2) the clause to form negated formulas.

CGL∗(ΥP) (resp. ECGL∗(ΥP)) is the set of all state formulas (resp. existential
state formula) over ΥP. ut

The intuitive meaning of the existential path quantifier E and the temporal
operators X and U is as in CTL∗. αBβ stands for “α holds before β fails” [IV97].
A formal definition of the semantics of CGL∗ follows. Let C = (S,R, s0) be the
computation graph of some nullary program over ΥP. A run in C is a mapping
ρ from the natural numbers to S such that (ρ(i), ρ(i+ 1)) ∈ R for all i. Let ρ|i
denote the run ρ′ defined by ρ′(j) := ρ(i+ j). Consider a state formula ϕ and a
path formula α, both over ΥP. Similar to CTL∗ one defines (C,A) |= ϕ for every
state A ∈ S and (C, ρ) |= α for every run ρ in C by simultaneous induction on
the construction of ϕ and α. The only new cases are

(S1) (C,A) |= ϕ :⇔ A |= ϕ
(P3) (C, ρ) |= αBβ :⇔ ∀i((C, ρ|i) |= ¬β ⇒ ∃j(j < i ∧ (C, ρ|j) |= α)).

For every ϕ ∈ CGL∗(ΥP) let C |= ϕ iff (C, s0) |= ϕ.
To give an example of a meaningful CGL∗-formula, let us express correctness

of the nullary program ΠR in Example 3 in terms of CGL∗. More precisely,
we will display a state formula ϕR over the program vocabulary of ΠR, such
that ΠR is correct (i.e., ΠR computes the boolean query reachability) iff
CΠR(A) |= ϕR for every input A. The following definition of ϕR is justified by
two observations: (1) ΠR is correct iff for every input A, A ∈ reachability iff

Automatic Verification of Abstract State Machines 439

CΠR(A) |= EF(accept = 1) (where Fβ := trueUβ). (2) A ∈ reachability iff
A |= [TCx,x′ E(x, x′)](s, t) iff CΠR(A) |= E([TCx,x′ E(x, x′)](s, t)).

ϕR := E([TCx,x′ E(x, x′)](s, t)) ↔ EF(accept = 1).

Hence, one can prove correctness of ΠR by verifying CΠR(A) |= ϕR for every
input A.

Verifying Nullary Programs w.r.t. CGL∗-Properties. Let L be a sublogic
of CGL∗. Verifying nullary programs w.r.t. Lmeans solving the decision problem:

verify(L): Given a nullary program Π and a state formula ϕ ∈ L, both over
the same program vocabulary ΥP (that extends some input vocabulary Υ),
does CΠ(A) |= ϕ hold for every A ∈ Fin(Υ)?

Let verifyΥ (L) denote the corresponding problem where the input vocabulary
Υ is a priori fixed (the program vocabulary ΥP, however, may still vary).

The complexity of the latter problem is more significant for applications than
that of verify(L). For instance, assume that in order to solve a computational
problem a nullary program Π was put forward which happens not to satisfy
some correctness property ϕ ∈ L. In that case, one usually has to rewrite Π
(and possibly modify some correctness properties), rather than changing the
computational problem itself (and thus the input vocabulary Υ).

Notice that deciding verifyΥ (CGL∗) subsumes symbolic model checking
of CTL∗-properties. Every Kripke structure K (given symbolically in terms of
boolean formulas) and every CTL∗-formula p (appropriate for K) can easily be
turned into a nullary program ΠK and a CGL∗-formula ϕp such that K |= p iff
(ΠK, ϕp) ∈ verify{0,1}(CGL∗).

Recall that ECGL∗ denotes the existential fragment of CGL∗ and let ACGL∗

be the set of all negated ECGL∗-formulas. Our main positive result is:

Theorem 8. Let Υ be a vocabulary that contains relation and constant symbols
only. Then both verifyΥ (ECGL∗) and verifyΥ (ACGL∗) are Pspace-complete.
In other words, given a nullary program Π and a correctness property ϕ ∈
ECGL∗, both over the same program vocabulary that extends the fixed Υ , deciding
whether Π satisfies ϕ (or ¬ϕ) for all inputs is a Pspace-complete problem.

The restriction to relational input vocabularies in the theorem is essential.
In the next section we will see that neither of the two verification problems is
decidable if the input vocabulary contains a unary function symbol.

Proof. (Sketch.) Pspace-hardness of both problems is shown via a reduction
from the satisfiability problem for quantified boolean formulas. To prove contain-
ment we reduce verifyΥ (ECGL∗) to finvalΥ (E+TC) and verifyΥ (ACGL∗)
to finsatΥ (E+TC). The assertion is then implied by Theorem 1. Most of the
reduction work has already been done by Immerman and Vardi ([IV97], Theo-
rem 9) who defined a translation of CTL∗ into (FO+TC). If we replace in this
translation R(y, y′) (the reachability relation of a given Kripke structure) with

440 M. Spielmann

χΠ(ȳ, ȳ′) (the ‘reachability relation’ induced by Π according to Lemma 4) and
replace every variable y (representing a state of the Kripke structure) with a
tuple ȳ of variables (representing the dynamic part of a state of Π), then we
immediately obtain:

Fact 9 ([IV97]). For every nullary program Π and every ϕ ∈ ECGL∗, both
over same program vocabulary ΥP, ΥP = Υ ∪̇ {v1, . . . , vk}, there exists a formula
χΠ,ϕ(ȳ) ∈ (E+TC)(Υ) such that for every A ∈ Fin(Υ) and all ā ∈ Ak, A |=
χΠ,ϕ[ā] iff (CΠ(A), (A, ā)) |= ϕ.

It follows that (Π,ϕ) ∈ verifyΥ (ECGL∗) iff χΠ,ϕ(0̄) ∈ finvalΥ (E+TC)
and that (Π,ϕ) 6∈ verifyΥ (ACGL∗) iff χΠ,¬ϕ(0̄) ∈ finsatΥ (E+TC). One can
modify the translation by Immerman and Vardi (by introducing new variables)
so that it becomes polynomial-time computable. ut

The space complexity of verifyΥ (ECGL∗) and verifyΥ (ACGL∗) grows ex-
ponentially in the sum of the arities of relation symbols in Υ . In particular,
verify(ECGL∗) and verify(ACGL∗) are in EXPspace for (non-fixed) relatio-
nal input vocabularies with constants. As already pointed out, this complexity
bound is more of theoretical interest since for most applications the number of
input relations as well as their arities will be fixed.

Although ECGL∗ and ACGL∗ are only small fragments of CGL∗, they still
suffice to express many useful correctness properties. For example, for every
linear-time formula α (i.e, a path-formula without path-quantifiers) we have
Eα ∈ ECGL∗ and Aα ∈ ACGL∗. Especially common fairness properties like
“impartiality”, “weak fairness”, and “strong fairness” can be expressed in these
fragments (see, e.g., [EL87] and references there). Observe though that the for-
mula ϕR expressing correctness of ΠR in Example 3 is neither in ECGL∗ nor
in ACGL∗. Nevertheless, there are formulas definable in ACGL∗ which imply
partial correctness of ΠR.

5 On Input with Functions

A minimal requirement on any automatic verifier for nullary programs is that,
when given a nullary program Π, it should be able to decide whether Π reaches
only ‘safe’ states on every input, or, equally desirable, whether Π can reach a
‘safe’ state on every input. Here, safety for a state could mean that a designated
dynamic in Π does or does not assume a particular value. This motivates the
definition of two simple verification problems which any automatic verifier for
nullary programs should be able to solve:

always safe: Given a nullary programΠ and a dynamic v inΠ, does CΠ(A) |=
AG(v = 0) hold for every input A?

sometimes safe: Given a nullary program Π and a dynamic v in Π, does
CΠ(A) |= EF(v 6= 0) hold for every input A?

Automatic Verification of Abstract State Machines 441

The next theorem states our main negative result. We call a dynamic v in a
nullary program Π boolean if every update of v in Π has either the form v := 0
or v := 1.

Theorem 10. For nullary programs whose input vocabulary contains two non-
nullary symbols, one of which is a function symbol, always safe and someti-
mes safe are undecidable. always safe is already undecidable for deterministic
such programs with two non-boolean dynamics.

Proof. (Sketch.) Consider a sentence ϕ ∈ (E+TC)(Υ) and let Qϕ denote the
boolean query defined by ϕ. By Theorem 5 there exists a nullary program Πϕ

computing Qϕ. Obviously, ϕ is finitely valid iff Qϕ = Fin(Υ) iff Πϕ accepts
every A ∈ Fin(Υ) iff (Πϕ, accept) ∈ sometimes safe. This establishes a re-
duction of finvalΥ (E+TC) to sometimes safe. A similar argument reduces
finsatΥ (E+TC) to always safe. The first assertion is now implied by:

Lemma 11. If Υ contains two non-nullary symbols, one of which is a function
symbol, then both finsatΥ (E+TC) and finvalΥ (E+TC) are undecidable.

The proof of Lemma 11 is by reduction of two undecidable problems for de-
terministic finite automata with two input heads (namely the emptiness problem
and its dual – the totality problem) to finsatΥ (E+TC) and finvalΥ (E+TC),
respectively. A straightforward adaption of the first reduction yields the second
assertion of the theorem. ut

Theorem 10 essentially says that nullary programs which assume (arbitrarily
defined) functions in their input cannot be verified algorithmically. But what
if we stick to relational input and increase the computational power of nullary
programs? Following the general ASM-framework we may allow first-order quan-
tifiers in guards or dynamic functions of arity > 0. (A unary dynamic function
f , e.g., can occur in an update of the form f(t) := s, meaning that in the next
state the value of f at argument t will be updated to s.) The proof of the next
corollary is similar to that of the second assertion of Theorem 10.

Corollary 12. If the definition of nullary programs is relaxed in one of the
following two ways and the input vocabulary contains a relation symbol of arity
≥ 2, then always safe is undecidable. (1) Allow a single first-order quantifier
to occur in one guard. (2) Allow the usage of one unary dynamic function.

6 Conclusions and Future Work

We have introduced nullary programs – a class of restricted abstract state ma-
chine programs – and investigated the problem of verifying them automatically.
On the one hand, automatic verification of nullary programs with relational
input (against CTL∗-like correctness properties) is Pspace-complete. On the
other hand, most basic verification problems become undecidable when we ad-
mit arbitrarily defined functions in the input or increase the computational power

442 M. Spielmann

of nullary programs in a straightforward manner. Altogether this might suggest
that with nullary programs we are approaching the limit of automatic verifiabi-
lity of ASM-programs.

There are several directions for future work. (1) The decision procedures
underlying Theorem 1 form the core of our verification algorithm. Both proce-
dures perform a semi-naive exhaustive search and hence are not efficient. The
question is whether they can be improved so that we obtain a reasonable per-
formance in realistic settings. (2) Identify other fragments L of CGL∗ for which
verify(L) is decidable. To this end investigate finite validity and finite satisfia-
bility of formulas obtained by Fact 9 when ϕ varies in L. (3) Extend CGL∗ with
counting constructs. Notice that properties like “ϕ holds in all even moments”
are expressible in (E+TC).

Acknowledgements. I am grateful to Erich Grädel for bringing the subject
of model checking ASMs to my attention and to Eric Rosen for many fruitful
discussions and valuable suggestions.

References

[BH98] E. Börger and J. Huggins. Abstract State Machines 1988–1998: Commented
ASM Bibliography. Bulletin of the EATCS, 64:105–127, February 1998.

[Bör95] E. Börger. Why Use Evolving Algebras for Hardware and Software Enginee-
ring? In Proceedings of SOFSEM ‘95, volume 1012 of LNCS, pages 236–271.
Springer Verlag, 1995.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of
Finite State Concurrent Systems Using Temporal Logic. ACM Trans. on
Prog. Lang. and Sys., 8(2):244–263, April 1986.

[EF95] H. D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.
[EL87] E.A. Emerson and C.L. Lei. Modalities for model checking: branching time

logic strikes back. Science of Computer Programming, 8:275–306, 1987.
[Eme90] E.A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Hand-

book of Theoretical Computer Science, volume B, pages 995–11072. Elsevier
Science Publishers B.V., 1990.

[GM96] E. Grädel and G. McColm. Hierarchies in Transitive Closure Logic, Stratified
Datalog and Infinitary Logic. Annals of Pure and Applied Logic, 77:166–199,
1996.

[GS99] E. Grädel and M. Spielmann. Logspace Reducibility via Abstract State
Machines. Submitted for publication, 1999.

[Gur95] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University Press,
1995.

[Gur97] Y. Gurevich. May 1997 Draft of the ASM Guide. Technical Report CSE-
TR-336-97, University of Michigan, May 1997.

[Imm87] N. Immerman. Languages that capture complexity classes. SIAM Journal
of Computing, 16:760–778, 1987.

[IV97] N. Immerman and M.Y. Vardi. Model Checking and Transitive Closure
Logic. In Proceedings of CAV ‘97, volume 1254 of LNCS, pages 291–302.
Springer-Verlag, 1997.

	Introduction
	Preliminaries
	Nullary Programs
	Verifying Nullary Programs
	On Input with Functions
	Conclusions and Future Work

