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Abstract: Many public key cryptographic schemes (such as cubic RSA) 
are based on low degree polynomials whose inverses are high degree poly- 
nomials. These functions are very easy to compute but time consuming 
to invert even by their legitimate users. To overcome this problem, it is 
natural to consider the class of birational permutations f over k-tuples 
of numbers, in which both f and f-' are low degree rational functions. 
In this paper we develop two new families of birational permutations, 
and discuss their cryptographic applications. 

Remark: At the rump session of CRYPTO 93, Coppersmith Stern and Vau- 
denay presented two elegant and powerful attacks on the two signature schemes 
suggested in this paper. The attacks are quite specific, and thus it is conceiv- 
able that other signature schemes based on birational permutations will not be 
affected. The reader is thus encouraged to study the underlying mathemati- 
cal structure of the schemes and the attacks, but to excercise great caution in 
implementing the ideas in practice. 

1 Introduction 

The original proposal for public key cryptography (Diffie and Hellman [1976] was 
based on the notion of trapdoor permutations, i.e., invertible functions which 
are easy to  compute but apparently difficult to invert, unless some trapdoor 
information (which makes the inversion easy) is known. The best known imple- 
mentation of this idea is the RSA scheme (Rivest, Shamir and Adleman [1978]), 
which can solve in a unified way the problems of key management, secure trans- 
mission, user identification, message authentication, and digital signatures. In 
one of the variants of this scheme, the encryption function is the low degree 
polynomial f ( z )  = x3 (mod n) ,  which can be efficiently computed with two 
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modular multiplications. Unfortunately, its inverse f - ’ ( v )  = vd (mod n) is a 
very high degree polynomial, and thus its evaluation is quite slow (especially in 
software implementations). 

In spite of extensive research in the last 16 years, there had been no funda- 
mentally new constructions of trapdoor permutations which are faster than the 
RSA scheme. To overcome this difficulty, researchers have developed specialized 
solutions to various cryptographic needs which are not based on this unifying 
notion. For example, Diffie and Hellman [1976] proposed a key management 
scheme which is based on the one-way permutation of exponentiation modulo a 
prime. Since this function cannot be efficiently inverted, it is neither an encryp- 
tion nor a signature scheme. The cryptosystem of Merkle and Hellman I19781 
is invertible, but its mapping is not onto and thus it can not generate digital 
signatures. The Fiat-Shamir [1986] and DSS [1991] signature schemes are not 
one-bone mappings, and thus they can not be used as cryptosystems. 

A natural approach to this problem is to search for low degree algebraic mappings 
(polynomials or rational functions) whose inverses are also low degree algebraic 
mappings. Such mappings are called birational functions. We are particularly 
interested in multivariate mappings f(q, . . . , zk) = ( ~ 1 , .  . . , V I S )  in which the x i  
and the ui are numbers modulo a large n = pq ,  since the solution of general 
algebraic equations of this type is at least as hard as the factorization of the 
modulus. In this context, we say that a polynomial modulo n is low degree if its 
degree is a constant which does not grow with n, and a rational function is low 
degree if it is the ratio of two low degree polynomials. For example, in the caSe 
of cubic RSA, the function is considered low degree, but its inverse is not. Non- 
linear algebraic mappings do not usually have unique inverses, when they do have 
inverses they usually cannot be written in closed form, and when the closed forms 
exist they are usually based on root extractions (radicals) or exponentiations 
whose computation modulo a large n is very slow. The construction of non- 
linear birational mappings is thus a non-trivial task. 

One attempt to construct birational permutations, due to Fell and Diffie [85] ,  
used the following DES-like idea. Let ( q , ~ , .  . . , zk) be an initial k-vector 
of variables, and let g be a secret nonlinear multivariate polynomial. Alter- 
nately replace the current k-vector of multivariate polynomials (PI, p z ,  . . . , p k )  
by (p1 + g(p2,. . . , p k ) , p 2 , .  . . , p k ) ,  and rotate the k-vector to the right. After 
sufficiently many iterations, expand and publish the resultant k-vector of mul- 
tivariate polynomials as your public key. When the trapdoor information g is 
known, the inverse of f can be computed by undoing the transformations (Le., 
by alternately subtracting p1 and rotating the C-vector to the left). Unfortu- 
nately, even when g is a quadratic function, the degree (and thus the size of the 
public key) grows exponentially with the number of iterations, which cannot be 
too small for security reasons. As the authors themselves conclude, “there seems 
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to be no way to build such a system that is both secure and has a public key of 
practical size”. 

The problem is not accidental, due to the following generic attack: I f f  is known, 
the cryptanalyst can prepare a large number of input-output pairs for this func- 
tion. Since f is invertible, these pairs (in reverse order) can be used to interpolate 
the unknown low-degree function f-’ by solving a small number of linear equa- 
tions relating its coefficients. We do not know how to solve this problem in 
the context of public key cryptosystems. However, in the context of public key 
signature schemes there is a simple way to avoid this specific attack with the 
following modification: 

Key Generation: Each user in the system chooses a particular birational per- 
mutation f(z1,. . . , zk)=(vl f . . . f u k )  consisting of k rational functions f;(.~, . . . 
zk) = v ; ,  discards the first s > 0 of these fi functions, describes the other L - s 
f, functions in his public key, and keeps the inverse o f f  as his private key. 

Signature Generation: Given a digital message rn, the signer chooses V ;  = r; 
for i = 1,. . ., s, and computes ui = h(m, i )  for i = s + 1,.  . . k, where ri are 
newly chosen secret random values, and h is a publicly known cryptographic hash 
function. He then uses his knowledge of the secret f-’ to compute a signature 
(21,. . . , zk) satisfying f(q,. . . , zk) = (q, . . . v k ) .  

Signature Verification: The verifier checks that fi(z1, . . . , zk) = h(m, i )  for 
i = s + 1,. . -, k, where the f;’s are taken from the signer’s public key. 

This modified scheme can no longer be used as a cryptosystem, since the cleartext 
( z ~ ,  . . . , zk) cannot be uniquely recovered from the shorter ciphertext ( v S + i ,  . . . , 
vk). It can be used as a signature scheme, since messages can have multiple sig- 
natures. The cryptanalyst cannot interpolate f-l since it is not uniquely defined 
by the public key: He cannot generate complete input-output pairs for f-l by 
himself, and cannot use input-output pairs generated by the legitimate signer 
since each one of them is based on new unknown values r; .  The recommended 
choice of s is 1, which makes the verification condition hardest to satisfy. 

The security of this scheme depends on the choice of birational permutations. 
In Section 2 we introduce a simple family of birational permutations based on 
sequentially linearized equations, and in Section 3 we introduce a more sophisti- 
cated family of birational permutations based on algebraic bases in polynomial 
rings. Both families yield signature schemes with very low computational com- 
plexity. Unfortunately, both families also turn out to be breakable by the new 
attacks of Coppersmith Stern and Vaudenay[l993]. The reader is encouraged to  
look for other families of birational permutations and to study their efficiency 
and security. 
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2 
earized Equations 

A Birational Permutation Based on Sequentially Lin- 

Let n be the public product of two large secret primes p and q. verify Con- 
sider the triangular birational permutation g(y1,. . . yk) = (wl, . . . , wk) (mod 
n) in which the i-th output depends only on the first i inputs via the mapping 
qi(y1, ..., yi) = w; (mod n), where gi is a low degree polynomial which is linear 
in its last input y; (the other inputs can and should occur non-linearly). Given 
the values of inputs yl, . . . , yk, we can easily compute the values of the outputs 
w1, .  . . , wk by evaluating k low degree polynomials. Given the values of the 
outputs w1,. . . w k ,  we can easily recover the values of the inputs y1, . . . , yk by 
solving a series of linear equations: First we solve for y1 in gl(y1) = w1 (mod n). 
Then we substitute the computed value of y1 into its (non-linear) occurrences 
in g2(y1,y2) = w2 (mod n) ,  and solve the remaining linear equation in y2. We 
proceed in this order until we compute the last yk. Each yi is thus a low degree 
rational function of the wj’s, which is easy to compute with a small number of 
arithmetic operations modulo n.  

To hide the easy solvability of the gi’s, the user has to transform them into 
more random looking polynomials before publishing them as his public key. We 
recommend the following two transformations: 

1. Let A be a randomly chosen invertible k x k matrix, and consider the 
variable transformation Y = AX, where Y is the column vector of orig- 
inal variables (yl, . . , , yk)t and X is a column vector of new variables 
(21,. , . , x k ) t .  When the resultant polynomials are expanded, they con- 
tain all the variables in a non-linear way. 

Let B be a randomly chosen invertible k x k matrix, and consider 
the mixing transformation F = BG, where G is the column vector of 
polynomials (gl, . . . , gk)t and F is a column vector of new polynomials 
(fi, . . . fk)t. Each f; is thus a polynomial whose coefficients are ran- 
dom linear combinations of the corresponding coefficients of the given 
91, . . . , Sk. 

When A and B are known, it is easy to solve the resultant system of equations 
f ; ( ~ i ,  ..., “k) = V j  (mod n )  for i = 1, ..., k by inverting these transformations. 
of them change be To minimize the size of the public key, we recommend using 
9;’s which are homogeneous quadratic expressions of the form: 

2. 

S i ( Y 1 , .  . . Yi) = li(Y1,. . . , ~i-1) - yi + Q ~ ( Y I , .  . . yi-1) (mod n)  

where 1; is a randomly chosen linear function of its inputs and qi is a randomly 
chosen homogeneous quadratic function of its inputs. The only exception is 91 
in which 11 and q1 have no inputs. Since the coefficients of the linear g1 cannot 
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be mixed with the coefficients of the quadratic 9 2 , .  . . I gk, and since we have to 
eliminate at least one of the polynomials in order to overcome the interpolation 
attack, we recommend the elimination of g1 from the user’s public key. 

Without loss of generality, we can assume that gl(m) = y1 and g2(y1, y2) = 
y1y2 (since they can always be brought to this form by Linear transformations). 
The case 12 = 2 is thus equivalent to the OSS scheme (Ong, Schnorr, Shamir 
[STOC83]), where the variable transformation A is = 21 + 0 5 2 ,  yz = 21 - 0 2 2  
and the mixing transformation B is the identity (all the arithmetic operations 
are carried out modulo a composite n). solves the signature The OSS scheme was 
successfully attacked by Pollard [1984], who showed that one quadratic equation 
in two variables can be solved even when the factorization of the modulus is 
unknown. A typical example of the extended signature scheme for k = 3 with 
the toy modulus n = 101 is: 

Example: Consider the following sequentially linearized system of equations: 

y1 = w1 (mod 101) 
y1y2 = w2 (mod 101) 

( 2 9 ~ 1  + 43Y2)y3 + ( 7 1 ~ ;  + 53y; + 89yly2) = ul3 (mod 101). 

Apply the linear change of variables: 

yi = 21 + 2522 + 732’3 (mod 101) 
y2 = 21 + 47x2 + l lz3 (mod 101) 
y3 = 21 + 8322 + 1723 [mod 101) 

to obtain the new expressions: 

Mix these three expressions g1,g2, and 93 by computing: f1 = g1 
f2 = (39~2  + 8293) 
expressions are: 

(mod 101)’ 
(mod 101)’ f3 = (93g2 + 51g3) (mod 101). The resultant 
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Discard the first equation, publish the last two equations as your public key, and 
retain the variable transformation A and the mixing transformation B as your 
secret key. 

To sign a message rn, hash it into two numbers v2, v3 in [O,lOl). Assume that 
v2 = h(m, 2) = 12 and w3 = h(m, 3) = 34. Its signature is any triplet of numbers 
zi, 22,  x3 which satisfies the two published equations for these values of v2 ,  v3. 
To find such a solution, choose a random value for v1 (each choice will yield 
a different signature). For example, let v l  = 99. Apply the inverse mixing 
transformation B'l by computing w1 = ul = 99 (mod 101), wz = 8 ~ 2  + v3 = 
29 (mod 101). The equations in terms of 
the yi's are thus: 

(mod l O l ) ,  w3 = 27v2 + 18v3 = 27 

YI = 99 (mod 101) 
y1Y2 = 29 (mod 101) 

(2% -k 43Yz)Y3 + (71~:  + 53yi + 8991~2) = 27 (mod 101). 

To solve it, substitute y1 = 99 into the second equation and solve the linear 
equation 99y2 = 29 (mod 101) to obtain y2 = 36. Substitute both values into 
the third equation, simplify it into 76y3 + 45 = 27 (mod 101), and solve it to 
obtain y3 = 29. Finally, use the inverse of the variable transformation A to 
change this Y solution into the X solution = 4 0 , 2 2  = 2 7 , ~  = 22 which is a 
valid signature of rn since it satisfies the two published equations. I 

Two general homogeneous quadratic equations in three unknowns have 12 coef- 
ficients, but they can be changed without loss of generality into a normal form 
which reduces the size of the public key to five numbers. The size of each signa- 
ture is 196 bytes (when n is a 512-bit modulus). The generation and verification 
of each signature requires about 20 modular multiplications, compared to about 
760 modular multiplications in the RSA scheme and about 50 modular multi- 
plications in the Fiat-Shamir Scheme. 

3 A Birational Permutation Based On Algebraic Bases 

In this section we introduce a different family of birational permutations, which 
is inherently non-linear in all its components. The construction is quite unex- 
pected, and seems to have many possible extensions and modifications. 

Let Fd[y1 , y2, . . . , yk] denote the set of all the homogeneous polynomials of degree 
d in the k variables y1, y 2 , .  . . , yk. We consider in particular the case of quadratic 
polynomials ( d  = 2), which are linear combinations of the k(k + 1)/2 elementary 
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quadratics y;yj for i 5 j with coefficients aij. Such a set of quadratics is called 
a linear basis of F ~ [ M ,  . . . , yk]. 
If we allow the additional operations of multiplication and (remainder-free) divi- 
sion of polynomials, we can express some of the elementary quadratics by other 
elementary quadratics. For example, the standard linear basis of F2[y1, y2, y3] is 
{yl,  y2, y3, YI a, nm, y2y3). However, the first three elementary quadratics can 
be expressed by the last three in the following way: 

2 2 2  

Y? = (?/lY2>(Yl?&)/(y2?/3)r Yz = (YlY2)(Y2!h)/(Yl!&), & = (Yl?&)(Y2Y3)/(Y1Y2)- 

We can thus reduce the six linear generators { g , $ , y $ ,  y1y2,y1y3, y2y3} into 
the three algebraic generators (yly2, yly3, y2y3). Another triplet of algebraic 

generate F2 [ y ~ ,  yz , y3] since it cannot express y1 B. 
To formalize this notion, consider an arbitrary set G of polynomials over a ring R. 
Its algebraic closure [GI of G is defined as the smallest set of polynomials which 
contains G and R, and is closed under addition, subtraction, multiplication, and 
remainder-free division. Note that [a is not necessarily an ideal in the ring of 
polynomials over R, since we do not allow arbitrary polynomials as coefficients of 
the generators. For example, when G = {y2}, [GI is the set of all the polynomials 
in y whose monomials have even degrees. Note further that root extractions 
(radicals) are not allowed as basic operations, since they cannot be carried out 
efficiently in some rings R. G is called an algebraic basis of F if the polynomials 
in G are algebraically independent and F is contained in [GI. 
Theorem: 1. Theset ofpolynomials {y,", 7 ~ 1 ~ 2 ,  my3,. . . , ?Jk-lyk} is an algebraic 
basis of F2[3qr M ,  . - .  , yk] for any k, 
2. The set of polynomials (yly2, ~ 2 ~ 3 ,  ~ 3 ~ 4 , .  . . , y k x }  is an algebraic basis of 
F2[y1,y2,...yk] for anyodd k > 1.  

generators is {$, n y 2 ,  mm}. However, {yl, 2 2  y2, am} does not algebraically 

Proof (sketch): We show that the specified sets can generate all the other 
elementary quadratics y;yj for i 5 j .  Assume first that j - i is an odd number. 
Then we can use the telescoping formula: 

Y;Y~ = ( y i y i + l ) ( ~ i + a ~ i + 3 )  * * . ( Y ~ - I Y ~ ) / ( Y ~ + I Y ~ + ~ ) .  . e ( ~ j - 2 ~ j - l ) -  

If j - i is an even number, this approach will yield y;/yj instead of y;yj. To turn 
the former into the later, we have to multiply it by #. In case 1, we are given 
y: as a generator, and we can turn each y: into by using the formula: 

2 2 2  
Y t + l  = (YtYt+ l )  /Yt * 
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In case 2, we use the fact that k is odd, and therefore the distance from j to j 
via the cyclic order yj, y j+ l , .  . . , yk, y l ,  . . . , yj is odd. The telescoping formula 
will thus yield the desired y; if we cycle through all the variables yt. I 

The Theorem specifies two types of algebraic bases of size r(: for F2[y1, . . . , yk]. 
To get other bases, we can use the variable transformation A and the mixing 
transformation B described in Section 2. Due to the invertible and algebraic 
nature of these transformations, it is easy to translate the representation of each 
f in the original basis into a representation of f  in the new bases. 

Example: Consider the algebraic basis G = (yly2, y2y3, y3yl) of F2[y1, ~ 2 ,  ~ 3 1 ,  
and the randomly chosen linear transformations: 

37 62 71 41 73 51 

(50 17 93) B =  (i: i: i:) A =  89 45 68 

Then the linear change of variables Y t AY (mod 101) changes the generators 
g; in G into: 

d = (37Yl + 6 2 ~ 2  + 71~3)(89yi + 4 5 ~ 2  + 6 8 ~ 3 )  

d = ( 8 9 ~ 1 +  45Y2 + 6 8 ~ 3 ) ( 5 0 ~ 1 +  17Y2 + 9 3 ~ 3 )  

= 12yiy2 + 38y2y3 + 4 8 ~ 3 ~ 1  + 61y: + 63y; + 819; 

= 2 6 ~ 1 ~ 2  + 8 9 ~ 2 ~ 3  + 62y3y1+ 6y; + 58yi + 62yi (mod 101) 

= 93YiY2 + + 223/3Yi + 32y: + 44y; + 38yg (mod 101) 

(mod 101) 

d = (5091 4- 17Y2 + 93y3)(37yi + 62Y2 + 71y3) 

and the linear transformation G" t BG' (mod 101) changes the generators g: 
in G' into the new generators: 

g: = 419; + 739; + 51g$ 

g; = 899; + 129; + 60s: 
= 63yiy2 + 78y2y3 + 41y3yl + 26y: + 72y; + 89yi 

= 92YiYz 4- 44Yzy3 + 74y3y1+ 48y: + 55y; + 32yi 

= 9YiY2 + 5 1 ~ 2 ~ 3  + 43y3yi + 96y: + 34y; + 53yi 

(mod 101) 

(mod 101) 
g: = 37g; + 949; + 19s; 

(mod 101) 

Since G" is an algebraic basis, it can be used to represent any given quadratic 
polynomial such as f = y:, but the representation is not obvious unless the 
invertible transformations A and B are known. I 
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To simplify our notation, we assume without loss of generality that k > 1 is odd 
and G is always the symmetric basis {y;y;+l} (where i + 1 is computed mod 
k). Given the invertible linear transformation Y t AY, we define A&A as the 
k x k(k+ 1)/2 matrix whose i-th row represents the quadratic polynomial yiyi+l 
after the change of variables. The coefficients of the final basis G" can thus be 
compactly represented by the t x k(t + 1)/2 matrix B(A&A). 

Assume now that we are given an arbitrary assignment of values X I ,  . . , , xk to the 
elementary quadratics y1y2, ~ 2 ~ 3 , .  . . , y 1 y 1  in the standard basis of F2[y1,. . ., 
yk]. We can use the telescoping formulas to compute the values of all the k(t + 
1)/2 elementary quadratics yiyj for i 5 j .  We denote this extended version of X 
by E ( X ) ,  and note that it increases the height of the column vector from k to 
k(t + 1)/2. The values of the k generators in GI' for this assignment X can be 
computed by the matrix-vector product V = [B(A&A)][E(X)]. Note again the 
non-linearity of this transformation, which is due to the quadratic computation 
of the coefficients of A&A from the coefficients of A, and the multiplications and 
divisions required to extend X into E ( X ) .  

This function maps the k-vector X into the t-vector V .  Our goal now is to 
invert this function and recover the original values in X when A and B are 
known. First, we can undo the effect of B by computing W = B-IV,  and 
obtain the relationship W = [A&A][E(X)]. By definition, the values wi in W 
are the values of the generators g: in the intermediate G'. Since G' is an algebraic 
basis, it can represent any quadratic polynomial in F2[y1, . . . , yk] as an algebraic 
expression in the generators g:. In particular it can represent the t elementary 
quadratics yiyi+l in such a way. However,- each xi was defined as the value 
of yiyi+l, and thus it can be recovered by evaluating an appropriate algebraic 
expression in the values w l ,  w 2 , .  . . , wk. It is easy to check that these algebraic 
expressions can be compactly represented as X = [A-l&A-'][E(B-lV)]. 

Example (continued): Consider the algebraic bases G, G' and G" of the pre- 
vious example. Let X i  denote the value of yiy;+l, ix.: y1y2 = X I ,  y2y3 = 
x2, ~ 3 ~ 1  = x3 (mod 101). The values of the other three elementary quadrat- 
ics can be expressed by as y; = X ~ X I / X ~ ,  y; = X ~ X ~ / X I  
(mod 101). The values v;  of the g; are computed via [B(A&A)][E(X)], i.e.: 

y: = X I X ~ / X ~ ,  

In particular, when the input is x1 = 1, x2 = 2, x3 = 3, the output is v1 = 
54, v2 = 63,  v3 = 85. To invert this mapping we reverse the transformation GI' t BG' (mod 101) by computing W = B- i V (mod 101). When v1 = 54, 



v2 = 63, v3 = 85, this matrix-vector product yields w1 = 94, w2 = 69, w3 = 1, 
which are the values of the intermediate generators gi, g;, g' We then extend 
this W into E(W)  = ( w l ,  w2, wg, W ~ W I / W ~ ,  W I W ~ / W ~ ,  w2w37w1), and compute 
X = [A-'&A-')[E(W)] (mod n ) ,  i.e.: 

(mod 101) 

(mod 101) 

mod 101).  

For ~1 = 94, w2 = 69,203 = 1, the extension of W to E ( W )  yields the 
column vector (94,69,1,16,22, 19)t. When these values are substituted into the 
expressions above, we get the original inputs z1 = 1, 2 2  = 2, z3 = 3. I 

Note that the application and inversion of the function have essentially the 
same form. They use a small number of modular additions multiplications and 
divisions but no root extractions. 

The new signature scheme can now be formalized in the following way: 

Key Generation: Pick a set F of rational functions in k variables, and a 
standard algebraic basis G of F with the property that the representation of 
any f in F as an algebraic expression in terms of the generators g; in G can be 
easily computed. Transform the easy basis G into an apparently hard basis G" 
by using randomly chosen invertible algebraic transformations. Eliminate s > 0 
generators from GI1, publish the other k - s generators in GIt as the public key, 
and keep the algebraic transformations as the private key. 

Signature Generation: To sign a given message m, assign to each published 
gy the hashed value u; = h(m, i) of m, and to each eliminated gr a newly chosen 
random number P;. Use the secret algebraic transformations to express each gi 
in the easy basis G in terms of the generators gy in the hard basis G". The values 
xi of the easy generators g, for this assignment of values to the hard generators 
g7 form the signature X of m. 

Signature Verification: Assign the values z; from the signature X to the easy 
generators gi,  and compute the values u; of the k - s hard generators gl'i which 
appear in the signer's public key. Evaluate the k - s hashed forms h(m, i) of m, 
and accept the validity of the signature if u; = h(m, i) for all the k - 6 values of 

The recommended choice for F is the set F d [ y 1  , .. . , yk] of all the homogeneous 
polynomials of degree d over the ring 2,. The factorization of n = pq can be 
destroyed as soon as n is chosen and published. The recommended choice for 
G is some set of monomials yE1y2 . . . y p  with e l  + e2 + . . . + ek = d such 
that any other monomial in Fd[y1,. . . , Yk] can be generated by a sequence of 

I 

. 

2. 
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multiplications and divisions. It is not difficult to show that for any d and k, 
Fd[yl,. . . , yk] has an algebraic basis of this type which consists of exactly k 
monomials of degree d (for example, G = (8, &y3, nmy3} is an algebraic basis 
for F s [ n ,  y2, ys]). The problem with large choices of k and d is that the number 
of coefficients in the published generators G“ grows as O(kd+l ) .  However, for 
fixed d this key size grows only polynomially in k, and the recommended choice 
of d is 2. The recommended bases for d = 2 are the standard bases G = 

k. The recommended choice of invertible algebraic transformations is a pair of 
randomly chosen k x k matrices A (the variable transformation) and B (the 
mixing transformation). Note that bases G with GCD(g1,92,. . . , gk) # 1 should 
be avoided - such a GCD remains nontrivial under the transformations Y + 

AY and G“ - BG’, and its computation can reveal some of the rows of A.  
This condition is automatically satisfied in our standard bases G for k 2 3. For 
example, when k = 3, two random linear combinations of y1y2, y2m and y3yi 
will almost surely be relatively prime. This signature scheme is comparable 
in its key size, signature size, and computational complexity to the signature 
scheme described in Section 2. By using the techniques of Shamir[1993], we can 
show that recovering the secret matrices A and B from the public key B(A&A) 
is at least as hard as factoring the modulus n by using the symmetry of the 
problem when the rows of A and the coloumns of B are cyclically rotated. 
However, the attack of Coppersmith Stern and Vaudenay overcomes this obstacle 
by computing signatures directly without extracting the original secret keys. 

( ~ 1 ~ 2 , .  . . , Yk-lYkl Y k w }  for odd k and G = {y:, y ~ & ,  . . . , Yk-IYk} for arbitrary 
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