Stutter-Invariant Languages, w-Automata, and
Temporal Logic

Kousha Etessami

Bell Labs
Murray Hill, NJ 07974
kousha@research.bell-labs.com

Abstract. Temporal logic and w-automata are two of the common fra-
meworks for specifying properties of reactive systems in modern verifi-
cation tools. In this paper we unify these two frameworks in the linear
time setting for the specification of stutter-invariant properties, which
are used in the context of partial-order verification.

We will observe a simple variant of linear time propositional temporal
logic (LTL) for expressing exactly the stutter-invariant w-regular lan-
guages. The complexity of, and algorithms for, all the relevant decision
procedures for this logic remain essentially the same as with ordinary
LTL. In particular, satisfiability remains PSPACE-complete and tempo-
ral formulas can be converted to at most exponential sized w-automata.
More importantly, we show that the improved practical algorithms for
conversion of LTL formulas to automata, used in model-checking tools
such as SPIN, which typically produce much smaller than worst-case ou-
tput, can be modified to incorporate this extension to LTL with the same
benefits. In this way, the specification mechanism in temporal logic-based
tools that employ partial-order reduction can be extended to incorporate
all stutter-invariant w-regular properties.

1 Introduction

Today, w-automata and w-regular languages are used in verification tools to both
describe the models of reactive systems as well as to specify the properties being
verified. While w-automata typically form the basis for describing the system, a
popular alternative for specifying properties is temporal logic [16], which offers an
intuitive language for describing relationships between the occurrence of events
over time. Linear time temporal logic, which we deal with in this paper, is used
as a specification language in tools including SPIN [6], as well as more recent
versions of SMV [12]. Standard linear time propositional temporal logic (LTL)
can only express a strict subset of the w-regular properties. To correct this,
various remedies have been proposed (see [23]).

Stutter-invariant languages ([9]) are used in the context of partial-order veri-
fication [21,5,7,14]. In order to take full advantage of partial-order reduction, the
properties that are specified need to be stutter-invariant (formal definitions will
be supplied later). One way to assure that only stutter-invariant properties are
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specified is to restrict linear temporal logic, LTL, to only those formulas without
the “next” operator. This is precisely the approach currently employed in the
tool SPIN [6], which exploits partial-order reduction, and uses “next”-free LTL
to specify properties.

LTL without “next” has been shown to accept all stutter-invariant LTL ex-
pressible properties [15]. However, the fact remains that LTL can not express
all w-regular properties, and similarly, LTL without “next” can not specify all
stutter-invariant w-regular properties.

In this paper we provide a simple variant of LTL for expressing all the stutter-
invariant w-regular languages, based on an equally simple temporal logic for all
w-regular languages. Significantly, the complexity of the relevant decision proce-
dures remain the same as with ordinary LTL. In particular, satisfiability remains
PSPACE-complete, as does model checking for negated formulas. Equally impor-
tant, a practical algorithm for converting LTL formulas to automata ([4]), used
in the tool SPIN [6], which typically produces much smaller than worst-case
output, can be converted to incorporate this extension to LTL with basically
the same benefits. As described in the conclusion, a preliminary version of this
translation has been implemented with satisfactory results.

The logics we will describe are variants of Existential Quantified Linear Pro-
positional Temporal Logic (EQLTL). Wolper [23] considered extensions of LTL
with operators based on automata and right-linear grammars. He showed that
this extended logic defines exactly the w-regular languages and has the desired
complexity. However, the syntax of a logic augmented with grammars is cum-
bersome and more akin to automata specifications. Sistla, Vardi, and Wolper,
[19], considered variants of Wopler’s logic as well as Quantified Propositional
Linear Temporal Logic (QLTL), where they provided complexity bounds for the
satisfiability problem for formulas in the quantifier alternation hierarchy, inclu-
ding EQLTL. They showed, as part of this hierarchy, that QLTL satisfiability
has non-elementary complexity and EQLTL satisfiability is PSPACE-complete.
Kupferman, [8], studied branching time temporal logics with existentially quan-
tified propositions.

It follows from Biichi’s original theorem ([1]) that EQLTL already captures
the w-regular languages, and hence also all of QLTL. The properties of EQLTL
as a logic, in particular the complexity of decision procedures for the logic as
well as its simple syntactic normal forms, make it worthy of closer examination.

The main subject of this paper is a stutter-invariant version of EQLTL, which
we call SI-EQLTL. We will show that SI-EQLTL expresses precisely the stut-
ter-invariant w-regular languages. In proving this, we will also provide a simple
normal form for w-automata that accept stutter-invariant languages. We will
then describe an efficient translation algorithm from the logic into automata.

Formal definitions of all the mentioned notions are provided in the next
section. Section 3 overviews EQLTL and its correspondence to the w-regulars,
preparing the way for section 4, where SI-EQLTL and stutter-invariant languages
are considered. Section 5 covers the improved translation algorithm to automata,
and in section 6 we conclude and describe an implementation of this translation.
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Note: After publication of this paper as a technical report ([3]), I have been
informed by D. Peled that in [17] A. Rabinovich has independently obtained a
characterization of the stutter-invariant w-regular languages in terms of Lam-
port’s Temporal Logic of Actions ([10]). Although TLA semantics generally differ
substantially from LTL, his results appear to amount to the fact that SI-QLTL
captures the stutter-invariant languages. But the complexity of the critical deci-
sion procedures for SI-QLTL remain non-elementary because of nested negation,
and entire the reason we focus on SI-EQLTL is because of the complexity of these
procedures.

2 Definitions and Background

Let £}, denote the set of LTL formulas over propositional symbols P =
{p1,...,pr}. These are defined according to the following inductive rules:

— pi € LY, for each p; € P.
- e, P \ 7% <>§07 Ogov SOUT/) € ‘CETL’ for So,w € LETL'

We extend LTL by allowing quantification over new propositions ¢, go, - - ..
We define both the existential and universal fragment of Quantified (proposi-
tional) Linear Temporal Logic (QLTL). Formulas in L5 7y, and LYo 7y, are
defined, respectively, by the following additional rule:

— g1 ... qxp € /JEQLTL, for p € Lf;g, k € N.
—Vq ... Vgp € LiQLTL, for ¢ € LEIL«J(LQ, ke N.

We define the semantics of EQLTL and AQLTL, over w-words and over
Kripke structures. Let our alphabet be ¥p = 27, An w-word w = wowiws ... €
X% is a sequence of characters w; € Xp, where ¢ ranges over N = {0,1,2,...}.
Since we allow quantification over new propositional variables, we will also allow
enlargement of our alphabet. Given P’, such that P C P’, and given a character
a € Ypr, we define a|p = {p; € P | p; € a}. Let w and w’ be w-words over
the alphabets X'p and Yp/, respectively. We say that w’ is an extension of w iff
w; = w;|p for all i € N.

Given a word w = wowyws .. ., and given a position ¢ € N, we let (w,i) | ¢
denote the fact that ¢ is true on w at position 4, defined inductively as usual,
with the following semantics for propositional quantification:

L. (w,i) | 3Jqp if there is an extension w' € (Xpygqy)” of w such that

(w',7) = .
2. (w,i) = Vqyp if for all extensions w’ € (Xpysqy)® of w, (w',i) = ¢.

A language over X is a set L C Y. A formula ¢ is said to express the language
L(p) = {w | (w,0) = ¢}. We let EQLTL stand for the languages Jp {L (%) |
(NS EEQ 7Lt and we assume analogous definitions for the other logics.

We will define a variant of EQLTL that captures precisely the stutter-inva-
riant w-regular languages. Before we define what stutter-invariance means, let
us define the logic. A word w’ is a harmonious extension of the word w, if w’
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is an extension of w such that, for all i € N, if w; = w;;1 then wi = wj ;. We
define a restricted quantifier 3*qyp, which differs from ordinary quantification in
the following way:

1. (w,i) = 3"qy iff there is a harmonious extension w’ € (X pygq))® of w such
that (w',7) &= .
2. (w,i) |= V"qp if for all harmonious extensions w’ € (Xpyqy)“ of w,

(w',i) = .

We define stutter-invariant EQLTL (AQLTL), denoted SI-EEQLTL (SI-AQLTL),
by replacing existential (universal) quantification of propositions with the harmo-
nious quantification defined by 3" (V"), and by disallowing the use of the () ope-
rator in formulas. Thus, SI-EQLTL formulas are those of the form: 3¢, ..., gy
where ¢ is a ()-free LTL formula.

A Kripke structure KK = (S, R, k) over the alphabet 2F is a set S of states,
together with a transition relation R C Sx S, and a labeling function  : § — 27,
Let m = sgs1,... € S* be a sequence of states of K. Extending the definition of
K to sequences, the sequence 7 defines an w-word k(m) = K(sg)k(s1)... € K.
Given an initial state s;,;¢, we will say that a sequence 7 is a proper sequence
with respect to (K, Sinst) if So = Sinit and (s, si4+1) € R, for all i. We now define
what it means for a formula ¢ to be satisfied by a Kripke structure, given an
initial state s;n:¢:

— (K, sinit) = ¢ if for every proper sequence 7 of (K, Sinst), (k(7),0) = ¢.

We now briefly recall the terminology for w-regular languages and w-automata.
A Biichi automaton is A = (Q, X, 9, F, Qstart), where @ is a set of states, X an
alphabet, § C @ x X' x @ is a transition relation, F' C @ a set of final states,
and Qgiare € Q is a set of start states. Given a word w, a run r of A on w is a
sequence of states qo, g1, ..., such that gy € Qstart, ¢ € @, and (g;, wi, ¢i+1) € 0,
for all i. Let inf(r) denote the set of states that occur infinitely often in r. A is
said to accept an w-word w from the alphabet 3’ if there is a run r of A on w,
such that there is some state ¢ € F' which occurs infinitely often on this run,
i.e. F Ninf(r) # (. This is called the Biichi acceptance condition. Let L(A) be
the the set of w-words accepted by A. The w-regular languages are the class of
languages {L(A)| A a Biichi automaton }.

Another acceptance criterion defines a Muller automaton A = (Q, X, 0, F, Qstart)-
Here, instead of one set F' of final states, we are given a collection F C 2,
and the Muller acceptance condition states that there exists a run r of A on
w such that inf(r) € F. It is easy to convert Biichi acceptance to Muller ac-
ceptance, and, conversely, it is a well known theorem of McNaughton [13] that
Muller automata accept precisely the w-regular languages.

Given a word w = wowy . . ., and given function f : N — N7 from the natural
numbers to the positive natural numbers, let:

w(f] = wg(o)w{(l)wg(z) .
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Here, w} is shorthand for the concatenation of n copies of the character w;. A
language L is stutter-invariant! if, for any w-words w = wow; ... w; ..., and
for any f

weL << w[fleL

An w-word w is stutter-free if for all ¢ > 0, w; # w;y1 or w; = w; for all j > 4.

Proposition 1. Let L and L' be stutter-invariant languages. Then L' = L iff
they contain exactly the same stutter-free words.

The stutter-invariant w-regular languages are a strictly larger class than the

stutter-invariant LTL definable languages:

Proposition 2. The stutter-invariant language, over ¥ = {a,b}:
L = {w | the substring ab occurs an odd number of times in w}

1s mot LTL definable, but is w-regular.

3 EQLTL and the w-Regular Languages

It follows from the proof of Biichi’s theorem and known results about LTL, that
EQLTL captures exactly the w-regular languages. In this section we will look
carefully at this correspondence. This will facilitate our proof in the next section
that a variant of this logic captures the stutter-invariant w-regular languages.

Theorem 1. (follows [1] & [18]. See also [19].) EQLTL defines exactly the w-
regular languages.

Proof. <. Given an automaton A = (Q = {q1,...,q}, Xp, 9, F,s), we write an
EQLTL formula that expresses L(A). This is just the easy direction of Biichi’s
theorem: we “guess” an accepting run, and verify it, using temporal logic instead
of first-order logic. We modify things slightly to facilitate the stutter-invariant
version of this translation.

o =31, qe(O(/\ (@ A ;) A 1)
i#]
( \ (A oen N\ —p) A g) A (2)
{(4i,0,q;)€3 | qi€Qstart} PLEQ préa
oV @rO(A e~ N\ —pr) AOg) A (3)
(gira,q5)€0 pi€a préa

\/ 0og; (4)
q;EF

Jun

This definition differs slightly from previous definitions in the literature, e.g., in [15],
but is equivalent, and perhaps somewhat simpler conceptually because we avoid
introducing the notion of stutter equivalence in order to get at the notion of stutter
invariance.
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=. Given an EQLTL formula ¢ = 3¢, ..., qx¥, let Ay be a Biichi automaton
for 1 (see [18,22,2]). We construct A, with the same set of states, by projection
from Ay: for any edge (Q,a,Q’) € 04, where a = {p;,,...,Pi.,%,,- -}, put
the edge (Q,a’, Q') in 64, where a’ = {p;,,...,pi, }. O

Corollary 1. (see [20]) Every EQLTL formula ¢ is equivalent to one in the
following normal form (note only one quantified proposition):

¢ =3q v

where 1 is an LTL formula without the “Until” operator U.
Moreover, there is a polynomial p, such that for an automaton A, there is a
normal form formula va, L(pa) = L(A), such that |oa] = p(|4]).

The proof is an adaptation of [20]. We can readily eliminate the I operator
because the formula ¢ in the proof of Theorem 1 contains none. Next we observe
the computation complexity of the associated decision procedures.

Corollary 2.

1. ([19]) The satisfiability problem for EQLTL is PSPACE-complete.

2. An EQLTL formula ¢ can be translated to an equivalent Biichi automaton
of size 20U#D in time proportional to the size of the output.

3. Model checking, given a Kripke structure K and the negation of an EQLTL
formula, or given an AQLTL formula, is PSPACE-complete.

4 Stutter-Invariant w-Regular Languages and SI-EQLTL

Now we prove a result analogous to Theorem 1 for SI-EQLTL. First, we provide
a normal form for automata that accept a stutter-invariant language.

Definition 1. A Muller automaton A" = (Q', 8, {¢\ari},F') is a stutter-in-
variant (SI) automaton if every state is reachable from qly..e, and all of the
following syntactic properties are satisfied, for each state q of A’, q # Qlart:

1. All incoming edges to q are labeled with the same character, aq.

2. (¢,aq,q) €90', and (q,b,q) € &' for b # aq.

3. (g,aq,q") ¢ 6" for ¢ #q.

4. Moreover, the exceptional start state ql;,.. has no incoming edges.

A cleaner, equivalent, way to view such automata is as Kripke structures with
(Muller) acceptance conditions, and a given set of start states. Viewed this way,
an SI automaton then amounts to a Kripke structure with the following two
additional properties:

1. Every state s has a self loop, i.e., V s € S, R(s,s).
2. Vs#£s €8, if R(s,s’) then k(s) # k(s).

Proposition 3. An SI automaton accepts a stutter-invariant language.
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Lemma 1. If L(A) is stutter-invariant then L(A) = L(A’), where A’ is a SI
automaton. Moreover, we can pick A’ such that |A'| < O(JA| x |X]).

Proof. We define A’ to mimic A, except that a state of A’ remembers the last-
seen character. In addition, we need some extra surgery in order not to allow
both arrival and departure from a state using the same character.

Given A = (Q, 0, Qspare, F), we define A' = (Q x X) U {qhyuret U {q¢¥ |
a € X} 0 Adsar ), F):

1. ((g,a),b, (q’,c)) € o iff (b =c# aand (q,b,q’) €d)or (b=c=aand
q=1q)

2. ((g,a),b,q™) € & iff (b = ¢ # a and starting at state ¢ in A there exists
an accepting run on the word ).

3. (g, byqrev)ed iffa=b=c

4. (qhyare, @ (q2,0)) € 8" iff a =b and (q1,a,q2) € & for some q1 € Qstart-

Now, the accepting sets are given by: F/ = {F' C Q x X||F'| > 1 A3(q,a) €
F'st.qe FYU{{(¢,a)} g€ F N(g.a,q) €0} U{{g;*"} [a € L}

By inspection, A’ is an SI automaton. By Proposition 3 and Proposition 1
we need only show that L(A) and L(A’) contain the same stutter-free words.

Claim. For any stutter-free word w, there is an accepting run r of A on w if and
only if there is an accepting run " of A’ on w.

We must omit the proof of the claim, which splits things into two cases:

either (1) w = wows,...wy, or (2) w = wows, ..., where there are never two
consecutive occurrences of the same character. The claim concludes the lemma,
as A’ satisfies all the required conditions. a

Theorem 2. SI-EQLTL defines exactly the stutter-invariant w-regular langua-
ges.

Proof. C: First, a SI-EQLTL formula ¢» = 3"qy,...,qrp can only express a
stutter-invariant language. To see this, consider w and w[f] for any f : N — N¥.

Claim. w € L(v) if and only if w[f] € L(v)).

Proof. =. Suppose w € L(1), then there is a harmonious extension v of w
such that v € L(p). But the (O-free LTL formula, ¢, accepts a stutter-invari-
ant language ([15]), and thus since v[f] is a harmonious extension of w[f], and
v[f] € L(p), it follows that w[f] € L(v).

<. Suppose w[f] € L(¢). Thus there is a harmonious extension v[f] of w|f]
such that v[f] € L(p). But, since L(y) is stutter-invariant, it must again be
the case that v is a harmonious extension of w such that v € L(p), and hence
w € L(v). O

Now, to see that L(1)) is w-regular: Let Agyess = (Qguess = 2PU{ar,ar} Y
{@start}, Oguess, {qstart I+ Qguess) be an automaton which has a transition dgyess (g,
a,q’) if and only if
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1. ¢ = a, (note: states, as well as transition labels, are denoted by sets of
propositions).
2. If a|p = ¢|p then a = ¢. (this insures the harmonious nature of the guess).

Let the automaton A, for ¢ be derived from the tableau construction ([18,
22]). We construct the automaton Ay, C A, X Agyess, Where the states are
Qy ={(g,f) | 9 € Qo N f € Qguess}, where moreover g and f are con-
sistent, meaning that, for ¢; € cl(y), ¢ € ¢ <= ¢ € f. The transition
relation 0((g, f),a, (¢’, f')) holds iff 6,(g, a,¢") and dguess(f, a, f'), the start sta-
tes Qustart = {(9, f) | ¢ € g}, and Fyy = Fyy X Fyyess. It can be verified that the
automaton A, accepts L(1)), with Agyess basically used to insure that we only
“guess” harmonious extensions.

D. Given L(A), a stutter-invariant language, our objective is to write an SI-
EQLTL formula expressing the language L(A). By Lemma 1, we can assume
that A is a stutter-invariant automaton. We will use the fact ([15]) that O-free
LTL captures precisely the stutter-invariant subset of LTL.

Consider an EQLTL formula ¢ = 3¢, . . ., qx¢ expressing the language L(A).
The crucial point is that because A has the syntactic normal form, there exists
an accepting run r of A on w iff there exists a harmonious extension w’ of w,
such that w’ is satisfied by the LTL formula. Thus, it suffices to convert the
quantification to 3¢y, ..., q.

It only remains to remove the () operators from the expression. This can be
done by extending the proof of [15]. Let SI-EQLTL(()) be the logic where we
do allow the () operator to occur in the LTL part of the formula.

Claim. Any SI-EQLTL(Q) formula, ¥, that accepts a stutter-invariant language
can be converted to an SI-EQLTL formula ¢’ such that L(y) = L(¢').

The proof is as [15]. The only new observation needed is that any harmonious
extension of a stutter-free word is also stutter-free. That concludes the theorem.
O

To prove a normal form result for SI-EQLTL analogous to EQLTL, which
eliminates the use of the binary U operator, we will need the following stutter-
invariant version of the () operator, ()*, which intuitively means “at the next
distinct character”. Formally, let ()*¢ be defined as follows:

— (w,i) E O* if (Fj > dw; #wi AV i/, i <4 < jwi = wy) — (w,]) = ¢.
Let SI-EQLTL(O*, ) denote the variant of SI-EQLTL where the U operator
is disallowed, but (O* is allowed. It can be shown that
Corollary 3. SI-EQLTL expresses the same languages as SI-EQLTL(O*, U).

We are unable to provide a normal form where only one existential quantifica-
tion is necessary, because Thomas’s elimination argument [20] doesn’t work in
the stutter-invariant setting. It will be interesting to establish whether such a
normal form exists. Finally, we address the costs and complexities involved in
the mentioned translations and results above. They are, as one would expect,
basically the same as for EQLTL.
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Corollary 4.

1. The satisfiability problem for SI-EQLTL is PSPACE-complete.
2. An SI-EQLTL formula ¢ can be translated to an equivalent Biichi automaton
of size 200D in time proportional to the size of the output.

3. Model-checking, given a Kripke structure K and the negation of an SI-
EQLTL formula, or given an SI-FAQLTL formula, is PSPACE-complete.

5 Improved Algorithm for SI-EQLTL Conversion to
Automata

In translating from LTL formulas to automata, a naive implementation of the
tableau construction always incurs the worst-case exponential blow-up. In [4] an
algorithm is provided which in practice behaves much better. A version of this
algorithm for (O)-free LTL has been implemented in the SPIN tool.

For our purposes, it is important to know that, rather than a standard Biichi
automaton A = (Q,§,F,s) over ¥p = 2 the automaton produced by the
algorithm of [4] actually has the following special form: for every state ¢ € @,
there is a unique term (a conjunction of literals) from P, such that every “edge”
from another state to ¢ has the label o; this term is a symbolic shorthand for
all the characters consistent with it, meaning the actual edge (¢, a,q) exists iff
a is consistent with the term o,. In practice, this shorthand can be much more
concise than the ordinary notation for automata. Later, we will need another
important fact about the output of the [4] algorithm, namely, a monotonicity
which it preserves.

We now describe how to modify the [4] algorithm to work for translating from
both EQLTL and SI-EQLTL to automata. For EQLTL, modifying the algorithm
is trivial. The only observation necessary is that existential quantification corre-
sponds to projection, even on term-labeled edges:

Proposition 4. Given an EQLTL formula ¢ = 3q; . .. qr ¥, and given a special
form automaton Ay, such that L(y) = L(Ay), the special form automaton A,
derived from Ay by removing all literals over {q1, ..., qk} from the terms labeling
the edges of Ay, defines precisely the language defined by ¢, i.e., L(Ay,) = L(yp).

Note that the automaton generated for Jgq; ...qrY is never bigger that the
one generated for ¢. The case of SI-EQLTL is more interesting and complicated.
In particular, it is not in general possible to obtain an automaton for 3"t ...t
which is no bigger than the automaton for ¢ produced by the [4] algorithm.

The following theorem gives an algorithm that incurs exponential blow-up
in terms of k£ and quadratic blow-up in terms of the number of unquantified
propositions in 1. We then give a modification of this algorithm which in practice
behaves much better.

Theorem 3. Given a formula p = 3", .. tp), where 1 is a formula over the
Propositions pi ..., Pr,t1, ..., tk, there is a special form automaton A,, such that
L(A,) = L(y), and such that

[Ap] < O(2° x 12 x |Ay])
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where Ay is a special form automaton for the formula ¢ (as produced by the [4]
algorithm).

Proof. Let T = {t,...,tx}. Given the set P = {p1,...,p,} of propositions, let
—P denote the set {—p1,...,p,} of negations of these propositions. Given a
special form automaton Ay = (Q, 9, F, ¢start) for ¢, we would like to obtain an
automaton for .

We now define an automaton A’ which will be central to the definition of
A,

A/ = (Q/ g (Q X 2{t1’m’tk} X (PU _‘P)z) U {Sstart}75/7-7:/7sstart)

The states Q' of A’, other than the start state sgsq,¢, consist of those triplets
(g,0,7), where ¢ € Q is a state of Ay, 0 is a subset of T" and defines a full valuation
of all the variables in T', and 7 specifies two elements of the set P U - P, where
these two elements are consistent with each other, i.e., it is not the case that
one is the negation of the other. Furthermore, for (g, 0, 7) to qualify as a state
in @ it must also satisfy the following extra condition: we view 7 as specifying
a partial valuation of P, namely, the two literals specified in 7 must hold. Now,
the extra condition that must be satisfied by (g, 8, 7) is that the unique term oy,
which labels all edges in A, which enter the state ¢, must be consistent with
the valuation (full on T" and partial on P) specified by 6 and 7. A’ will also be a
special form automaton, in that all edges into a state s = (¢, 8, 7) will be labeled
with the same term o,.

The transition §'(s" = (¢/,8',7),0s,5 = (¢,0, 7)) will exist if and only if all
of the following conditions hold:

1. o is consistent with the valuation defined by 6, and the partial valuation
on the pair of p;’s defined by 7.

2. There is a transition §(¢’, 04, ¢) in Ay, such that the term o, is a subterm of
the term oy, meaning that every literal of o, is also a literal of o,.

3. If the valuations 6’ and 6 on the ¢;’s are inconsistent, then the partial valua-
tions defined by 7/ and 7 must also be inconsistent.

The transitions out of the exceptional start state ssiq.+ are defined as follows
0'(Sstart, Os, (¢, 0, 7)) holds if and only if the first two condition above hold, with
Gstart Substituted for ¢/ in the statement of the second condition. Next we define
the acceptance condition F’ in A’. For each set F' = {¢;,,..., ¢, } € F, we put
the set I/ = {s = (¢;;,0,7)|j€{l,....r} A s€Q}inF'.

From the automaton A’ we will now obtain the automaton A, by “projecting
out” the g;’s as we normally would for regular existential quantification. More
formally: for each transition ¢’(s’, o5, s) of A’ the term o, is replaced in A, by
a term o7 with all the literals over the ¢;’s removed, obtaining the transition
dp(s', 00", s). It remains to show that A, defines the language we are after.

s 9

Lemma 2. Given 3"t;,... t.a), and given A, obtained from ¢ via the above
construction:
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We have to omit the proof, which is a bit technical, but the reason we need
only remember two literals from (P U —P) is that we can “guess” the literals
over P which will distinguish distinct consecutive characters, and we need two
literals rather than one per character because we use one to distinguish it from
its predecessor and the other to distinguish it from its successor. This concludes
our theorem. ad

The construction of A’ was the crucial step in Theorem 3, and it is there
that a 2F x r? blow-up occurs. As it stands, A’ always suffers from this blow-up.
However, with an important observation, we can modify the algorithm so that
the blow-up in k£ need not be worst-case.

In going from A, to A’, for every state ¢ of Ay, and every 7, we built the
states (q,0,7) for every full valuation 6 of T. The observation is that these 8’s
need not be full valuations of T'. In fact, the only condition we need is that,
for any run of Ay, the domains of the sequence of expansions 6;’s in our new
automaton form a monotonic (non-increasing) sequence of partial valuations of
T, by which we mean that the domains form a monotonic sequence of sets.
This assures us that, if there is any accepting run in the resulting automaton,
then an accepting run can be constructed where the “guessed” variables form
a harmonious extension. The reason, intuitively, is that we can safely extend a
partial valuation of T" that is consistent with a predecessor to fully match this
predecessor valuation, without forcing an inconsistency with future valuations,
because future valuations can evaluate at most the same or fewer variables and
can thus be extended likewise if they are consistent with their predecessor.

But how are we to come up with such a monotonically decreasing sequence
of partial-valuations to satisfy the condition? It turns out that we are in a rather
fortuitous situation. The output of [4]’s algorithm already provides us with such
a sequence. Each state of that output is marked by a set of subformulas of the
original temporal logic formula being translated, and here is where we find our
monotonic sequence: on any path in the automaton the set of ¢;’s that occur in
the set of subformulas in each node form a monotonic (non-increasing) sequence.
We can thus simply use these sets as our monotonic sequence directly from the
[4] algorithm. Using this observation, we can reduce the state space of A’ by
only evaluating the t;s that need to be evaluated for each given state ¢ of Ay.
We have to omit details.

6 Conclusions

We have provided a simple temporal logic, SI-EQLTL, for expressing the stutter-
invariant w-regular languages. We have shown that the basic algorithms for, e.g.,
satisfiability and conversion to automata, for LTL, can be modified to the set-
ting of SI-EQLTL without any substantial penalty in computational complexity.
Along the way, we have defined stutter-invariant automata, a syntactic normal
form for automata which captures the stutter-invariant w-regular languages.
The purpose of such a logic is to close the gap, in a natural way, between
systems like COSPAN where properties are specified as w-automata, and those
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such as SPIN, where properties are specified in the weaker LTL formalism, and
where, moreover, only stutter-invariant properties are allowed in order to enable
partial-order verification.

One potential criticism for both SI-EQLTL and EQLTL is that, although
both logics are semantically closed under complementation, they are not syntac-
tically so. Indeed, complementation of a formula is, in the worst case, costly: in-
curring an exponential blow-up. As a result, in order to perform model checking
with the same complexity as LTL, we need to work with the negation of SI-
EQLTL formulas or with SI-AQLTL formulas. Although this is undesirable, it
is a situation no different than the behavior of non-deterministic w-automata,
for which complementation is similarly costly. This was the reason behind [11]’s
advocacy of V-automata. In other words, in either formalism one has to deal
with the cost of complementation, but the benefits of a more succinct logical re-
presentation make these temporal logics an attractive alternative to automata.

We have implemented the translation algorithm of section 5 in the program-
ming language ML, extending an implementation due to Doron Peled of the [4]
algorithm. Preliminary experiments indicate that the translation produces very
reasonable sized automata. The intention has been to ultimately incorporate the
extended logic, using the translation, in Gerard Holzmann’s tool SPIN in order
to supply it with the extra expressive power.
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