
Cryptanalysis of the CFB mode of 
the DES with a reduced number of rounds 

Bart Preneel*, Marnk Nuttin, Vincent Rimen*, and Johan Buelens 

Katholieke Universiteit Leuven, Laboratorium ESAT-COSIC, 
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium 

bart.preneelQerat.kuleuven,ac.be 

Abstract. Three attacks on the DES with a reduced number of rounds 
in the Cipher Feedback Mode (CFB) are studied, namely a meet in the 
middle attack, a differential attack, and a linear attack. These attacks are 
based on the same principles as the corresponding attacks on the ECB 
mode. They are compared to the three basic attacks on the CFB mode. 
In &bit CFB and with 8 rounds in stead of 16, a differential attack with 
230.' chosen ciphertexts can find 3 key bits, and a linear attack with 231 
known plaintexts can find 7 key bits. This suggests that it is not safe 
to reduce the number of rounds in order to improve the performance. 
Moreover, it is shown that the final permutation has some cryptographic 
significance in the CFB mode. 

1 Introduction 

The Data Encryption Standard (DES) was developed in the seventies at IBM 
(together with NSA) and was published by the National Bureau of Standards in 
1977 [8]. Its intended application was sensitive but unclassified data. In spite of 
the initial controversy, it became the most widespread cryptographic algorithm. 
Four modes of use of the DES have been specified in national and international 
standards [9, 111: Electronic Code Book (ECB), Cipher Block Chaining (CBC), 
Cipher Feedback (CFB) and Output Feedback (OFB). The DES has been the 
subject of several studies. One of the first properties that waa discovered waa 
the complementation property [lo]; it can be exploited to halve the number of 
operations for an exhaustive key search. Attacks have been described in [6, 71, 
but the most successful techniques are differential cryptanalysis introduced by 
E. Biham and A. Shamir [3] and linear cryptanalysis invented by M. Matsui [13]. 
The first attack which is faster than exhaustive key search was the differential 
attack of [5 ] .  Most attacks on the DES are applicable to the ECB mode, and 
some can be extended to the CBC mode [4]. Only one attack was published on 
the OFB mode [12]: it was shown by R. Jueneman that the size of the feedback 
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variable should be 64 bits. For the time being no evaluation of the DES in the 
CFB mode has been published [14]. 

In this volume, K. Ohta and M. Matsui describe a differential attack which 
is applicable to the m b i t  CFB mode for ‘large’ values of rn (m 3 24) [15]. This 
paper presents attacks that are also applicable for smaller values of m. 

In the first part of this paper the CFB mode is described. In Sect. 3 three 
basic attacks are discussed that depend only on the size of the parameters of the 
algorithm; they can serve as a point of reference. Section 4 shows how a meet in 
the middle attack can be applied in the CFB mode. In Sect. 5 the main result is 
discussed, namely the extension of differential cryptanalysis to the CFB mode. 
Section 6 discussed the applicability of linear attacks. Finally the conclusions 
are presented. 

2 TheCFBmode 
This section discusses the CFB mode for a block cipher with a block length o f t  
bits (t = 64 in case of the DES). The CFB mode is a stream mode, i.e., the size 
m of the plaintext blocks can be arbitrarily chosen between 1 and t bits. The 
scheme that is described here is a simplified version of the more general scheme 
contained in the standards. 

The CFB mode makes use of an internal t-bit register. The state of this 
register before the encryption or decryption of the ith block is denoted with 
Xi. First this register is initialized with the starting variable or XI = SV. The 
plaintext and ciphertext blocks are denoted with Pi and Ci respectively, and the 
encryption operation with the secret key K is denoted with EK(). 

The encryption of plaintext block i consists of the following two steps: 

Ci = Pi @ rchop,-,,, (EK (Xi)) 
Xi+l = lchop,(Xi)llCi. 

Here 11 denotes concatenation, rchop, denotes the function that drops the a 
rightmost bits of its argument, and b o p ,  denotes the function that drops the 
a leftmost bite of its argument. The decryption operates in a similar way. 

The most important property of the CFB mode is that if m is chosen equal 
to the character size, this mode is self ~ynchronixtng.  This means that if one 
or more m-bit characters between sender and receiver are lost, automatic re- 
synchronization occurs after t bits. This is especially important in a communi- 
cation environment, where m is typically equal to 1 or 8 bits. The price paid for 
this property is that the performance decreases with a factor t lm .  In contrast 
with the OFB mode, a single bit error is propagated with a factor t .  

For the m-bit CFB mode, a known plaintext and a chosen plaintext attack 
are equivalent: in both cases the cryptanalyst has no control over the input of 
the block cipher. If the cryptanalyst wants to control this input, like in a chosen 
plaintext attack on the ECB mode, a chosen ciphertext attack is required. In 
all cases the cryptanalyst can only observe m output bits. In OFB mode, the 
number of observable bits is also limited to m, but the most powerful attack is 
a known plaintext attack. 
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3 Three basic attacks 

The simplest attack is clearly an ezhavs t i ve  search for the key; it is a known 
plaintext attack. Exploitation of the complementation property requires a chosen 
ciphertext attack, or more precisely, a sufficient number of pairs of the form 
( C ~ , l ' i ) , ( ~ , P / ) .  Even in 1976 there was a debate over the feasibility of an 
exhaustive search for a 56-bit DES key. It is clear that this attack is becoming 
more and more realistic. For more details the reader is referred to [16]. The 
exhaustive attack is only discussed as a reference for other attacks. 

Two results will be presented. The first result is an expression for the number 
of plaintext/ciphertext pairs to determine the key uniquely. 

Proposition 1 Assume  one has a block cipher w i th  a k-bi t  k e y  in m-Bit CFB, 
where eve y c i p h e r t e d  bit depends on every  k e y  bat and plaintext  bit .  If one knows 
M plaintexi /c iphertext  pairs ,  the expected number of keys that  r e m a i n s  a f t e r  an 
exhuustive search i s  equal t o  

2k - 1 
Kexp = 1 + * 

From this proposition it follows that in order to determine the key uniquely M 
has to be slightly larger than k / m .  

A second result is applicable to the DES with a reduced number of rounds. 
The DES has 16 rounds; the number of rounds for the reduced version of the 
DES will be denoted with N .  Table 1 indicates how many key bits influence 
the ciphertext in the case of m-bit CFB with N rounds. It is clear that this 
depends on the selection of the bits. The standards specify that the leftmost 
m bits are selected. For the DES, this selection is influenced by IP-'. In l-bit 
CFB, the output bit is independent from the operations (and the subkey) in the 
last round, and for larger values of m the output bits are selected from different 
Sboxes. It will be shown in Sect. 5 and 6 that differential and linear attacks are 
very sensitive to these positions. It is remarkable that IP-l  h a  a cryptographic 
meaning in this context. IP and IP-' were probably introduced to facilitate 
hardware implementations, and it is easily seen that in ECB and CBC mode 
they have no security implication (except for the case where the plaintext has a 
special structure [3]). 

A second attack that is relevant is a comparison at tack [14!: the cryptanalyst 
searches for t-bit matches between the ciphertext bits. If a match occurs, he 
knows that the output of the block cipher will be equal in both cases, and hence 
he knows the exor of two plaintext bits. Note that the position of these plaintext 
bits cannot be selected. Because of the birthday paradox, such a match will occur 
after about 2'/'+' ciphertext bits. If t = 64, and the encryption speed is equal 
to 2 Mbit/s, the storage requirements are 1 Gigabyte, and it will take about 
1.16 hour to find a single match. If one waits for 25 days, one can collect 512 
Gigabyte, and one expects about 219 matches. This attack can be thwarted by 
increasing the frequency of the key change. If more than 242 bits are collected, 
even triple matches will occur. 

A third attack is the tabulation a t tack ,  which depends only on the size of 
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1 
2 
4 
8 
16 

Table 1. The number of key bits that influence the ciphertext in the case of the DES 
with N rounds in m-bit CFB. 

0 6 39 53 56 
6 45 53 56 56 
12 50 56 56 56 
18 52 56 56 56 
36 55 56 56 56  

number of rounds N 

I 

the input register (and not on the size of the key or the number of rounds). 
The cryptanalyst will use a huge amount of known plaintexts to build a table of 
the secret mapping f .  After about 2' - h(2*) encryptions of arbitrary plaintexts 
with the unknown key, the secret mapping is completely known. An important 
difference between this type of attack and the simple exhaustive key search attack 
is that in this case it is not possible to perform the computations in parallel. 

4 A meet in the middle attack 

One of the first attacks on the DES with a reduced number of rounds in ECB 
mode was the meet in the middle attack proposed by D. Chaum and J.-H. Evertse 
IS]. The attack is faster than exhaustive search for N 5 6. The basic idea is to 
look for r data bits in a middle round that depend on a limited number 8 of key 
bits. First an exhaustive search is performed for these bits, and subsequently the 
remaining key bits are determined. 

In the case of the CFB mode, the probability that a key can be eliminated is 
significantly smaller, as only a small part of the ciphertext is known. If N = 3 and 
m = 1, one can show that the optimal choice is P = 4 bits in the middle (namely 
bits 18, 19, 20, and 21 of the right half of the register in the second round). In 
this case the subkey has 8 = 27 bits. The probability that a bad subkey survives 
in one trial is not equal to 1/2r as for the ECB mode, but h/2', where h is a 
constant that has to be determined with a computer program (yielding h = 0.5). 
If it is assumed that the probability of survival for different plaintext/ciphertext 
pairs is independent, one can determine the expected number of remaining keys 
if M pairs are known: 

M 
R = 1 + ( 2 ' l - l ) ( l - k )  . 

The expected number of encryptions is equal to M + (2' .2')/h % 232 if M 
232. The search for the remaining key bits requires M + (2k''k)/(1 - 2-m) 
encryptions, where k denotes the total number of key bits that influences the 
output (in this case one finds in Table 1 that k = 39). If M = 256, the number 
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of operations in the second step is small compared to the first step. The total 
number of encryptions is a factor 27 smaller than for exhaustive search, but 
about 5 times more plaintext/ciphertext pairs are necessary. 

For larger values of rn, more ciphertext bits are known, but more key bite 
come into play as well. If rn = 8, one can extend the previous approach in a 
straightforward way. One can however also try to reduce the number of required 
plaintext/ciphertext pairs by looking to bits 3 and 5 of the output (hence r = 2). 
These bits only depend on 8 = 37 key bits. The number of operations for the 
fist and second step are equal to [6]: 

2"-8 + 2n-Mr 2' 
1 - 2-' M+- and M +  1-2'-m 

The first term corresponds to 236 bround DES encryptions, and the second 
term is equal to 232 if M = 12. This means that this is a factor 220 faster than 
exhaustive search. A comparable improvement was obtained in [6] for N = 4 in 
ECB mode. 

These results can be extended partially to 4 or 5 rounds, but the attack 
becomes more complicated: one cannot simply go backwards, because one has to 
guess some key bits and part of the ciphertext bits. Note that in ECB mode the 
improvement for 6 rounds is limited to a factor 4. As these attacks are known 
plaintext attacks, they are also applicable to rn-bit OFB. 

5 A differential attack 

First it will be explained why a differential attack cannot be applied directly to 
the CFB mode. Subsequently the required modifications will be discussed, and 
an attack on 4, 5 ,  and more rounds will be presented. Finally some extensions 
will be discussed, and several modifications to enhance the security of the. DES 
in the CFB mode will be proposed. 

5.1 W h y  does the conventional differential approach not work? 

A differential attack in ECB mode is based on the following principle. The actual 
valuea of the input bits of the last round are known (because they are the right 
half of the ciphertext before fP-'). The output exor of the last round is known 
with a certain probability (if the input pair is a right pair, the exor can be 
predicted). Subsequently the exor table and some additional information on the 
S-boxes allow to determine part of the subkey of the last round. 

In the CFB mode only part of the output is known, as indicated in Table 2. 
The information on the output bits is restricted to exor information. It is clear 
that a differential attack requires that information on both input and output 
bits of a single S-box is available. This means that in 1-bit CFB this approach 
is restricted to the trivial case of 2 rounds. If 3 rounds or more are used, it 
follows from Table 2 that m has to be at least 3. In the following the differential 
attack will be described for 8-bit CFB. In this case most information is available 
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Sbox known inputs 
1 a = 7  
2 e = l  
3 a = l  
4 e = 3  

on Sbox 3, namely 1 input bit and 2 output bits. A reduced exor table can 
be produced for the bits that are known by adding columns and rows of the 
original exor table. One could hope to determine information on key bit K44 
that is exored with input bit a of S3. However, it is easy to show that in this 
situation the output bits will not suggest a particular value for this single key 
bit (i.e., all values in the reduced exor table iire equal). 

accessible outputs S-box known inputs accessible outputs 
5 a = 3  a = 2  
6 e = 5  

a = 4 , P = 6  7 a = 5  a = 8  
8 e = 7  

5.2 An extended differential attack 

The differential attack can be extended to the CFB mode if one also uses the 
characteristic to predict the input exor of the last round (at least partially). This 
implies that the reduced exor table is obtained by adding only the columns of 
the original exor table. 

A second property which can be exploited is that if an input bit exor of an 
Sbox equals 0, the output exor reveals some information on the corresponding 
key bit. Denote the pair of intermediate ciphertext bits corresponding to bit u 
of S3 with (c, c'); the cryptanalyst knows both bits. The corresponding key bit 
is KM. The unknown input bits to the S-box are (c @ Ki, c' @ Ki). If c = c', or 
c@ c' = 0, these input bits will be equal to (0,O) if Ki = c = c' and will be equal 
to (1,l) otherwise. One can now divide the reduced exor table into two parts, and 
distinguish between these two cases. This will reveal some information on key 
bit KM. If c # c', no information can be obtained on K44. Indeed, the input bits 
to the S-box will be different, and the key bit K44 only determines whether they 
are equal to ( 0 , l )  or (1 ,O) .  Table 3 gives part of the new exor table for S3. The 
input and output exors of S-box i are denoted with Sik and Sit respectively, x 
denotes an unknown bit, and the subscript 

Information on the key bits can be obtained as follows. The probability that 
the corresponding key bit K44 is equal to 1 can be determined from the observed 

P indicates hexadecimal notation. 

h 
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Table 3. P u t  of the reduced exor table for S3 where the entries are split based on the 
actual value of input bits a. Only the most useful input exora axe listed. 

output exor by applying Bayes' rule'. For a right pair, one obtains that : 

It is clear that Pr(K44 = 1) = 1/2. Both input and output exor are only known 
with a certain probability. The probability that the input exor is correct is 
slightly larger, and it is clear that both probabilities are not independent. 

The next problem is how to combine the outcome of M pairs in an eficient 
way. Assume that it follows from pair j that the probability that K44 = 1 is 
equal to q i .  Then one defines 

q j  . @-I 
for j = 1,2,. . .,A4 and Qo = 0.5. 

QJ = pi . @-I+ (1 - $1 . (1 - Qj-1) 
(4) 

It can be shown that this corresponds to a repeated application of Bayes' rule. 
If QM > 0.5, one decides that K M  = 1. In practice one expects that, after a 
sufficient number of experiments, QM will form a reliable estimate for K44 and 
will be close to 1 (or 0) with high probability. 

An important issue is the choice of the characteristic in order to maximize 
I p - 0.5 1. This depends on the probability p of the characteristic, the possibility 
of filtering, and on the difference between the 0 - 0 and 1 - 1 entries in the 
reduced exor table. Let qi denote the value of q corresponding to a given input 
and output exor (the same numbering is used as for the values ei  in Table 4). 

One can now prove this proposition (the proof will be given in the full paper): 

One obtains in fact the exor of the key bit with the corresponding input bit of S 3 E .  
i 
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input exor S& 

withO$O 
w i t h 1 $ 1  

Table 4. A reduced exor table. 
- 

output exor s;, 
ooxx ' Olxx lOXx llxx 

el + ec, e2 + e6 ca -t er er + e8 

el ez es e4 

e6 ea er e8 

Proposition 2 The number M' of right pairs required t o  predict a key bit  with 
a probabiliiy of error equal to  1 - z satisfies the following inequality: 

Note that Proposition 2 can be extended to the case where certain output exors 
are filtered: one can simply modify the corresponding table entriea such that 
ei = ei+4, yielding q = 0.5. 

The optimization of the attack, or equivalently the minimization of M is 
not easy, since M also depends on the properties of the characteristic. A good 
heuristic measure for the differences in the exor table for a given input exor Sk 
is the expression 

Here i indexes the 4 columns corresponding to the 4 possible output exors Sb. 
This measure is indicated in Table 3. 

5.3 

It follows from the previous section that the value of S3h = Oix in the last round 
is optimal. The input exor to the first round is equal to (40 08 00 OOX, 04 00 00 00~). 
Then the characteristic has a probability of 1/4 in the first round. In the third 
round, it is sufficient that the input exor to S3 is correct. If the pairs with output 
exor OOzz for S3 are filtered, only a fraction of & of the right pairs is lost. From 
this it follaws that the fraction p' of right pairs after filtering is equal to 

An attack on 4 rounds 

One obtains then with (3) the following equation for q :  

This assumes that the wrong pairs yield a uniform distribution of output exors, 
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which has been confirmed by computer experiments. For S3k = 011 and jj = 0.39 
one obtains for q = 0.609, 0.527, and 0.383 for S3/, = Olzz, 10tz, and l l z z  
respectively. For an error probability of 5% (or z = 0.95), Proposition 2 predicts 
that MI = 16.6 and M = M ’ / p  = 89, which has been confirmed by computer 
simulations. 

If m = 8, a differential attack allows to  determine 3 key bits (namely one bit 
corresponding to S3,  S5, and S7). The details will only be discussed for a larger 
number of rounds. 

5.4 

In order to develop an attack that is extendible to more rounds, an iterative 
characteristic will be used; this characteristic is probably not optimal for the 
5 round case. For derivation of the key bit corresponding to S 3 ,  an input exor 
of O i x  is again the best choice. This implies that in the one but last round 52 
has to receive a non-zero input exor. For the iterative characteristic $ [3] (input 
exor of left halve equals 1B 60 00 OOr), the probability in this round is equal to 
#g, while for $ (input exor of left halve equals l ~ 6 0 0 0 0 0 x ) ,  this probability 
is equal to &. This implies that t$ is preferable ($ might be used in a quartet 
structure). 

The pairs for which the output exors of bit 1 or 7 are not equal to zero 
will be filtered; the same holds for the pairs for which the output exor of S 3  
is equal to OOzz. It is assumed that pairs that do not follow the characteristic 
in the second round give a uniformly distributed output. For pairs that do not 
follow the characteristic in round 4, one can filter all those that do not follow 
the characteristic in S2, and of the pairs that do not follow the characteristic 
in S1. This yields the following fraction of right pairs among the filtered ones: 

An at tack on 5 rounds 

- 1 55 62 ’ 

234 ’ = 9.40.10-~. 25 4 
p” 

For an error probability of 5% (or z = 0.95), Proposition 2 predicts that 370 000 
pairs are sufficient to obtain a key bit (only 1 characteristic has been used). 
Computer simulations show that the actual number of pairs is even smaller. 

For Sboxes 6 and 7, a similar strategy can be followed. The best iterative 
characteristic for both S-boxes has input exor 00 00 ID 4OX for the left halve. In 
the one but last round this characteristic has probability & for 5 5  and $& for 
S7 to yield an input exor of 04x respectively Qix. The fraction of right pairs 
after filtering is equal to 5.92 - lom3 and 3.33.  from which one can estimate 
that the number of required pairs is equal to 12 and 8.4 million respectively. In 
both cases one can eliminate those pairs for which the exor of bits 3 and 5 is not 
equal to 0. 

5.5 Six rounds and more 

The same characteristics can be used as in the previous section. In order to 
optimize that attack one can use the ideas of [5] to get around the first round. 
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# rounds N 

6 
8 
10 
16 

The problem here is that the filtering of wrong pairs will be less effective. The 
estimated number of pairs to find 1 and 3 key bits for 8:bit CFB are indicated 
in Table 5. 

The attack for N = 7 (without the optimization to gain an additional round) 
was implemented aa a distributed application on a heterogeneous, non-dedicated 
farm of 30 DEC workstations, using the PVM (Parallel Virtual Machine) soft- 
ware [l] for interprocess communication. The program was generated and run 
from the ReNCE (Heterogeneous Network Computer Environment) software [2]. 
The correct key bits were retrieved from 236.a pairs using a quartet structure; 
the attack took about 40 hours. 

probability p # Pairs 
1 bit 3 bits 1 bit 3 bits 

9 . 4 0 . 1 0 - ~  3.33.10-~ 218.5 223.0 

4.05.10-5 1.15. 234.a 239.4 
250.0 255.8 1.73. lo-' 3.93 ' lo-8 

1.57.10-l~ p 7 . a  2104.7 1.35 * 10'" 

5.6 Extensions 

If the number m of feedback bits increases, more key bits can be found (5  if 
m 1 15). If m 2 18 three output bits of a single S-box are known, which implies 
that a smaller reduction has to be applied to the exor tables, resulting in a 
reduction of the required number of chosen ciphertext pairs. If rn 2 15, two bits 
of S8 in the last round are known, and the input to the one but last round can 
be estimated. Only if rn 2 28 one obtains in this way information on both input 
and output of a single S-box, which allows to determine key bits in this round. 

This differential attack would be impossible without I P 1 .  In the absence 
of IP- l  only information on the output of S-boxes of the last round would be 
available. The security of the DES in l-bit CFB could be improved if the bit 
is selected from the left half of the ciphertext. Selecting all the CFB bits from 
the left half of the ciphertext thwarts the proposed differential attacks for small 
values of m. Another way to strengthen the DES in the CFB mode against 
differential attacks could be a redesign of the S-boxes in the last round in order 
to decrease the difference between the 0 - 0 and 1 - 1 entries in the reduced exor 
table. Finally a completely different structure for the computation of the CFB 
bits from the inputs to the last round could be used. 
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6 Linear cryptanalysis 

This section will summarize the most important results of a linear attack on the 
DES reduced to 8 rounds in the CFB mode. Additional results will be given in 
the full paper. The following notation will be used: 

A[il = the i-th bit of A,  where the most significant bit has number 1, 
A[4 j ,  4 = A[q @ A[j]  @ A[k] , 
Fi(X,  K )  = the i-th round substitution. 

In linear cryptanalysis of the DES [13], one tries to approximate the S-boxes by 
equations of the form P [ i l ,  . . . , i p ]  $Cbl, . . . , je] = KII1, . . . , /k], where i l ,  . . . , i p ,  
j1,. . I , ic, li, . . . , l k  are fixed. This equation holds with probability p # 0.5. The 
equations of the different rounds can be combined into a relation that holds for 
the entire algorithm. 

Unlike the differential attack, the published linear attack can be applied 
directly to the CFB mode. The only limitation is that there are less bits visible 
from the ciphertext. This reduces the number of useful linear relations. We found 
the following relations: 

C[48,56] @ P[16,24,42] @ Fl(P, K)[16,24] @ K[2,3,11,18,35] = 0, 
C[16,24] @ P[11,48,56] @ Fi(P, K)[11] @ K[17,18,19,51,52,59,60] = 0. 

They hold with p = 0.5 + 1.5 x 2-15 and p = 0.5 + 2-19 respectively. The output 
bits involved are known if rn 2 6. Each relation can be used to determine 7 key 
bits. For an accuracy of 96 %, 1.78 x 231 texts are necessary for the first equation 
and 1.78 x Z3’ for the second equation. 

7 Conclusions and open problems 

Several attacks on the DES in the ECB mode can be extended to the m-bit CFB 
mode. They are only faster than exhaustive key search if the number of rounds 
iS reduced. A meet in the middle attack on the DES with 3 rounds yields an 
improvement with a factor 220 over exhaustive search in case of 8-bit CFB or 
OFB mode. A modified differential attack has been presented that works in m- 
bit CFB with m >_ 3, The most important modifications are that the exor of the 
input to the S-boxes of the last round are determined based on the characteristic 
and that the exor table is reduced. Moreover additional information on actual 
input values is taken into account. The attack is 8 times faster than exhaustive 
search for 9 rounds or less and 2 times faster for 10 rounds. A linear attack for 
m 2 6 has been discussed. When the number of rounds of the DES is reduced 
to 8, 2’l known plaintexts are required to determine 7 key bits. 

These attacks are completely theoretical in the sense that they pose no threat 
for the DES with 16 rounds in the m-bit CFB mode (for ‘small’ rn). However, 
they are of some interest because for small values of m the rn-bit CFB mode is 
very slow: this is an argument to reduce the number of rounds in order to obtain 
an acceptable performance. An interesting result is that the DES with 8 rounds 



223 

in &bit CFB mode is less secure against these attacka than the DES with 16 
rounds in ECB mode, while the first scheme is 4 times slower. It haa been shown 
that in the CFB mode (and the OFB mode) 1P-l  has a cryptographic meaning. 

It would be interesting to extend all theae attacks to other iterated block 
ciphers like IDEA and LOKI91. One of the important differences will be that 
the known bits are concentrated in a few S-boxes. 
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