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Abstract. The Cipher Block Chaining - Message Authentication Code 
(CBC MAC) specifies that a message z = 2 1  ..'z,,, be authenticated 
among parties who share a secret key a by tagging z with a prefix of 

fL"'(z) Cf fa(fa(. ' ' f,(f,(z1)@22)$. . I @zm--1)@2n) , 

where f is some underlying block cipher (eg. f = DES). This method is 
a pervasively used international and U.S. standard. We provide its first 
formal justification, showing the following general lemma: that cipher 
block chaining a pseudorandom function gives a pseudorandom func- 
tion. Underlying our results is a technical lemma of independent inter- 
est, bounding the success probability of a computationally unbounded 
adversary in distinguishing between a random ml-bit to I-bit function 
and the CBC MAC of a random I-bit to I-bit function. 

1 Introduction 

1.1 The problem: Is the CBC MAC secure? 

Message authentication lets communicating partners who share a secret key 
verify tha t  a received message originates with the party who claims to have 
sent it. This is one of the  most important and  widely used cryptographic tools. 
It is most often achieved using a "message authentication code," or MAC. This  
is a short string MAC,(z) computed on the message z t o  be authenticated and 
the  shared secret key a. The  sender transmits (z,MACa(z)) and the  receiver, 
who gets (d, d), verifies that 0' = MACa(d) .  

T h e  most common MAC is built using the  idea of "cipher block chain- 
ing" some underlying block cipher. To discuss this we first need some nota- 
tion. Given a function f: (0, l}' -+ (0, l}' and  a number m 2 1 we denote by 
f ( " ' ) :  (0, l }mf  -+ (0, I}' the function which maps an m2-bit input 5 = 21 -**z,,, 
(Izil = I )  t o  the  2-bit string 
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We call f the [m-fold) cipher block chaining of f . 4  Now, a block cipher F 
(with key length k and block size I )  specifies a family of permutations fa: {0,1}’ -+ 

(0, l}’, one for each k-bit key a. The CBC MAC constructed from F has an as- 
sociated parameter s < I which is the number of bits it outputs. The CBC MAC 
is then defined for any mI-bit string z = 21.. .x, by 

def CBC-MACr(z1.. .xm) = The first s bits of fdm)(x, - .zm) . 
The CBC MAC is an International Standard [13]. The most popular and widely 
used special case uses F = DES (so k = 56 and 1 = 64) and s = 32, in which case 
we recover the definition of the corresponding U.S. Standard [l]. These standards 
are extensively employed in the banking sector and in other commercial sectors. 
Given this degree of usage and standardization, you might expect that  there 
would be a large body of work aimed at  learning if the CBC MAC is secure. Yet 
this has not really been the case. To the best of our knowledge, it was seen as 
entirely possible that F could be a perfectly secure block cipher even though 
CBC-MACF might be a completely insecure MAC. There was no reason to be 
sure that the internal structure of F couldn’t “interact badly” with the specifics 
of cipher block chaining in exactly such a way as to  defeat the CBC MAC. 

1.2 Our approach 

In this paper we will show that CBC MAC construction is secure if the under- 
lying block cipher is secure. To make this statement meaningful we need first to  
discuss what we mean by security in each case. 

What does it mean to assume DES is secure? 

To describe the security of a block cipher we adopt the viewpoint introduced 
by Luby and Rackoff [15, 161 with regard to DES. They suggest that a block 
cipher should be assumed to be a pseudorandom function (PRF) with respect 
to  “practical” computation. The notion of a PRF is in turn due to Goldreich, 
Goldwasser and Micali [9]. Roughly said, a function family F is pseudorandom 
if any reasonable adversary is unable to  distinguish the following two types of 
objects, based on their input/output behavior: a black-box for fa(.), on a random 
key a; a black-box for a “truly random” function f ( . ) .  

What does it mean for a MAC to be secure? 

Our notion of security for a message authentication code adopts the viewpoint 
of Goldwasser, Micali and Rivest [ll] with regard to signature schemes; namely, 
a secure MAC must resist existential forgery under adaptive message attack. 
However, what we will show is actually stronger: if F is a pseudorandom function 
family then F(,), the family of functions f for f E F ,  is itself shown to be 

* Notice that here and in what follows we require the input to consist of exactly m 
blocks, not at most m. See Section 1.4 for a discussion of length variability. 
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a pseudorandom function family. That a PRF automatically makes a secure 
message authentication code is a well-known observation due to  [9, 101-see 
Section 6 for details. 

Exact security 

We wish to obtain results which are meaningful for practice. In particular, in 
our setting we need to say something about the correct or incorrect use of DES, 
where there are no asymptotics present. This demands not only that we avoid 
asymptotics and address security “exactly,” but also that we strive for security 
reductions which are as efficient as possible. 

We will only talk about finite families of functions and the resources needed to  
“learn” things about these finite function families. We will describe the resources 
necessary to ‘Lbreak” the finite family F given an adversary of specified resources 
who succeeds in breaking F(m). The parameters of interest are the running 
time t of the adversary; the number of queries q which she makes to  an oracle 
which is her only point of access to f(-)-values for the given f E F ;  and the 
adversary’s advantage, E ,  over simple guessing. We emphasize the importance of 
keeping t and q separate: in practice, oracle queries correspond to  observations or 
interaction with a system whose overall structure often severely limits q (e.g., the 
system might limit the amount of plaintext encrypted before the key is changed); 
but t corresponds to  off-line computation by the adversary, and so is much less 
under the good guys control. 

Assume that adversary A can ( t ,  q ,  €)-break F ( m ) .  This means she runs in 
time t ,  makes q queries of her oracle, and succeeds with advantage E in distin- 
guishing a random member of F(”’) from a random function of ml-bits to I-bits. 
Our results specify (t’, q’, E ’ )  (as functions of t ,  q,  E ,  rn, I )  such that there exists 
an adversary A’ (a simple modification of A) that  (t’, q’, d)-breaks 8’. 

Exact security is not new. It is true that most theoretical works only provide 
asymptotic security guarantees of the form “the success probability of a poly- 
nomially bounded adversary is negligible” (everything measured as a function 
of the security parameter), but the exact security can usually be derived from 
examination of the proof, However, a lack of concern with the exactness means 
that in many cases the reductions are very inefficient, and the results are not 
useful for practice. 

Previous works which address exact security explicitly and strive for efficient 
reductions are [8, 12, 19, 6, 14, 41, the last four on the more practical side. 

1.3 Main result 

Of course the power of results such as those indicated above depends on what 
values oft’, q’, e’ one can prove. Our analysis is directed at achieving the best val- 
ues possible. Our main lemma is stated formally as Lemma 5. Informally, it says 
the following. Suppose there is an adversary A who ( t ,  q ,  €)-breaks F(’”). Then 
A can be turned into an adversary A‘ of comparable size and time complexity 
to  A which, making qrn oracle queries, achieves advantage 6’ = c -  3q2m2.2-’-l. 
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Current knowledge gives us values t ' ,q ' , c '  for which it seems safe to  rule 
out (t', q', €')-breaks on DES. From this we can derive values of t ,  q ,  E for which 
( t ,  q ,  €)-breaks of DES(m) are effectively ruled out. Thus, we reduce the security 
of DES(") to  that of DES in a constructive and useful way. 

The brunt of the proof addresses the information-theoretic cme of the above 
lemma. Here we consider the problem of distinguishing a random ml-bit to  &bit 
function from the m-fold CBC of a random I-bit to  I-bit function. We prove an 
absolute bound of 3q2m2 2- l - I  on the advantage an adversary can derive. (The 
bound holds irrespective of the adversary's running time and depends only on m 
and the number q of queries she makes.) The lemma appears in Section 3. 

The proof of this information-theoretic case of the CBC Lemma is not easy. 
For whatever reasons, it seems quite susceptible to specious arguments and to  a 
general difficulty in moving from intuition to  proof. 

Section 6 completes the picture by showing that the standard construction 
of a MAC from a PRF has tight security. In this light, we view our main results 
as being those discussed above. 

1.4 Extensions and corollaries 

The CBC Lemma provides an efficient method to produce a P R F  to 5 I-bits 
when the input is of fixed length ml. But often the input lengths may vary. 
We exhibit in Section 5 some simple extensions to  the CBC MAC which allow 
one to  correctly authenticate words of arbitrary length. We also demonstrate 
that  a mechanism which is commonly employed -setting MAC1 (21 - 2,) = 
f(*')(z1. * * z, m)- does not work to  generate a secure message authentication 
code. 

Pseudorandom functions are basic tools in cryptography. In addition to  shed- 
ding light on the security of the CBC MAC our work provides a method of 
building secure PRFs which can be used in a wide range of applications, in the 
following way. 

Practice readily provides PRFs on fixed input lengths, in the form of block 
ciphers like DES. On the other hand PRFs are very useful in applications, but 
one typically needs PRFs on long strings. Our CBC Lemma provides a provably- 
good way of extending the basic PRFs (which work on short inputs) to PRFs 
which work on longer inputs. It was based on these facts that PRFs were sug- 
gested by [3] as the tools of choice for practical applications, particularly entity 
authentication and key distribution. 

1.5 History and related work 

The lack of any theorem linking the security of f to that of f(") lead previous 
users of the CBC-MAC to view f'"), and not f ,  as the basic primitive. Thus for 
example in Bird et. al. 151, when the authors require a practical message authen- 
tication code in order to  achieve their higher-level goal of entity authentication 
they made appropriate assumptions about the CBC MAC. 
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The cryptanalytic approach to  the problem of the security of the CBC MAC 
is to attack the CBC MAC construction for a particular block cipher F .  Refer 
to  [17] for an attempt to  directly attack the DES CBC MAC using differential 
cryptanalysis. 

Another approach t o  studying MACs is rooted in the examination of pro- 
tocols which use them. Stubblebine and Gligor [20] find flaws in the use of the 
CBC MAC in some well-known protocols. But as the authors make clear, it is 
not the CBC MAC itself which is at  fault for the indicated protocol failures-it is 
the manner in which the containing protocols incorrectly embed the CBC MAC. 
The authors go on to correct some protocols by having them properly use the 
CBC MAC. 

Cipher block chaining is not the only method of constructing a MAC out 
of a block cipher. Amongst the other methods that have been proposed we 
note that of [2]. There the authors concern was to  provide a construction which, 
unlike cipher-block chaining, is parallelizable. Their constructions are simple and 
efficient. The security is analyzed exactly and the bounds achieved are actually 
somewhat better than what we prove here for cipher block chaining. 

1.6 Discussion and open questions 

Block ciphers like DES are in fact permutations. One open question is whether 
the permutativity of the block cipher could be exploited to  prove a stronger 
reduction than that in our main lemma. The fact that one typically outputs a 
number of bits s < I seems relevant and useful in strengthening the bounds that 
would otherwise be achieved. 

Feige and Naor [7] observe that the dependence on q in the bound in Lemma 1 
is optimal up to a constant: they can show that there is an adversary who achieves 
an advantage of O(mq2 - 2-z). An open question is whether our analysis can be 
tightened to  meet this lower bound, or whether the latter can be improved to  
meet our upper bound of O(m2qa. 2-I).  

2 Preliminaries 

A finiie function family is a finite set of strings, called keys, each of which names 
a function according to a fixed and specified manner. To pick a function f at 
random from a finite function family F means to  pick a random key and let f 
be the corresponding function. Note that two keys can name the same function. 

We let Ra-,l denote the set of all functions from (0 , l ) "  to  (0, l}'. The name 
of each function f E R,,I is the string which describes its truth table. We let 
'??,*~+~ denote the set of all functions from ul<i<21{0, 1)i' to (0, l}'. The name 
of a function f E R*{-.+l is the string which describes its truth table. 

Let A be a Turing machine with access to an oracle 0. We say that A is a 
q-adversary if A makes at most p queries to  0. We say that A is a ( t ,  q)-adversary 
if A runs in at most t steps and makes at most q queries to 0. 
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If F is a finite function family we write E [ A F ]  = Pr[Af = 13 for the proba- 
bility that A answers 1 when A's oracle is selected to be a random function from 
F. (If A is probabilistic, the probability is over A's coins as well.) We let 

&"AF] - E[AF']  
2 

advantageA(F, F')  = 

denote the advantage of A in distinguishing F from F'. Here, following [9], we 
are considering the following game, or statistical test. Algorithm A is provided 
as oracle a function g chosen at random from either F or from F', the choice 
being made at  random according to  a bit b. The algorithm is trying to  predict 
b. The advantage is Pr[Ag = b] - 1/2 ,  the amount that the probability of A is 
correct is bounded away from the guessing probability 1/2. 

For 0 5 E 5 1, we say that A €-distinguishes F and F' if advantageA(F, F ' )  2 
E .  We say that A (q,E)-distinguishes F and F' if A is a q-adversary and A E- 

distinguishes F and F'. We say that A (t ,  q ,  €)-distinguishes F and F' if A is a 
( t ,  q)-adversary which €-distinguishes F and F' .  Let dg(F, F ' )  be the supremum 
of all numbers E ,  0 5 E 5 1, such that there exists a q-adversary A that E- 

distinguishes F and F'. 
Ra+b. We say that A (q,c)-breaks F if A is a q-adversary 

who ( q ,  €)-distinguishes F from Ra.+b. We say that A ( t ,  q ,  €)-breaks F if A is a 
( t ,  q)-adversary who ( t ,  q,  €)-distinguishes F from R,,b. 

Let m > 0 be a number and let F be a finite function family whose keys 
name functions in 'Rz-1. We define the finite function family F(m) the keys of 
which are precisely F but the interpretation of f (m) E F(") is as a function 
f(") E Rml+l defined by 

Suppose F 

f ( m ) ( z l . . * z m )  = f ( f ( . . .  f ( f (11 )~22)$ . . .~5m-1)$5 , )  * 

Let m > 0 be a number and let F be a finite function family whose keys name 
functions in Rr+l. The mfold CBC-MAC based on F ,  denoted CBC-MACFPm, 
is defined by CBC-MAC?"(tl.. . z m )  = f (m) (z l . .  .zm) for all f E F and all 
t l ,  . . .2, E {O,l}l .  

3 The CBC Lemma: Information-theoretic case 

3.1 Statement 

The information-theoretic case of the CBC lemma considers an adversary A of 
unrestricted computational power. She is faced with the following problem. She 
is given an oracle to  a function g chosen in one of the following ways: either g is 
a random function of ml bits t o  1 bits; or g = f(") for a random function f of 
1 bits t o  1 bits. The choice between these two possibilities is made according to a 
hidden coin flip. What is A's advantage in figuring out which type of oracle she 
has? The answer is specified by a tradeoff which says how A's advantage grows 
with the number q of queries she makes. The formal statement is made in terms 
of the distance function defined previously. 
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Lemma 1. (CBC Lemma: Informat ion- theore t ic  case.) Let I 2 1 and m 2 
1 be integers. Suppose qm 5 2(2+1)/2. Then: 

In other words an adversary making q 5 2('+')/'/7n queries cannot hope to have 
a n  advantage exceeding 3q2m2 -2-l-l.  Thinking of m as being small compared to 
q ,  2', this means that as long as the total number of queries is roughly a, the 
incremental advantage from the adversary's i-th query is bounded by roughly 
i - 2-I .  

3.2 Proof 

Fix an adversary A.  Since we are not restricting computation time a standard 
argument shows that we may assume without loss of generality that A is deter- 
ministic. The bulk of the proof will be devoted to seeing what happens when 
A is supplied with a g be chosen at random from %Z,(z). We begin with some 
definitions. The connection of these definitions to  the game we are considering 
will be made later. 

QUERY SEQUENCES AND LABELINGS. Call the 2'-ary rooted tree of depth m 
the f u l l  tree. A sequence XI.. .xi of I-bit strings (1 5 i 5 m) names a node 
at depth i in the natural way. The root is denoted A .  A sequence of distinct 
non-root nodes X I , .  . . , X ,  is a q u e r y  s e q u e n c e  if for every i there is a j < i such 
that the parent of Xi is either X ,  or A. The q u e r y  t r e e  associated to a query 
sequence X I , .  . . , X ,  is the (rooted) subtree of the full tree induced by the nodes 
{ A ,  X I , .  . . , X , } ;  it consists of a collection of root emanating paths. Nodes at 
depth rn are called b o r d e r  nodes. 

A labeling of a query sequence is a map assigning an 1-bit string to each node 
(equivalently, a map assigning an I-bit string to  each non-root node of the query 
tree). A function f :  (0 , l ) '  4 {0,1}' induces a labeling Zf of a query sequence 
XI, .  . .,X, as follows. Let A, 5 1 ,  2 1 x 2 ,  . . . , ~ ~ $ 2 . .  .zi  be any root emanating 
path in the query tree. Set 

A labeling 2 of XI,. . . , X ,  induces another labeling Y of the same query se- 
quence, defined as follows. On any root emanating path 21, z1z2, . . . , 2 1 2 2 . .  . zi 
set: 

Y(x1) = 1 1  ; Y ( z 1 . .  . xj) = Z(z1.. .zj-l)$zj for j = 2 , .  * .  , i . 
The following is the fundamental relation between 2, and its induced labeling 
Yj : 

Z j ( X i )  = f ( Y j ( X ; ) )  f o r a l l i =  1, ..., n. 
For this reason, the induced labeling is called the input labeling. 
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A labeling of the query sequence X1, . . . , X ,  is said t o  be collision free if the 
n values Z(X,), . . . , Z(X,) are distinct and also the n values Y(X1), . . . , Y ( X , )  
are distinct, where Y is the input labeling induced by Z. A border labeling of 
a query sequence is a map assigning an 1-bit string to  each b:rder node in the 
query tree. A labeling Z is consistent with a border labeling Z if the two agree 
on the border nodes. 

A NEW VIEW OF THE GAME. A query xl.. . x, of the adversary to  the g- 
oracle can be thought of as specifying a root to border path in the full tree. 
Now imagine a slightly different game in which the adversary has more power. 
She can sequentially make qm queries, each a node in the full tree, with the 
restriction that her queries form a query sequence X1, . . . , X,, according to  the 
above definition. She receives no answer to queries which are internal nodes of 
the full tree, but when she queries a border node she receives its 2, value. I t  is 
easy to  see that it suffices to  prove the lemma for this game. 

THE BASIC RANDOM VARIABLES. The query sequence, its Zf-labeling, and the 
values returned to the adversary are all random variables over the random choice 
of f E Ri-+i. We will denote by X 1,. . . , X ,,,, the random variables which are 
the queries of A .  We will denote by Z , (resp. 2 ,,) the labeling of X 1,. . . , X , 
(resp. of the border nodes of the query tree associated to  X l,. . . , X,) specified 
by 2,. The input labeling induced by Z , is denoted Y,. The view of A after her 
n-th query is the random variable View,, = (X  l,. . . , X ,; Z,). The term labeling 
usually refers to a value of Z ,; when we want to discuss the induced labeling we 
talk of the induced or input labeling. 

EQUI-PROBABILITY OF COLLISION-FREE LABELINGS.  The following lemma fixes 
the number n of queries that A has made. I t  then fixes a particular view 
(XI,. . . , X, ; 2)  of A.  It  now examines the distribution on labelings from the 
point of view of A. It  says that as far as A can tell, all collision free labelings of 
X I , .  . . , X ,  consistent with her current view are equally likely. 

Lemma 2. Let  1 5 n 5 qm and l e t  X I , .  . . , X ,  be a query  sequence. Let 2: and  
2: be collision free (output) labelings of X1,. . . , X, which are consistent with a 
border labeling 2, of X I , .  . ., X,. Then 

4 

Pr [ Z, = ZA I View, = (Xl,. . .,x, ; in,] 
= P ~ [ z , = z ~  I View ,=(  ~ 1 ,  ..., x,;~,)] . 

The proof is given in Appendix A.1. 
MORE DEFINITIONS. Let XI,. . . , X, be a query sequence. We will discuss la- 
belings z which assign values only to some specified subset S of this sequence. 
The input labeling induced by z assigns values to  all nodes of XI, . . . , X,, which 
are a t  level one and all nodes whose parents are in S. We can discuss collision 
freeness of such labelings, or their consistency with a border labeling, in the 
usual way. We denote by Z t  the labeling of S given by restricting Z, to S. Let 
ColFree(Z) be true if labeling Z is collision free. 
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UNPREDICTABILITY O F  INTERNAL LABELS. The following lemma fixes the num- 
ber n of queries that A has made, as well as a particular view X I , .  . . , X ,  ; 2 of 
A. It now makes the assumption that the current labeling Z, is collision free; 
think of this fact as being known to A .  Given all this, it examines the distribu- 
tion on labels from the point of view of A.  Some labels are known: for example, 
the Z, values of border nodes and the Y, values of nodes at  depth one. The 
lemma says that all other labels are essentially unpredictable. First, it considers 
a node x l  .. . zixi+l which is at depth at least two, and says that even given 
the output labels (i.e, Z , values) of all nodes except its parent x1 . . . xi, the Y, 
value of x i  . . . x;zi+l is almost uniformly distributed. Second, it considers a node 
5 1 . .  . x; which is not a border node, and says that even given the output labels 
of all other nodes, the Z , value of 2 1  . . . xi is almost uniformly distributed. For 
technical reasons the lemma requires a bound on the number n of queries that 
have been made. 

Lemma 3. Let 1 5 n 5 qm-1 a n d  suppose n2/4 + n - 1 5 2'/2. Let XI,. . . , X ,  
be a query sequence and let 2 be a labeling of the border nodes of X I , ,  . . , X,. Let 

P r , [ . ] = P r [ .  I View,=(X1, ..., X,; 5) A ColFree(Z,)] . 
Suppose 21.. . x, E { X I , .  . ., X,} is a non-border node and  let S = {XI,. . . , Xn}- 
{zl . . . z i } .  Suppose z: S --+ (0, 1)' is a collision free labeling of S which is consis- 
tent with t. 
(1) Let z1.. . x ; x i + l  E S be a child of 11.. .z,. Then for any  y* E (0, l}': 

Pr,[Y,(xl ...I* x i + l ) = y *  I Z , = z ]  S 5 2 . 2 ~ ' .  

(2) For any  Z* E {O,l}': 

P r , [ Z n ( i l  ...xi)= Z* I z , S = Z ]  5 2 . 2 7 ' .  

The proof is given in Appendix A.2. 
BOUNDING THE PROBABILITY OF COLLISIONS. The following lemma fixes th: 
number n of queries that A has made, as well as a particular view XI, . . . , X n  ; Z 
of A.  It now makes the assumption that the current labeling Z is collision free; 
think of this fact as being known to A. Given all this, it considers A's adding a 
new node Xn+l to the tree, It says that the labeling is likely to retain its collision 
freeness; that is, Zn+l is collision free with high probability. The same technical 
condition on n as in the previous lemma is required. 

Note that Xn+l is determined by XI,. . . , X ,  ; 2. The value Z ,+1(Xn+l) has 
not yet been returned to  A ,  and it makes sense to discuss the distribution of this 
value given XI,. . . , X ,  ; 2. 

Lemma4. Let 1 5 n 5 qm-1 and suppose n2/4 +- n - 1 5 2'/2. Let XI,. . . , X, 
be a query sequence a n d  let 2 be a labeling of the border nodes of XI,. ..,Xn. 
Then 

Pr [ TColFree(Z,+I) 1 View, = ( X I , .  . . , X ,  ; 2) A ColFree(Z,)] 5 3n. 2-' . 
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The proof is given in Appendix A.3. 
CONCLUDING THE PROOF. We now complete the proof of Lemma 1 given the 
lemmas above. We need to show that advaniageA(R,l,r, R,(,"/) 5 3q2m22-'-'. 
We first consider running A in the above game, with g = f(m) for f chosen at  
random from Rl-l]. As long as the current labeling Z which A has is collision- 
free, the value of a border node returned to A is a random I bit string distributed 
independently of anything else. Thus the distribution on A's view is the same as 
if she were replied to by a function from R1-l. On the other hand if the labeling 
Z has a collision we pessimistically declare that A has won and stop the game. 
Thus, if Pra[ .] denotes the probability function when g is drawn randomly from 
Rrnz+l and Prc[ -1 denotes the probability function when g is drawn randomly 
from R,(_"I then for each b E (0, l} we have 

P r a  [Ag  = b ]  

5 Prc [ Ag = b I ColFree(Z nm) ] + P r n  [ iColFree(Z q m ) ]  

5 Prc [ Ag = b I ColFree(Z nm) ] 

The first term in the above equals Prc [ A9 = b ] .  One can check that our assump- 
tion p m  5 2('+l)I2 implies n2 /4+n-  1 5 2'/2 for all n = 1,. . ., qm- 1. Thus we 
can apply the previous lemmas to argue that the second term above is bounded 
bY 

Thus I Prx[ A9 = 11 - Prc[ AS = 13 I 5 3q2m2 a 2-'. Under our definition, adver- 
sary A's advantage is given by half of the last bound. 

4 

Let F be a family of functions of I bits to  I bits. Think of it as a family of 
pseudorandom functions. (For concreteness, we could consider F = {DESo}lnl=56 
to be the family of functions specified by the DES algorithm; each individual 
function is specified by a 56 bit key.) Thus it is "hard" to distinguish a random 
member of F from a random function of Z bits to 1 bits. With f drawn randomly 
from F ,  we want to  see how f(") compares to a random function of ml bits to 1 
bits. We'd like to say that f(") is also pseudorandom. The lemma that follows 
implies this. But the actual statement is much stronger. It says exactly how the 
security of F(m) relates to that of F. 

Lemma5. (CBC Lemma: Computational Case). There is an  algorithm U 
and a constant c as follows. Let 1 2 1 and m >_ 1 be integers. Let F C_ R'" 
be a given function family. Suppose qm 5 2('+')12. Let A be an algorithm which 
( t ,  p, €)-breaks F ('"1. Then UA(Z, m) (t ' ,  q', €')-breaks F ,  where 

The CBC Lemma: The computational case 

t' = t + cqml , q' = qm , a n d  E' = E - 3q2m2 - 2-'-l . 
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The constant c is a small number which depends only on the underlying machine 
model. One should think o f t  as being much larger than cqml (this is apparent 
from the definition of the U below) and so the additive cqml term is effectively 
irrelevant. 

Proof. We may assume E > 6 Cf 3q2rn2 .2-‘-’ since otherwise there is nothing 
to  prove. Let A be an adversary which (t ,  q,  €)-distinguishes Rml+’ from F(”). 
From the triangle inequality at  least one of the following must be true: 

(1) A ( t ,  q,  6)-distinguishes Rml-1 from R/z!; or 
(2) A ( t ,  q,  c - 6)-distinguishes from F ( ” ) .  
However given the assumed bound on qm and the Information Theoretic CBC 
Lemma (Lemmal) ,  the first option is ruled out. Thus the second must be 
true. To complete the proof we now construct an adversary A’ which (t’, q’, E’)- 

distinguishes Rl+l from F .  A’ is given access to  an oracle for a function f: {O, 1)’ 
.+ (0, l}’. Observe that A’ can compute the function f(“) and doing this at a 
point z1.- ’tm costs A’ a total of rn queries t o  its f-oracle and time propor- 
tional to  ml. Algorithm At’s procedure is to run A and answer its oracle queries 
according to f‘”). Finally A’ takes A’s prediction as its own. We leave to the 
reader to  check that 

 advantage,,(^^+^, F )  = advantageA(R/zi, ~ ( m ) )  . 
This completes the proof. 

5 Length Variability 

For simplicity, let us assume throughout this section that strings to  be authenti- 
cated have length which is a multiple of 1 bits. This restriction is easy to dispense 
with by using simple and well-known padding methods: for example, always ap- 
pend a “1” and then append the minimal number of 0’s to  make the string a 
multiple of I bits. 

THE CBC MAC DOESN’T HANDLE VARIABLE-LENGTH INPUTS. The CBC MAC 
does not directly give a method to authenticate messages of variable input 
lengths. In fact, if the length of strings is allowed to vary, it is easy to  “break” 
the basic CBC MAC construction. (This fact is well-known.) As an example, if 
you request f:” of b, getting back ta, and then you request fdl’(tb), getting back 

string for which you have not asked the authentication tag. 

APPENDINQ THE LENGTH DOESN’T WORK. One possible attempt to  authenticate 
messages of varying lengths is to append to each string x = xl. - x,,, the number 
rn, properly encoded as the final 1-bit block and then CBC MAC the resulting 
string rn + 1 blocks. (Of course this imposes a restriction that m < 2’, not likely 
to be a serious concern.) Let us define F ( x 1 .  “z,) = f(“‘+l)(x1 **.trn m). 

We show that f’ is not a secure MAC. Take arbitrary 1-bit words b,  b’ and 
c,  b # b’. It is easy to  check that given 

tia, then you have just learned the authentication tag fa ( 2 )  ( b  0) = tt, for b 0-a 
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(1) t b  = F(b),  
(2) t b t  = f’.(b’), and 

the adversary has in hand P(b‘ 1 t b @ t b , @ C )  -the authentication tag of a string 
she has (almost certainly) not asked about before- since this is precisely t b l c .  

METHODS WHICH DO WORK. Despite the failure of the method which appends 
the message length, there are many methods which are almost as simple and 
which work correctly. W e  describe three. In each, let F be a block cipher on 1 
bits. 

(1) Input-length k e y  separation. Set f*(z), where z = zl.. .zm, to be fa(r)(z), 
where a, = F,(rn). The corresponding finite function family F* is not only 
a MAC, it can be shown to be computationally close to R*14i 

( 2 )  Two-step MAC.  Set MAC,(z), where a = 21.. . z,, to be (f,’l”’(z), fJ:)(rn 

( 3 )  Length-prepend MAC.  Define f *  ($1 ez,) = f (m ~ 1 . .  - zm). The 
corresponding finite function family F* is not only a MAC, it can be shown 
to be computationally close to  Z * l + i .  

The third of these claims has the most involved proof. We know of no argu- 
ment which does not involve modifying and verifying that the proof of the 
CBC Lemma goes through after making this extension. 

(3) t a l e  = p(b 1 c )  

fat (m) (z))), where u’ = fa(0) and u” = fa(l). 

6 From PRFs t o  MACs 

Recall that justifying the CBC-MAC was the primary motivation of this paper. 
To formally complete this project we need one more step-to show that pseudo- 
random functions make good message authentication codes. As we remarked in 
the introduction the reduction is standard [Q, 101. But we need to see what is the 
exact security. The following shows that the reduction is almost tight- security 
hardly degrades at all. 

Let G be a finite function family whose keys name functions in %?k--.i. Let 
MACG be defined by MAC:(y) = g(y) for all g E G and all y E (0, l}k. 

Security of MACG is discussed via the notion of chosen message attack [ll]. 
An adversary B attacks MACG via the following experiment. Pick g at random 
from G and provide MAC:(.) to B as an oracle. Suppose B makes q oracle 
queries and runs for time t ,  halting with an output ( y , ~ ) ,  where y E (0, 
and y is different from any string which B has queried of its oracle. We say that 
B is successful if MAC:(y) = u. We say that B (t,q,~)-breaks MACG if it is 
successful with probability at least E. The Proposition that follows is the exact 
security version of the standard reduction of [9, 101. 

PropositionG. There is an algorithm U and a constant c as follows. Let 2 1 
and k: 2 1 be integers. Let G C Rk“ be a given function family. Suppose q < Zk. 
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Let B be an algorithm which ( t ,  q,c)-breaks MACG. Then U B ( k ,  I )  (t’, q’, €’)-breaks 
G, where 

t’ = t + c q ( k + Z ) ,  q’ = ~ + 1 ,  and E’ = ( ~ - 2 - ’ ) / 2 .  

Proof. We provide A such tha t  advantageA(G,Rk- l )  2 E‘ .  A has oracle access 
to g: {0, l}k -$ (0, l}’. It runs B a n d  answers a n  oracle query z of B by invoking 
its own oracle to return g(e). B eventually outputs (y, a). A makes a last oracle 
query of y to get u* = g(y). It outputs 1 if c* = u and  0 otherwise. It is easy 
to see tha t ,  on  the  one hand, E[A”k-’] 5 2-’ and,  on the  other hand, E[AG] is 
jus t  the  success probability of B a n d  hence is at least E .  So the  advantage is as 
claimed. T h e  program of A can be easily implemented in the  stated complexity 

0 by a machine with oracle access to B.  

Let m > 0 be a number and  let F be  a finite function family whose keys name 
functions in RI,~. Combining Lemma 5 with the  above proposition tells us ex- 
actly how secure is the  CBC-MAC CBC-MACFT”’ based on F .  
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A Proof of Lemmas 

We present here the  proofs of the  lemmas in Section 3.2. 

A . l  Proof of Lemma 2 

T h e  proof is by induction on n. T h e  Lemma holds vacuously for n = 1. Assuming 
the  lemma for 1,. . . , n - 1 we now prove it for n. Let ZA-l be the  restriction of 
2; to Xi,. . .,X,,-1 (i = 1,2).  Let be  the restriction of 2, to  the  border 
nodes of XI, . . . , X,- 1. Let V, be  the event View; = (Xi,. . . X, ; &) and  let 
Pri[.] = PI[- I x], for i = n-1,n. Let denote the  input labeling induced by 
Zj for j = n - 1, n and  i = 1 , 2 .  We consider two cases. 

Case 1. X, is not a border node. 
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For i = 1 , 2  we have: 

Pr, [ Z, = z:] 
= Prn-l [ Z, = z:] 
= Prn-l [ ~ , - 1 =  z A - ~ ]  . Prn-l [ z,(x,> = Z;(X,) I ~ , - 1 =  z , -~ ]  a 

= Prn-l [ zn-l  = z A - ~ ]  - 2 - l  . 

The proof is concluded by using the inductive hypothesis. We now justify the 
above equations. Since X, is not a border node, it is determined by Xi, . . . , Xn-l; 
2,-1, This means that Prn[ .] equals Pr,-l[ .] which justifies the first line. The 
second is just conditioning. Since ZA is collision free, Yj differs from all the 
points Yi-l(X1)l.. . , Yi-l(X,,-l) on which the underlying randomly chosen f 
has been evaluated so far. But Zn(Xn) = f(Y;(X,)). So the second term in the 
product in the second line above is indeed 2-'. 

Case 2. X, is a border node. 
Both 22 and 2; are by assumption consistent with 2,. But since X ,  is a border 
node, the value ( 2' Zn(Xn) is contained in i n ,  and ( = ZA(Xn) = Zi(Xn). 
Now for i = 1 , 2  we have: 

Pr, [ Z n - 1  z A - ~ ]  
= P r n - i [  z n - 1 =  zi-1 I zn(xn)  = c ^ ]  

The first equality is because the events V, and Vn-l A (Zn(Xn) = () are the 
same. The second line is Bayes rule. That the first term of the product in the 
second line above is indeed 2-' is argued as in Case 1 based on the fact that  ZL 
is collision free. Now note the denominator in the fraction above is independent 
of i E (1,2}. Thus, applying the inductive hypothesis, we conclude 

(1) 2 Pr, [ Z n - 1 =  Zn-l] . Pr, [ Z n - - l =  zn-l] 1 = 

Pr, [ Z, = z:] = Pr, [ z,-I = z,-,] i .Pr ,  [zn(xn)=t I zn-l=zk-l] 
NOW for i = 1,2: 

= Pr, [ Z,-1= Z A - ~ ]  . I .  

That  the second term in the above product is 1 is because V, contains 
value of Z,(X,). The proof for this case is concluded by applying Equation 1. 

as the 
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A.2 Proof of Lemma 3 

Let XI,. . ~ i z y + ~  (u = 1,. . . , s) be the children of 21.. .xi. Let 

C H I L D R E N ( Z ~ .  . . z,) = (~1.. . I C ~ E : + ~ ,  . . . , zl . . . Z ~ Z ; + ~ }  . 
Let y: {XI,. . . , X,} - C H I L D R E N ( Z ~  . . .xi) + (0, l}' be the input labeling in- 
duced by Z. We prove the two claims in turn. 

Proof of (1). Let's begin by giving some intuition for the proof. We observe 
that with z given, if we assign an input label y E {0,1}' to  a1 . . . zia;+l then 
the value of Z, at the parent node a1 . . . xi is determined; given this, the values 
of Y, at the other children of x1 . . . xi are also determined. Thus, both Z , and 
Y, are now fully determined for all nodes XI,  . . . , X , .  We will show that there 
is a large set S(z) of these y values for which the determined labeling is collision 
free. Moreover, all collision free labelings have this form and are equally likely 
by Lemma 2; thus as far as A can tell, the value at zI . . .zit,+l is equally likely 
to  be anything from the set S(z). The formal proof follows. 

Assume wlog that 21. .  . zi~i+~ = a1.. . x ia i+1 .  Let y E {0,1}' be some fixed 
string. Now define the labeling Zz,y: { X I , . .  . , Xn} + (0,l) '  by: 

{ z(x~) if X ,  # 21.. . xi 
- % Y ( X j )  = y@z;++, otherwise. 

Let denote the input labeling induced by Ze,y, and observe that it is given 
by 

if X ,  @ C H I L D R E N ( Z ~ .  . .xi) 
if X j  = 21.. . Z ; Z ~ + ~  for some 1 5 u 5 s. Yw (Xi 1 = { y'x:il yaz1 

Let S(z) be the set of all strings y such that  Zz,y is a collision free labeling. We 
leave to  the reader to  check that y # S(z) if and only if one of the following two 
conditions is satisfied: 

(1) 
(2) 

Either y@x;+, E { z ( X j )  : 1 5 j 5 n and X ,  # al.. . xi }; or 
For some u E (1,  . . . , s} it is the case that y @ ~ ~ + ~ @ z ~ + ~  E { y ( X j )  : 1 5 
j 5 n and Xj $! C H I L D R E N ( Z ~  . . . zi) >. 

This implies that I(0,l)' - S(z)I 5 (n - 1) + (n  - s)s 5 n - 1 + n2/4 5 2'/2. 
So IS(&)\ >_ 2' - 2'/2 1 2'/2. Now observe that any collision free labeling equals 
Z.,y for some z, y as above. Furthermore by Lemma 2 all collision free labelings 
are equally likely. From this one can prove the desired statement. 

Proof of (2). The idea is very similar to  the above. This time, observe that 
with z given, if we assign an output label z E {0,1}' to  21.. . z; then the values 
of both Z n  and Y, are fully determined for all nodes XI,. . . , X,. We show as 
before that there is a set S(z) of these z values for which the determined labeling 
is collision free, and conclude as before using the equi-probability of collision free 
labelings. The formal proof follows. 
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Let z E (0, l}' be some fixed string. Now define the labeling Z,,,: { X I , .  . . , Xn} --+ 

{0,1}' by: 
z(Xj) if Xj # 21.. . z i  
z otherwise. zz,z(xj) = { 

Let Y,,, denote the input labeling induced by Z,,,, and observe that it is given 

y E , Z ( x j )  = {y(xj) Z @ Z ~ + ~  if + Xj = 21.. . z i ~ y + ~  for some 1 5 u 5 s. 
Let S(z) be the set of all strings z such that Z,,, is a collision free labeling. We 
leave to  the reader to check that z S(z) if and only if one of the following two 
conditions is satisfied: 

(1) Either z E { z(Xj) : 1 <_ j' 5 n and Xj # z1.. .z; }; or 
( 2 )  For some u E (1,. . , , s) it is the case that ~ @ Z Y + ~  E { y(Xj) : 1 5 j 5 

n and X j  6 CHILDREN(Z~. . . zi) >. 
This implies that I{O, l> '  - S(z)I 5 (n - 1) + (n - s)s 5 n - 1 + n2/4 5 2 ' / 2 .  So 
IS(z)l 2 2 ' / 2 .  Now observe that any collision free labeling equals Zz,, for some 
z,z as above. Furthermore by Lemma2 all collision free labelings are equally 
likely. From this one can prove the desired statement. 

by 
if X j  $ C H I L D R E N ( Z ~  . . . z,) 

A.3 Proof of Lemma 4 

We'll use the following notation: 

Pr, [ -1  = Pr [ .  I View, = ( X i , . .  . , X n  ; 9)  A ColFree(Zn) ] . 

Case 1. Xn+l is at level one. 

Let L + i  = 11. Note its input label is by definition 21. For each t = 1, . . . , n we 
claim that 

Pr, [Y,(x,) = 311 5 2 . 2 - l  . ( 2 )  
TO see why this is true, consider two cases. First, if X t  is at level one then 
Pr,[ Y,(Xt) = %I] = 0 by definition. On the other hand suppose X t  is at depth at 
least two. Then Xt = z1.. . ziz;+l is the child of some ZI . . .zi E {XI,.. . , X,}. 
Equation 2 now follows by Part 1 of Lemma 3. 

Given Equation 2 we can bound the probability of a collision as follows: 

Pr, [ lColFree(Z ,+I)] 5 Prn [ zi E {Yn(Xl)j - .  1 Yn(Xn)}] -t 

Prn[Zn+I(Xn+1) E {Zn(X1),- . . )Zn(Xn)}  

I 51 6 {Yn(Xl),. * * 7 Yn(Xn)} 
2n n 3n S - + - L -  
2' 2' 21 
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Case 2. Xn+l is not at level one. 

Then Xn+l = z 1 . .  .z;z;+l is the child of some 2 1 . .  .z; E {XI,. . ., X,). Let 
S = {Xi l . .  . , Xn} - {.I.. . .j}. We first claim that for any Xt E {XI,.  . . X,}: 

Pr, [Yntl(Xn+l) = Yn(Xt)l 5 2 . r '  - (3) 

To see why this is true, consider two cases. First, if X t  is a sibling of Xn+l then 

Pr, [Yn+l(Xn+1) = Y,(Xt)l = 0 

by definition. On the other hand suppose X t  is not a sibling of X,,+l. Then 
a collision free labeling z of S determines Y,(X,). Using this and Part 2 of 
Lemma 3 we have the following: (The sum here is over all collision free labelings 
z of S which are consistent with 2.) 

Pr, [Yn+l(Xn+l) = Y,(X,) 3 
= C,  Prn [ Yn+l(Xn+l)  = Y n ( ~ t )  I Z: = z ] . Prn [ z,S = Z ]  

= cs PI, [ Z , ( Z l . .  ..j) = Y,(xt)@zj+l I z,s = z ]  . PI, [ z,s = z ]  

Thus Equation 3 is again established. 

Given Equation 3 we can bound the probability of a collision: 

Prn [~COlFree(Zn+l)] 5 Pr, [Y,+l(X,+l) E {Y,(Xl),. . .,Yn(Xn))l + 
p ~ n ~ z ~ + 1 ( x n + l )  E {z7a(Xl)l* *.,Zn(Xn)} 

I Yn+l(XTa+l) 4 {Yn(Xl), . ,Yn(Xn)) 
2n n 3n 5 -  + - < - .  
2' 2' - 2' 

This completes the proof of Lemma 4. 
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