
Improved Automata Generation for
Linear Temporal Logic?

Marco Daniele1,2, Fausto Giunchiglia3,2, and Moshe Y. Vardi4

1 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”, 00198 Roma, Italy

2 Istituto Trentino di Cultura
Istituto per la Ricerca Scientifica e Tecnologica

38050 Povo, Trento, Italy
3 Dipartimento di Informatica e Studi Aziendali

Università di Trento, 38100 Trento, Italy
4 Department of Computer Science

Rice University, Houston TX 77251, USA

Abstract. We improve the state-of-the-art algorithm for obtaining an
automaton from a linear temporal logic formula. The automaton is inten-
ded to be used for model checking, as well as for satisfiability checking.
Therefore, the algorithm is mainly concerned with keeping the automa-
ton as small as possible. The experimental results show that our algo-
rithm outperforms the previous one, with respect to both the size of the
generated automata and computation time. The testing is performed
following a newly developed methodology based on the use of randomly
generated formulas.

1 Introduction

This paper focuses on the explicit-state automata-based approach to model
checking of linear temporal logic specifications [VW86,VW94,Hol97]. In this ap-
proach, both the system and the negation of the specifications are turned into au-
tomata on infinite words [Tho90]. The former automaton recognizes the system
execution sequences, while the latter one comprises all the execution sequen-
ces (models) violating the specifications. Verification amounts then to checking
whether the language recognized by the synchronous product of the above au-
tomata is empty. Similarly, satisfiability checking amounts to checking that the
language recognized by the automaton built for the formula to be checked is non-
empty. Satisfiability also plays an important role in model checking, for avoiding
model checking unsatisfiable or valid specifications.

The automaton for the specifications can have as many as 2O(n) states, where
n is the number of subformulas of the specifications [VW94]. Therefore, the size
? Supported in part by NSF grants CCR-9628400 and CCR-9700061, and by a grant

from the Intel Corporation. Part of this work was done while the first author was a
visiting student and the third author was a Varon Visiting Professor at the Weizmann
Institute of Science.

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 249–260, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

250 M. Daniele, F. Giunchiglia, and M.Y. Vardi

of the product automaton, which determines the overall complexity of the me-
thod, is proportional to N · 2O(n), where N is the number of reachable system
states. For these reasons, it is clearly desirable to keep the specification automa-
ton as small as possible, and to work on-the-fly, that is, to detect that a system
violates its specifications by constructing and visiting only some part of the se-
arch space containing the bug. Note that even though in practice the assertions
being verified are typically expressed by short formulas, it is often impossible to
verify these properties without making some assumptions on the environment
of the system being verified. Thus, in practice, one typically model checks for-
mulas of the form φ → ψ, where the assertion ψ may be quite simple, but the
assumption φ may be rather complicated.

The state-of-the-art on-the-fly algorithms for turning specifications into au-
tomata and performing the emptiness check can be found in [CVWY91] and
[GPVW95]. Such algorithms define the kernel of the model checker SPIN [Hol97].
We refer to the algorithm described in [GPVW95] as GPVW. That paper also
discusses several possible improvements. We refer to the improved algorithm
as GPVW+. An alternative automata construction for temporal specifications
[KMMP93] starts with a two-state automaton that is repeatedly “refined” until
all models of the specifications are realized. Due to this refinement process, ho-
wever, this algorithm can not be used in an on-the-fly fashion. Another approach
could be turning the on-the-fly decision procedure presented in [Sch98] into a
procedure for automata construction. It is not clear, however, whether and how
this modification could be done, for that procedure is geared towards finding
and representing one model, but not all models.

In this paper we present, and describe experiments with, an algorithm for
building an automaton from a linear temporal logic formula. Our algorithm,
hereafter LTL2AUT, though being based on GPVW+, is geared towards building
smaller automata in less time. Our improvements are based on simple syntac-
tic techniques, carried out on-the-fly when states are processed, that allow us
to eliminate the need of storing some information. Experimental results demon-
strate that GPVW+ significantly outperforms GPVW and show that LTL2AUT
further outperforms GPVW+, with respect to both the size of the generated au-
tomata and computation time. The testing has been performed following a ne-
wly developed methodology, which, inspired by the methodologies proposed in
[MSL92] and [GS96] for propositional and modal K logics, is based on randomly
generated formulas.

The rest of the paper is structured as follows. Section 2 introduces linear
temporal logic and automata on infinite words. Section 3 presents the core un-
derlying GPVW, GPVW+, and LTL2AUT, and Section 4 shows how GPVW,
GPVW+, and LTL2AUT can be obtained by suitably instantiating such core.
The test is divided between Section 5, where our test method is discussed, and
Section 6, where a comparison of the three algorithms is given. Finally, we make
some concluding remarks in Section 7.

Improved Automata Generation for Linear Temporal Logic 251

2 Preliminaries

The set of Linear Temporal Logic formulas (LTL) is defined inductively starting
from a finite set P of propositions, the standard Boolean operators, and the
temporal operators X (“next time”) and U (“until”) as follows:

– each member of P is a formula,
– ¬µ1, µ1 ∨ µ2, µ1 ∧ µ2, Xµ1, and µ1 Uµ2 are formulas, if so are µ1 and µ2.

An LTL interpretation is a function ξ : N → 2P , i.e., an infinite word over
the alphabet 2P , which maps each instant of time into the propositions holding
at such instant. We write ξi for denoting the interpretation λt.ξ(t + i). LTL
semantics is then defined inductively as follows:

– ξ |= p iff p ∈ ξ(0), for p ∈ P,
– ξ |= ¬µ1 iff ξ 6|= µ1,
– ξ |= µ1 ∨ µ2 iff ξ |= µ1 or ξ |= µ2,
– ξ |= µ1 ∧ µ2 iff ξ |= µ1 and ξ |= µ2,
– ξ |= Xµ1 iff ξ1 |= µ1,
– ξ |= µ1 Uµ2 iff there exists i ≥ 0 such that ξi |= µ2 and, for all 0 ≤ j < i,
ξj |= µ1.

As usual, we have ¬¬µ=̇µ, T=̇p ∨ ¬p and F=̇¬T. Moreover, we define µ1Vµ2=̇
¬(¬µ1 U¬µ2). This latter operator allows each formula to be turned into negation
normal form, that is, it allows the pushing of the ¬ operator inwards until it
occurs only before propositions, without causing an exponential blow up in the
size of the translated formula. From now on, each formula is considered to be in
negation normal form.

A literal is either a proposition or its negation, an elementary formula is either
T, or F, or a literal, or an X-formula. A set of formulas is said to be elementary if
all its formulas are. A non-elementary formula µ can be decomposed, according
to the tableau rules of Figure 1, so that µ ↔ ∧

β1∈α1(µ) β1 ∨∧β2∈α2(µ) β2.

µ α1(µ) α2(µ)
µ1 ∧ µ2 {µ1, µ2} {F}
µ1 ∨ µ2 {µ1} {µ2}
µ1 Uµ2 {µ2} {µ1, X(µ1 Uµ2)}
µ1Vµ2 {µ2, µ1} {µ2, X(µ1Vµ2)}

Fig. 1. Tableau rules.

Finally, a cover of a set A of formulas is a, possibly empty, set of sets C =
{Ci : i ∈ I} such that

∧
µ∈A µ ↔ ∨

i∈I

∧
ηi∈Ci

ηi.

We represent formulas via labeled generalized Büchi automata. A generalized
Büchi automaton is a quadruple A = 〈Q, I, δ,F〉, where Q is a finite set of

252 M. Daniele, F. Giunchiglia, and M.Y. Vardi

states, I ⊆ Q is the set of initial states, δ : Q → 2Q is the transition function, and
F ⊆ 22Q is a, possibly empty, set of sets of accepting states F = {F1, F2, . . . , Fn}.
An execution of A is an infinite sequence ρ = q0q1q2 . . . such that q0 ∈ I and, for
each i ≥ 0, qi+1 ∈ δ(qi). ρ is accepting execution if, for each Fi ∈ F , there exists
qi ∈ Fi that appears infinitely often in ρ. A labeled generalized Büchi automaton
is a triple 〈A,D,L〉, where A is a generalized Büchi automaton, D is some finite
domain, and L : Q → 2D is the labeling function. A labeled generalized Büchi
automaton accepts a word ξ = x0x1x2 . . . from Dω iff there exists an accepting
execution ρ = q0q1q2 . . . of A such that xi ∈ L(qi), for each i ≥ 0.

3 The Core

LTL2AUT, GPVW+, and GPVW can be obtained by suitably instantiating the
core we are about to present. The instantiation affects some functions that, in
what follows, are highlighted through the small capital font. The central part
of the core is the computation of a cover of a set of formulas, which is used for
generating states. The propositional information will be used for defining the
labeling, while the X information will be used to define the transition function.

3.1 Cover Computation

The algorithm for computing covers is defined by extending the propositional
tableau in order to allow it to deal with temporal operators. The fundamental
rules used for decomposing temporal operators are the identity µUη ≡ η ∨ (µ ∧
X(µUη)) and its dual µVη ≡ η ∧ (µ ∨X(µVη)). The line numbers in the fol-
lowing description refer to the algorithm appearing in Figure 2. The algorithm
handles the following data structures:

ToCover The set of formulas to be covered but still not processed.
Current The element of the cover currently being computed.
Covered The formulas already processed and covered by Current.
Cover The cover so far computed.

When computing the current element of the cover, the algorithm first checks
whether all the formulas have been covered (line 4). If so, Current is ready to
be added to Cover (line 5). If a formula µ has still to be covered (line 6), the
algorithm checks whether µ has to be stored in the current element of the cover
(line 8) and, if so, adds it to Current (line 9). Processing µ can be avoided in
two cases: If there is a contradiction involving it (line 10) or it is redundant
(line 12). In the former case, Current is discarded (line 11), while in the latter
one µ is discarded (line 13). Finally, if µ does need to be covered, it is covered
according to its syntactic structure. If µ is elementary, it is covered simply by
itself (line 15). Otherwise, µ is covered by covering, according to the tableau
rules appearing in Figure 1, either α1(µ) (line 16) or α2(µ) (line 18). This is
justified by recalling that µ ↔ ∧

β1∈α1(µ) β1 ∨∧β2∈α2(µ) β2.

Improved Automata Generation for Linear Temporal Logic 253

1 function Cover(A)
2 return cover(A, ∅, ∅, ∅)

3 function cover(ToCover,Current,Covered,Cover)
4 if ToCover = ∅
5 then return Cover ∪ {Current}
6 else select µ from ToCover
7 remove µ from ToCover and add it to Covered
8 if has to be stored(µ)
9 then Current = Current ∪ {µ}
10 if contradiction(µ,ToCover,Current,Covered)
11 then return Cover
12 else if redundant(µ,ToCover,Current,Covered)
13 then return cover(ToCover,Current,Covered,Cover)
14 else if µ is elementary
15 then return cover(ToCover,Current ∪ {µ},Covered,Cover)
16 else return cover(ToCover ∪ (α1(µ) \ Current),
17 Current,Covered,
18 cover(ToCover ∪ (α2(µ) \ Current),
19 Current,Covered,Cover))

Fig. 2. Cover computation.

3.2 The Automaton Construction

Our goal is to build a labeled generalized Büchi automaton recognizing exactly all
the models of a linear time temporal logic formula ψ. The algorithm is presented
in two phases. First, we introduce the automaton structure, i.e., its states, which
are obtained as covers, initial states, and transition function. The line numbers
in the following description refer to this part of the algorithm, which appears in
Figure 3. Then, we complete such structure by defining labeling and acceptance
conditions.

The algorithm starts by computing the initial states as cover of {ψ} (line 2).
A set U of states whose transition function has still to be defined is kept. All
the initial states are clearly added to U (line 2). When defining the transition
function for the state s (line 4), we first compute its successors as cover of
{µ : Xµ ∈ s} (line 5). For each computed successor r, the algorithm checks
whether r has been previously generated as a state r′ (line 6). If so, it suffices
to add r′ to δ(s) (line 7). Otherwise, r is added to Q and δ(s) (lines 8 and 9).
Moreover, r is also added to U (line 10), for δ(r) to be eventually computed.

The domain D is 2P and the label of a state s consists of all subsets of 2P that
are compatible with the propositional information contained in s. More in detail,
let Pos(s) be s∩P and Neg(s) be {p ∈ P : ¬p ∈ s}. Then, L(s) = {X : X ⊆ P ∧
Pos(s) ⊆ X∧X∩Neg(s) = ∅}. Finally, we have to impose acceptance conditions.
Indeed, our construction allows some executions inducing interpretations that are
not models of ψ. This happens because it is possible to procrastinate forever the

254 M. Daniele, F. Giunchiglia, and M.Y. Vardi

1 procedure create automaton structure(ψ)
2 U = Q = I = Cover({ψ}), δ = ∅
3 while U 6= ∅
4 remove s from U
5 for r ∈ Cover({µ : Xµ ∈ s})
6 if ∃r′ ∈ Q such that r = r′

7 then δ(s) = δ(s) ∪ {r′}
8 else Q = Q∪ {r}
9 δ(s) = δ(s) ∪ {r}
10 U = U ∪ {r}

Fig. 3. The algorithm.

fulfilling of U -formulas, and arises because the formula µUη can be covered by
covering µ and by promising to fulfill it later by covering X(µUη). The problem
is solved by imposing generalized Büchi acceptance conditions. Informally, for
each subformula µUη of ψ, we define a set Fµ Uη ∈ F containing states s that
either do not promise it or immediately fulfill it. In this way, postponing forever
fulfilling a promised U-formula gives not rise to accepting executions anymore.
Formally, we set Fµ Uη=̇{s ∈ Cover : satisfy(s, µUη) → satisfy(s, η)} where,
again, satisfy is a function that will be subject to instantiation.

4 GPVW, GPVW+, and LTL2AUT

GPVW is obtained by instantiating the Boolean functions parameterizing the
previously described core in the following way. has to be stored(µ) returns
T. contradiction(µ,ToCover,Current,Covered) returns T iff µ is F or µ is
a literal such that ¬µ ∈ Current. redundant(µ,ToCover,Current,Covered)
returns F. satisfy(s, µ) returns T iff µ ∈ s.

For GPVW+ we have the following instantiations. has to be stored(µ)
returns T iff µ is a U-formula or µ is the righthand argument of a U-formula.
contradiction(µ, ToCover, Current, Covered) returns T iff µ is F or the
negation normal form of ¬µ is in Covered. redundant(µ, ToCover, Current,
Covered) returns T iff µ is η Uν and ν ∈ ToCover ∪ Current, or µ is ηVν and η,
ν ∈ ToCover ∪ Current. satisfy(s, µ) returns T iff µ ∈ s.

GPVW+ attempts to generate less states than GPVW by reducing the for-
mulas to store in Current and by detecting redundancies and contradictions as
soon as possible. Indeed, by reducing the formulas to store in Current, GPVW+
increases the possibility of finding matching states, while early detection of cont-
radictions and redundancies avoids producing the part of the automaton for de-
aling with them. However, GPVW+ still does not solve some basic problems.
First, states obtained by dealing with a U-formula contain either the U-formula
or its righthand argument. So, for example, states generated for the righthand
argument of µUη are equivalent to, but do not match, prior existing states ge-
nerated for η. Second, redundancy and contradiction checks are performed by

Improved Automata Generation for Linear Temporal Logic 255

explicitly looking for the source of redundancy or contradiction. So, for example,
a U-formula whose righthand argument is a conjunction is considered redundant
if such conjunction appears among the covered formulas, but it is not if, instead
of the conjunction, its conjuncts are present.

LTL2AUT overcomes the above problems in a very simple way: Only the
elementary formulas are stored in Current, while information about the non-
elementary ones is derived from the elementary ones and the ones stored in
ToCover using quick syntactic techniques. More in detail, we inductively define
the set SI(A) of the formulas syntactically implied by the set of formulas A as
follows

– T ∈ SI(A),
– µ ∈ SI(A), if µ ∈ A,
– µ ∈ SI(A), if µ is non-elementary and either α1(µ) ⊆ SI(A) or α2(µ) ⊆

SI(A).

LTL2AUT requires then the following settings. has to be stored(µ) returns
F. contradiction(µ, ToCover, Current, Covered) returns T iff the negation
normal form of ¬µ belongs to SI(ToCover∪Current). redundant(µ, ToCover,
Current, Covered) returns T iff µ ∈ SI(ToCover ∪ Current) and, if µ is η Uν,
ν ∈ SI(ToCover ∪ Current). satisfy(s, µ) returns T iff µ ∈ SI(s). The special
attention to the righthand arguments of U-formulas in the redundancy check is
for avoiding discarding information required to define the acceptance conditions.
The proof of correctness of LTL2AUT is described in [DGV99].

5 The Test Method

The existent bibliography on problem sets and testing-generating methods for
LTL and model checking is very poor. Indeed, papers usually come along with
testing their results over, in the best cases, few instances. The method we have
adopted is based on two analyses:

Average-behavior analysis: For a fixed number N of propositional variables
and for increasing values L of the length of the formulas, a problem set
PS〈F,N,L〉 of F random formulas is generated and given in input to the pro-
cedures to test. After the computation, a statistical analysis is performed and
the results are plotted against L. The process can be repeated for different
values of N .

Temporal-behavior analysis: For a fixed number N of propositional varia-
bles, a fixed length L of the formulas, and for increasing values P of the
probability of generating the temporal operators U and V, a problem set
PS〈F,N,L,P 〉 of F random formulas is generated and given in input to the
procedures to test. After the computation, a statistical analysis is perfor-
med and the results are plotted against P . The process can be repeated for
different values of N and L.

256 M. Daniele, F. Giunchiglia, and M.Y. Vardi

When generating random formulas from a formula space, for example defined
by the parameters N , L, and P , our target is to cover such space as uniformly as
possible. This requires that, when generating formulas of length L, we produce
formulas of length exactly L, and not up to L. Indeed, in the latter way, varying
L, we give preference to short formulas. Random formulas parameterized by
N , L, and P , are then generated as follows. A unit-length random formula is
generated by randomly choosing, according to uniform distribution, one variable.
From now on, unless otherwise specified, randomly chosen stands for randomly
chosen with uniform distribution. A random formula of length 2 is generated by
generating op(p), where op is randomly chosen in {¬, X} and p is a randomly
chosen variable. Otherwise, with probability P

2 of choosing either U or V and
probability 1−P

4 of choosing ¬, X, ∧, or ∨, the operator op is randomly chosen.
If op is unary, the random formula of length L is generated as op(µ), for some
random formula µ of length L− 1. Otherwise, if op is binary, for some randomly
chosen 1 ≤ S ≤ L−2, two random formulas µ1 and µ2 of length S and L−S−1
are produced, and the random formula op(µ1, µ2) of length L is generated. Since
the set of operators we use is {¬, X,∧,∨,U ,V}, random formulas for the average-
behavior analysis are generated by setting P = 1

3 . Note that parentheses are not
considered. Indeed, our definition generates a syntax tree that makes the priority
between the operators clear.

In both the above analyses, the parameters we are interested in are the size of
the automata, namely states and transitions, and the time required for their ge-
neration. When comparing two procedures Π1 and Π2 with respect to some pro-
blem set PS〈F,N,L,P 〉 and parameter θ, we perform the following statistical ana-
lysis. First, we compute the mean value of the outputs of Π1 and Π2 separately,
and then consider their ratio that, hereafter, is denoted by E(Π1,θ,PS〈F,N,L,P〉)

E(Π2,θ,PS〈F,N,L,P〉) .
A different statistical analysis of the data is described in [DGV99].

6 Results

LTL2AUT, GPVW, and GPVW+ have been implemented on the top of the same
kernel, and are accessible through command line options. The code consists of
1400 lines of C plus 110 lines for a lex/yacc parser. The code has been compiled
through gcc version 2.7.2.3 and executed under the SunOS 5.5.1 operating
system on a SUNW UltraSPARC-II/296 1G.

LTL2AUT and GPVW+ have been compared, according to the test me-
thod discussed in Section 5, on 5700 randomly generated formulas. The re-
sults are shown in Figure 4. For the average behavior analysis, LTL2AUT and
GPVW+ have been compared on 3300 random formulas generated, according
to our test method, for F = 100, N = 1, 2, 3, and L = 5, 10, . . . , 55. Formulas
have been collected in 3 groups, for N = 1, 2, 3, and inside each group par-
titioned into 11 problem sets of 100 formulas each, for L = 5, 10, . . . , 55. For

each group, E(LTL2AUT, states ,PS〈100,N,L〉)
E(GPVW+, states ,PS〈100,N,L〉)

, E(LTL2AUT, transitions ,PS〈100,N,L〉)
E(GPVW+, transitions ,PS〈100,N,L〉)

,

and E(LTL2AUT, time ,PS〈100,N,L〉)
E(GPVW+, time ,PS〈100,N,L〉)

have been plotted against L. The results show

Improved Automata Generation for Linear Temporal Logic 257

that LTL2AUT clearly outperforms GPVW+, with respect to both the size of
automata and computation time. Indeed, just considering formulas of length
30, LTL2AUT produces on the average less than 60% of the states of GPVW+

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60
L

STATES, N=1
TRANSITIONS, N=1

TIME, N=1

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60
L

STATES, N=2
TRANSITIONS, N=2

TIME, N=2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60
L

STATES, N=3
TRANSITIONS, N=3

TIME, N=3

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=1, L=20
TRANSITIONS, N=1, L=20

TIME, N=1, L=20

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=2, L=20
TRANSITIONS, N=2, L=20

TIME, N=2, L=20

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=3, L=20
TRANSITIONS, N=3, L=20

TIME, N=3, L=20

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=1, L=30
TRANSITIONS, N=1, L=30

TIME, N=1, L=30

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=2, L=30
TRANSITIONS, N=2, L=30

TIME, N=2, L=30

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=3, L=30
TRANSITIONS, N=3, L=30

TIME, N=3, L=30

Fig. 4. LTL2AUT vs. GPVW+. Upper row: Average-behavior analysis, F = 100,
N = 1, 2, 3, L = 5, 10, . . . , 55. Middle and lower rows: Temporal-behavior analysis,
F = 100, N = 1, 2, 3, L = 20, 30, P = 0.3, 0.5, 0.7, 0.95.

(for transitions situation is even better) spending on the average less than 30%
of the time of GPVW+. Moreover, the initial phase, in which LTL2AUT does
have a time overhead with respect to GPVW+, affects formulas, for L = 5 and
N = 3, which are solved by LTL2AUT in at most 0.000555 CPU seconds, as op-
posed to the most demanding sample for L = 55 and N = 3, which is solved by

258 M. Daniele, F. Giunchiglia, and M.Y. Vardi

LTL2AUT in 6659 CPU seconds. For the temporal-behavior analysis, LTL2AUT
and GPVW+ have been compared over 2400 random formulas generated for
F = 100, N = 1, 2, 3, L = 20, 30, and P = 0.3, 0.5, 0.7, 0.95. Note that P = 0.3

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45
L

STATES, N=1
TRANSITIONS, N=1

TIME, N=1

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45
L

STATES, N=2
TRANSITIONS, N=2

TIME, N=2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45
L

STATES, N=3
TRANSITIONS, N=3

TIME, N=3

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=1, L=10
TRANSITIONS, N=1, L=10

TIME, N=1, L=10

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=2, L=10
TRANSITIONS, N=2, L=10

TIME, N=2, L=10

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=3, L=10
TRANSITIONS, N=3, L=10

TIME, N=3, L=10

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=1, L=20
TRANSITIONS, N=1, L=20

TIME, N=1, L=20

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=2, L=20
TRANSITIONS, N=2, L=20

TIME, N=2, L=20

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

STATES, N=3, L=20
TRANSITIONS, N=3, L=20

TIME, N=3, L=20

Fig. 5. GPVW+ vs. GPVW. Upper row: Average-behavior analysis, F = 100, N =
1, 2, 3, L = 5, 10, . . . , 40. Middle and lower rows: Temporal-behavior analysis, F = 100,
N = 1, 2, 3, L = 10, 20, P = 0.3, 0.5, 0.7, 0.95.

is the probability we have assumed for the average-behavior analysis. Formulas
have been collected in 3 groups, for N = 1, 2, 3, and inside each group partitio-
ned into 2 sub-groups, for L = 20, 30. Each sub-group has still been partitioned
into 4 problem sets, for P = 0.3, 0.5, 0.7, 0.95. For each sub-group, we have plot-

ted E(LTL2AUT, states ,PS〈100,N,L,P〉)
E(GPVW+, states ,PS〈100,N,L,P〉)

, E(LTL2AUT, transitions ,PS〈100,N,L,P〉)
E(GPVW+, transitions ,PS〈100,N,L,P〉)

, and

Improved Automata Generation for Linear Temporal Logic 259

E(LTL2AUT, time ,PS〈100,N,L,P〉)
E(GPVW+, time ,PS〈100,N,L,P〉)

against P . Again, the results demonstrate that

LTL2AUT clearly outperforms GPVW+.
The comparison between GPVW+ and GPVW, whose results are shown in

Figure 5, follows the lines of the previous one, by only changing some parame-
ters for allowing GPVW to compute in reasonable time. The average-behavior
analysis has been carried out over 2400 random formulas generated for F = 100,
N = 1, 2, 3, and L = 5, 10, . . . , 40. The temporal-behavior analysis has been
performed over 2400 random formulas generated for F = 100, N = 1, 2, 3,
L = 10, 20, and P = 0.3, 0.5, 0.7, 0.95. The results show that GPVW+ clearly
outperforms GPVW both in the size of automata and, after an expected initial
phase, also in time. The initial phase interests formulas, for L = 10 and N = 3,
which are solved by GPVW+ in at most 0.004226 CPU seconds, as opposed to
the hardest sample for L = 40 and N = 3, which is solved by GPVW+ in 178
CPU seconds.

Finally, a direct comparison between LTL2AUT and GPVW can be found in
[DGV99].

7 Conclusions

We have demonstrated that the algorithm for building an automaton from a
linear temporal logic formula can be significantly improved. Moreover, we have
proposed a test methodology that can be also used for evaluating other LTL
deciders, and whose underlying concept, namely targeting a uniform coverage
of the formula space, can be exported to other logics. Of course, the notion of
uniform coverage can be further refined, and this is part of our future work. In
particular, we plan to adapt to LTL the probability distributions proposed in
[MSL92] for propositional logic and adapted in [GS96] to the modal logic K.
These distributions assigns equal probabilities to formulas of the same structure
(e.g., 3-CNF in the propositional case). We are also planning to extend the con-
cept of syntactic implication to a semantic one and, finally, to explore automata
generation in the symbolic framework.

References

[CVWY91] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory ef-
ficient algorithms for the verification of temporal properties. In E. M.
Clarke and R. P. Kurshan, editors, Proceedings of Computer-Aided Veri-
fication (CAV ’90), volume 531 of LNCS, pages 233–242, Berlin, Germany,
June 1991. Springer.

[DGV99] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata genera-
tion for linear time temporal logic. Technical Report 9903-10, ITC-IRST,
March 1999.

[GPVW95] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Protocol Specification Testing and
Verification, pages 3–18, Warsaw, Poland, 1995. Chapman & Hall.

260 M. Daniele, F. Giunchiglia, and M.Y. Vardi

[GS96] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal
logics from propositional decision procedures: the case study of modal K.
In M. A. McRobbie and J. K. Slaney, editors, Proceedings of the Thirteenth
International Conference on Automated Deduction (CADE-96), volume
1104 of LNAI, pages 583–597, Berlin, July30 August–3 1996. Springer.

[Hol97] G. J. Holzmann. The model checker spin. IEEE Trans. on Software
Engineering, 23(5):279–295, May 1997. Special issue on Formal Methods
in Software Practice.

[KMMP93] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for
full propositional temporal logic. In C. Courcoubertis, editor, Proceedings
of Computer-Aided Verification (CAV’93), volume 697 of LNCS, pages
97–109, Elounda, Greece, June 1993. Springer.

[MSL92] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of
SAT problems. In W. Swartout, editor, Proceedings of the 10th National
Conference on Artificial Intelligence, pages 459–465, San Jose, CA, July
1992. MIT Press.

[Sch98] S. Schwendimann. A new one-pass tableau calculus for PLTL. Lecture
Notes in Computer Science, 1397:277–291, 1998.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 4, pages 133–191.
Elsevier Science Publishers B. V., 1990.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In lics86, pages 332–344, 1986.

[VW94] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. In-
formation and Computation, 115(1):1–37, 15 November 1994.

	Introduction
	Preliminaries
	The Core
	Cover Computation
	The Automaton Construction

	GPVW, GPVW+, and LTL2AUT
	The Test Method
	Results
	Conclusions

