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Abstract. In the last few years, therc have been several attempts to 
build identification protocols that do not rely on arithmetical operations 
with large numbers but only use simple operations (see [lo,  81). One 
was presented at the CRYPTO 89 rump session ( [ S ] )  and depends on 
the so-called Permuted Kernel problem (PKP). Another appeared in 
the CRYPTO 93 proceedings and is based on the syndrome decoding 
problem (SD) form the theory of error correcting codes ([ll]). In this 
paper, we introduce a new scheme of the same family with the distinctive 
character that both the secret key and the public identification key can 
be taken to be of short length. By short, we basically mean the usual size 
of conventional symmetric cryptosystems. As is known, the possibility of 
using short keys has been a challenge in public key cryptography and 
has practical applications. Our scheme relies on a combinatorial problem 
which we call Constrained Linear Equations (CLE in short) and which 
consists of solving a set of linear equations modulo some small prime q, 
the unknowns being subject to belong to a specific subset of the integers 
mod q. Thus, we enlarge the set of tools that can be used in cryptography. 

1 The Underlying Problem 

Since the appearance of public-key cryptography, basically all practical schemes 
have been based on hard problems from number theory. This has remained true 
with zero-knowledge proofs, introduced in 1985, in a paper by Goldwasser, Micali 
and Rackoff ( [ 6 ] )  and whose practical significance was soon demonstrated in 
the work of Fiat and Shamir ([4]). In 1989, there were two attempts to build 
identification protocols t ha t  only use simple operations (see [lo,  81). One relied 
on the  intractability of some coding problems, the other on the Permuted Kernel 
problem (PKP). The  first of the  schemes was not really practical but has been 
followed by a truly practical proposal based on the so-called Syndrome Decoding 
problem (SD). The  purpose of the  present paper is twofold: 

First, to introduce a new scheme based on a combinatorial problem which 
we call Constrained Linear Equations (CLE in short) and which consists of 
solving a set of linear equations modulo some small prime q ,  the  unknowns 
being subject to belong to a specific subset of the integers mod q. 
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- Second, to  demonstrate in this setting, the possibility to  have an identifica- 
tion scheme where both the secret key and the public identification key can 
be taken to be of short length. By short, we basically mean the usual size of 
conventional symmetric cryptosystems, i.e. 64 or 80 bits. 

We briefly comment on the second point. Besides having been a long time 
challenge in public key cryptography, the question of short keys may be of practi- 
cal importance. As is known, identification schemes avoiding large integers such 
as PKP or SD, are not identity based. This means that public keys should be 
related to  the user's identity by a signature of some authority or by a directory, 
which the verifier has access to. If the second option is taken, then the key length 
becomes an important issue. It is even more important for the prover, a smart 
card in many practical applications: short keys may save space in the physically 
protected area of the card where they are stored and thus may allow the use of 
relatively low cost cards. 

We now turn to  our basic problem: 

Constrained Linear Equations (CLE) 
instance: A (small) prime number q ,  a system S of T homogeneous linear equa- 
tions with k unknowns and whose coefficients are integers mod p, a subset X of 
the integers mod q .  
Question Is there a solution of S consisting of k elements of the given set X ?  

It is easily seen that tjhe problem is NP-complete. Our further assumption 
is that i t  is intractable in the following sense: 

Intractability of CLE Assumption: No probabilistic polynomial time algo- 
rithm can take as its input the values of p, S ,  X and output, with non negligible 
probability, a solution of S consisting of Ic elements of the given set X. 
As usual, non negligible stands for bounded from below by the inverse of some 
power of the size of the input. 

From the practical point of view, we mention, as a minimal choice, the case 
where q = 257, k = 40, T = 20, 1x1 = 16. We do not really advocate these figures 
for highly secure applications but we use them as a convenient, benchmark in 
order to  establish comparisons with the minimal sizes provided for PKP or SD. 
The minimal size suggested for the SD identification scheme has been carefully 
analyzed in [3], where it is shown that the workload of the best possible known 
attacks is about 2". The minimal size of the parameters in the original PKP 
proposal (see [S]) has been extensively discussed in [l, 71. Attacks based on 
intelligent gaussian elimination and a space-time trade off yield a workload of 
252. Similar attacks can be carried against CLE and it  can be seen that the figures 
chosen above yield a similar 252 workload. Thus, the comparisons in terms of key 
size will be significant. Whether or not this is enough for applications is open 
for discussion. We feel that ,  for secure applications, it is safer to recommend the 
following parameters for CLE: q = 257, k = 48, T = 24, 1x1 = 16. 
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2 Key Generation 

The key generation algorithm is based on a trick which combines a linear op- 
eration and a highly non linear one. We feel that this trick might, find further 
applications in other areas of cryptography. The prime number q is such that 
q - 1 is the product of two almost equal integers. Thus, 251 is 15 * 16 + 1 and 
257 is 162 + 1 .  We write q - 1 = c * d .  We next consider the multiplicative group 
of non-zero integers mod q.  This is a cyclic group and we can easily build a 
subgroup G of order c. Picking one element in each class mod G, we get a set 
X ,  consisting of d elements such that any integer between 1 and q - 1 can be 
uniquely written as the product mod q of an element of G and an element of X .  
We let g(u)  the element of G appearing in the unique decomposition of u and, 
similarly, we let k(u) be the corresponding element of X .  If U is a vector whose 
coordinates are non-zero integers mod q ,  we let g ( U )  be the vector obtained by 
applying g coordinatewise. k( U )  is defined accordingly. 

Besides a fixed prime number q ,  a subgroup G and a fixed subset X as 
above, the proposed scheme uses a fixed ( n  x m)-matrix M whose coefficients 
are randomly chosen integers mod q .  This matrix is common to all users and 
is originally built randomly. Each user receives a secret key S which is a vector 
with m coordinates, each a member of X .  The public identification is computed 
as 

p = S ( M ( S ) )  
Note that there is a (slight) chance that the computation of g ( M ( S ) )  cannot 

be carried through if M ( S ) )  has some zero co0rdinate.A heuristic analysis shows 
that this happens with probability close to 1 - (1  - t)”. With the figures of the 
numerical example provided above, this is 0.07 and therefore, after a few trials, 
one can reach the desired value of P .  

Clearly, recovering the secret key S from the public data P amounts to solving 
the equation 

P @  T = M.S 

where @ denotes coordinatewise multiplication mod q and where S ,  T are two 
unknown vectors, having respectively m and n coordinates, subject to the con- 
dition that these coordinates are members of X . Thus, one has to solve an 
instance of the CLE problem with n equations and m + n unknowns. 

If we turn to our minimal size numerical example, we see that one can take 
q = 257 and n = m = 20. Furthermore, X has 16 elements as well as G. 
Thus both S and P can be coded on 80 bits. Without apparent consequence 
on the intractability of the combinatorial problem to solve, S can be generated 
deterministically from a (say) 64-bit seed. It is also possible to  fix the first four 
coordinates of the public key P or (better) to derive them from the public identity 
of the user. The resulting public key is stored on 64 bits, The key generation 
uses, as above, the idea of multiple trials. The expected number of trials until an 
acceptable key is found is about 7* lo4, which is still reasonable. A few more bits 
could even be saved by analogous tricks. We feel that these manipulations do not 
affect the security of the scheme that we will present, but this opinion should 
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be further investigated. If we turn to alternative numerical example mentioned 
above, we find the followingfigures: q = 257, n = m = 24, 1x1 = IGl = 16. Using 
the tricks just described, this is still compatible with secret and public keys of 
80 bits. 

We will now describe, in the style of [8, 111, two interactive identification 
protocols by which a prover demonstrates possession of the secret key S corre- 
sponding to the public key P .  

3 A Three Pass Identification Protocol 

As is the case for the PKP and SD schemes, we will need some cryptographic 
hash function H. This hash function should be collision free as will be discussed 
further. For practical implementations, a standard hash function such as Rivest’s 
MD5 ([9]) can be used. The protocol includes several rounds, each of these being 
performed as follows: 

1.  The prover picks at random two vectors U ,  V having respectively m and n 
coordinates, each an integer mod q.  He also chooses two random permuta- 
tions u and r. u operates on the integers { 1 . . . rn) and r on the integers 
{ 1 . . . n}.  Then he sends commitments hl , hz, h3 respectively computed as 

hi = H(u,  7, M.U + P EI V )  

ha = H(U.a ,  V.T) 

h3 = N ( ( U  + S).a, (V - T).T) 
In the above, H denotes the cryptographic hash function, +, - and 8 denote 
coordinatewise operations mod q and U.a stands for the action of D on U ,  
that  is to  say the vector Uo(j ) ,  1 5 i 5 m. Also, T is the vector with n 
coordinates defined by T = k ( M ( S ) ) ,  with the notations of section 2. 

2. The verifier sends a random element b of {0,1,2}. 
3. If b is 0, the prover reveals u, T U and V .  If b is 1, the prover reveals u,  7 

and the two vectors U’ = (U + S) and V’ = (V  - T ) .  Finally, if b equals 2, 
the prover discloses vectors U.u, V.7 together with vectors U” = (U + S).a 
and V” = (V - T).T.  

4. If b equals 0, the verifier checks that commitments hl and h2 have been 
computed honestly. This is possible since, using the values of u,  T ,  U and V 
disclosed at step 2, he can compute the respective values of M.U + P @ V ,  
U.u, V.T.  From these values he checks that hl = H ( o ,  T, A4.U + P 8 V )  and 
that hz = H(U.a, V.7). 
If b equals 1, the verifier checks that commitments hl and h S ,  were correct: 
note that a, 7 are known from step 3 and that 

M.U + P 8 v = M.(U + S )  + P 8 (V - T )  - M.S+ P EI T = M.U’+ PEI v’ 
This allows the verifier to  check the equality hl = H ( u ,  7, M.U’ + P @ V‘). 
He can also check that h3 = H(U’.u, V‘.T). 
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Now, if b is 2, the verifier checks commitments hz = H(U.a, V.r)  and h3 = 
H ( U ” ,  V”) .  Furthermore, the verifier computes the two vectors U” - U.U 
and V.r - I/” and verifies that all of their coordinates are members of X .  

The number r of consecutive rounds depends on the required level of security 
and will be discussed further on. 

4 A Five Pass Identification Protocol 

We new describe an alternative protocol allowing identification. Again, this pro- 
tocol includes several rounds, each of these being performed as follows: 

1.  The prover picks at random two vectors U ,  V having respectively m and 
coordinates, each an integer mod 9. He also chooses two random permuta- 
tions a and 7. a operates on the integers { 1 . .  .m} and T on the integers 
{ 1 .n}. Then he sends commitments h l ,  h2 respectively computed as 

hl = H ( a ,  7,  M.U + P 8 V )  

hz = H(S.a, T.T, U.a, V.T) 

In the above, all notations are as in the previous section. 
2. The verifier sends a random element a of between 0 and q - 1.  
3. The prover computes the pair Y = ( a s  + U).a ,  Z = (07’ - V).T and sends 

back these two vectors to the verifier. 
4. The verifier sends a random bit b of b = 0 or 1. 
5. If b is 0, the prover reveals u and r .  If b is 1,  the prover discloses vectors S.a 

and T.r 
6. If b equals 0, the verifier checks commitments h l .  This is possible since, using 

the values of a and r disclosed at step 2,  he can compute successively the 
respective values of Y’ = Y.a-’ and 2’ = Z.r-’, and then M ( Y ’ -  P @  Z’). 
Provided the answer is correct this last vector equals M.U + P @ V ,  From 
these values he checks that hl = H ( o ,  r, M.U + P @ V ) .  
If b equals 1, the verifier checks that commitment hz was correct: note that 
if the correct values of S.u and T.r have been received, the verifier can 
compute vectors Y - aS.o and aT.7 - Z .  These are respectively equal to 
U.a and V.7, so that one should have hz = H ( S . ~ , T . T , Y  - aS.u,aT.r - Z). 
Having checked this equality, the verifier also tests that the vectors received 
at step 5 are such that all of their coordinates are members of X .  

5 Security of the Scheme 

It is apparent that the security of the scheme relies on the difficulty of solving 
the equation 

P @ T = M . S  
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where P is the public key of a specific user and S ,  T are two unknown vectors, 
having respectively m and n coordinates, subject to the condition that these 
coordinates are members of X . 

In order to  perform the first protocol without knowing the secret key, various 
strategies can be used. 

- Having only U ,  V ,  u and 7 ready for the verifier's query and replacing the 
unknown S ,  T by arbitrary vectors with coordinates in X. In this case, the 
false prover hopes that b is 0 or 2 and the probability of success is 2/3 for 
a single round and (2/3)' in general, where r is the number of rounds. A 
similar strategy can be defined with U + S, V - T in place of U, V .  

- Having simultaneously U ,  V ,  U + S' and V - T' ready where S', T' is a 
regular solution of 

P @ T  = M.S 

(i.e. without the constraint about X). This yields the same probability of 
success. 

It is fairly clear that shifting beetween one strategy to another has also the 
same probability of success. Similar strategies can be designed for the second 
protocol with probability of success and (F)r  if the protocol is repeated 
r times. In the reverse direction, we have: 

Theorem 1. Assume  that some probabelestac polynomaal-tame adversary 2s ac- 
cepted wath probabelzty 2 (2/3)" + e after playang a constant number r of  rounds 
of the first protocol weth a faar verajier , then there exzsts a polynomaal-tzme prob- 
abdastac machane which extracts a secret paar S ,  T f rom the publzc data or  output 
callasons f o r  the hash funct ion,  waih overwhelmzng probabalaty. 

remark There is an analogous result for the second protocol with (2/3)' replaced 

by (y)". 
proof: Consider the tree T ( w )  of all 3' executions corresponding to all possible 
questions of the verifier when the adversary has a fixed random tape w .  Let 

cy = Pr(T(w) has a vertex with 3 sons ) 

If a is < E ,  then, i t  is easily seen that the probability of succes of the adversary 
is bounded by (2/3)" + E :  (2/3)' comes from the case where T ( w )  has no vertex 
with 3 sons and 6 from the other case. Thus cy is at least E and by resetting the 
adversary l / t  times, one finds, with constant probability an execution tree with a 
vertex having 3 sons. Repeating again, the probability can be made very close to  
one. Now a vertex with 3 sons corresponds to a situation where 3 commitments 
hl , hz, h3 have been made and where the adversary can provide answers to  the 
3 possible queries of the verifier. Consider the answer (T, r ,  U ,  V to  the question 
b = 0 and the answer u', r', U ' ,  V' to the question b = 1. Since 

H ( a ,  7, M.U + P @ V )  = hi = N(u', T' ,  M.U' + P @ V' )  
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we conclude that either a collision for the hash function H has been found or 
else u = u’, r = 7‘ and M.U + P 8 V = M.U’+ P 8 V’. Similar arguments show 
that, unless an H-collision has been found, the answer to b = 2 consists of U.U, 
V.r, U1.u,  V.T. We note that, since the last answer is accepted, both ( U l -  U).U 
and (V - V’).T have all coordinates in X. Also M.(U’ - U )  = P 8 (V - V’), 
as observed above. It follows that the underlying system of constrained linear 
equations has been solved. 

Following the techniques in [5], it is possible to  prove a more foundational 
result, which shows that repetition of either protol is a proof of knowledge of a 
solution of the constrained system 

P @ T =  M.S 

We state such a result for our first protocol. We let N denote the size of the 
public data. 

Theorem 2. Assume  that some  probabilistic polynomaal-time adversary i s  ac- 
cepted with non negligible probability after playing with a faar verifier a number 
of rounds of the first protocol that is @(logN), then there exists a polynomial- 
t i m e  probabilistic machine which extracts a secret pair  s, T f r o m  the public data 
o r  outputs collisons f o r  the hash function, wi th overwhelming probability. 

Before we turn to zero-knowledge, let us observe that, at step 3 of the first 
protocol, the prover eventually discloses the image of the secret pair S, T ,  un- 
der two random permutations u and T .  A similar remark applies to the other 
protocol. Thus, the exact repartition of the values of the unknowns in S and 
separately in T have to be considered as public data. This information makes 
the computation of the solutions of 

P @ T = M.S 

a bit easier. We have taken this into account when analyzing the security of the 
CLE problem. Still, it is advisable to avoid irregular distributions (e.g. where an 
element of S appears many times). 

It can be proved formally that both schemes are zero-knowledge. We will 
only give a brief hint for the first protocol. As we observed above, anyone can be 
ready to  answer two queries among the three possible ones at each round. Hence, 
by using the standard idea of resett,able simulation (see [6]), one can devise 
a polynomial-time simulation algorithm that mimics the fair communication 
between the prover and the verifier in expected time 0 ( 2 / 3 . r ) .  Some remarks 
are in order here: 

1.  As was just observed, the exact repartition of the values of the unknowns in 
S and T are basically public data. This does not contradict zero-knowledge 
as they leak equally from the actual executions and the simulated ones. 

2. Hash values make the simulation a bit harder: a convenient setting is the 
so-called random oracle model (see [2]). Alternatively, one has to assume 
specific statistical independance properties for the hash function. 
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6 Performances of the Scheme. 

The performances of our scheme are very comparable to those of [8, 111 and we 
will restrict ourselves to various remarks. 

1. As for previous schemes of the same family, the memory needed to implement, 
the scheme is not large: especially, it is not necessary to store all of M .  One 
can only store words corresponding to some chosen locations and extend 
these by a fixed software random number generator. 

2. The operations to perform are very simple and well suited to the environment 
of 8-bit microprocessors. 

3. The communication complexity of the protocol is quite acceptable: if we 
assume that hash values are 128 bits long, we obtain an average number of 
bits per round which is close to 840 bits for the first protocol and 725 for 
the second. This is for the minimal suggested size of parameters. For the 
alternate choice, these figures go up to 940 and 824. There is a trick that can 
save one hash value, at least for the first protocol. It consists of replacing 
hl ,  hz ,  h3 by H ( h l ,  hz ,  h3) and providing the missing hash value at step 3 
(for example transmitting h3 if b = 0). This yields similar communication 
complexities for both schemes. 

the first protocol has to be 
repeated 35 times and the second one only 20 times. Whether or not this 
is a serious drawback should be discussed with practical implementations in 
mind. We simply note that the number of interactions is almost the same in 
both case, because the second protocol needs more passes. 

5. AS is the case for PKP and SD, our scheme is not identity based. This 
means that public keys have to be certified by the issuing authority or that 
the verifier needs to access a directory. As emphasized in the introduction, 
the distinctive character of the scheme, namely the short key length, is a 
definite advantage in the latter case. 

4. In order to achieve a level of security of 

. 

7 An Additive Variant 

Before concluding the paper, we briefly mention an alternative approach for key 
generation: let X and Y be two subsets of the set of integers mod q ,  such that 
any integer can be written (non necessarily in a unique way) as the sum mod 
q of an element of X and an element of Y (it is not difficult to construct such 
subsets). From a random vector's xith m coordinates, all in X ,  one can compute 
M.5' as T + P, where T ,  P are vectors with n coordinates respectively in X and 
Y .  One can take P as a public key and keep S ,  T secret. The resulting CLE 
problem is written 

M.S = T -+ P 

where S, T are unknown vectors with coordinates in X .  Protocols to prove 
knowledge of the secret data are simple variants of those described above. We 
do not know whether this alternative key generation method is weaker than the 
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original one. We suspect it might be the case if X and Y are chosen in a simple 
way (e.g. by specifying that elements of X are those with prescribed bits equal 
to zero). 

8 Conclusion 

We have defined a new practical identification scheme based on a combinatorial 
problem which we call CLE (Constrained Linear Equations). This scheme allows 
the use of keys of short length (64 or 80 bits). We have proposed two protocols 
using CLE: both only use very simple operations and thus widen the range 
of techniques that can be applied in cryptography. We welcome attacks from 
readers and, as is customary when introducing a new cryptographic tool, we 
suggest that  the scheme should not be adopted prematurely for actual use. 
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