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Abstract 

We investigate the problem of generating a global, unpredictable coin in a dis- 
tributed system. A fast, efficient solution is of fundamental importance to distributed 
protocols, especially those that rely on broadcast channels. We present two unpre- 
dictable bit generators, based on the Blum-Blum-Shub generator, that can be evaluated 
non-interactively; that is, each bit (or group of bits) requires each processor merely to 
send one message to the other processors, without requiring a broadcast or Byzantine 
Agreement. 

The unpredictabjlity of our generators (and the security of our protocols) are based 
provably on the QRA or the intractability of factoring. Remarkably, their structure 
seems to violate an impossibility result of [a], but our generators escape that lower 
bound because they achieve a slightly weaker god: producing unpredictable bits di- 
rectly, rather than producing "shares" of random bits. In doing so, they avoid the 
extra machinery (eg., "sharing shares") of similar results discovered independently in 
IS]. 

1 Introduction 
Randomness has a variety of purposes in cryptography and computer science: 

avoiding exhaust ive search: eg. finding a witness that a number is composite; 

c i rcumventing worst-case analysis: eg. choosing a random pivot in Quicksort; 

breaking symmetr ies :  eg. choosing a leader in a ring of processors; 

hiding information: eg. one-time pads; 

measur ing  information:  eg. indistinguishability and Turing-like tests; 

unpredictability: eg. defeating an adversary's committed attack through unpre- 
dictable future choices. 

For these and other reasons, a great deal of attention has been focused on ways to expand 
short (and scarce) random strings into long pseudorandom sequences. 

For many applications, such as Byzantine Agreement [13,4, 16) - the problem of agreeing 
on a common value in a network with unreliable nodes - randomness itself is simultane- 
ously not enough and too much. Secret sharing, multiparty protocols, reliable decentralized 
databases, multicasts, and even timestamping protocols can depend very strongly on agreed- 
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upon information in a system. Thus, in addition to making efficient use of scarce random 
sources, we must also be worried about agreeing about the bits and protecting them from 
manipulation. 

On the other hand, for Byzantine Agreement, the backbone of decentralized network 
protocols, it is not randomness but merely unpredictability that suffices to prevent an adver- 
saryk attack from having more than 50-50 chance of success. There are ingenious solutions 
[4, 161 requiring only two expected rounds of communication if a common but unpredictable 
coin is available. 

In this paper, we show how to generate unpredictable bits efficiently and in one round 
of communication. In fact, this one round of communication is very simple: it requires 
each processor to send the same message to all the other processors, but it does not require 
the system to check whether each processor did so. We call this weak form of broadcast 
"dissemination," and we show how t o  achieve an unpredictable coin using one round of 
dissemination. 

We present two solutions, one based on the QRA' and one based on the intractability 
of factoring. (The first solution is more efficient, but basing it on the weaker assumption 
(factoring) is not an obvious task.) Each solution uses a homomorphic technique for secret 
sharing in the style of Feldman [9]. (Caution is required, however; applying Feldman's VSS 
scheme as a "subroutinen leads to  an easily predictable generator.) In a nutshell, it applies 
a generalized form of the Blum-Blum-Shub (BBS) pseudorandom number generator (71 to  
a hidden seed. and reveals the bits in a coordinated manner: no bit is revealed until some 
n - t processors decide it is time to do so, according to their programs. 

In [8], Cerecedo, Matsumoto and Imai have independently developed a method to gen- 
erate secretly-shared bits using "no interaction." (Informally, a value is "secretly shared" 
if any collection of n - t processors can determine it while any t or fewer cannot, where t 
is a bound on faulty processors.) Their method seems related to ours, but it requires more 
expensive computation to generate and verify the shares of the bits, M well as an order of 
magnitude increase in message size. 

Furthermore, because our construction is based on the BBS generator, it is of a type 
that an impossibility result in their work excludes. It escapes impossibility partly because 
it attempts to  achieve a weaker goal (obtain bits, not "shares of bits"). This weaker goal is 
sufficient to  provide a very efficient implementation of Byzantine Agreement as well M any 
other protocol that relies on common, unpredictable bits to overcome an adversary. 

2 Unpredictable Random Number Generators 
This section provides background and technical lemmas for the main results described in 94. 

We depart somewhat from the standard treatment of so-called cryptographically-strong 
pseudorandom number generators, in order to consider situations in which more than just the 
number stream itself becomes public. In particular, when a seed is revealed, it is clear that a 
pseudorandom bit stream no longer is indistinguishable from a uniformly random bit stream. 
It might be useful to permit a seed to be revealed at some later point (although, from the 
point of cryptographers bent on protecting communications, this seems to have no immediate 
use). In this case, we can no longer employ a standard treatment of pseudorandomness, but 
must turn to  something new. 

'The Quadratic Residuosity Assumption (QRA) s t a t e  that no poly-size circuit family can determine 
whether z is a square modulo n with probability greater than 1/2 + k - C  - asymptotically, for any c > 0, for 
randomly chosen z with Jacobi symbol +1,  and for n a randomly chosen Blum integer of size k. 
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The key property that we intend to  capture is that the bits are unpredictable - namely, 
an adversary has little better than a 50-50 chance to  predict the next bit, although once it is 
generated, the sequence may be clearly distinguishable from uniformly random bits because 
other (useless) information is present. 

Briefly, it is based on 
selecting a random residue z modulo a Blum integer n, repeatedly squaring I, and outputting 
the least-significant bit of each successive value in reverseorder (LSB(Z?), . . . , LSB(Z~')). The 
bits themselves form a sequence indistinguishable from uniformly random bits [7, 11, but if 
the powers of I are revealed, even at some later point when the bits can be "permissibly" 
compromised, the whole view is clearly identifiable as the output of a generator (most truly 
random sequences would have no corresponding x and n which give rise to them). 

This approach to randomness is suitable for problems such as Byzantine Agreement which 
require coin flips that are unpredictable, but the machinery used for generating the coins 
can be revealed afterward without harm. That is, the bits are used for algorithmic purposes 
rather than privacy. They should have the properties of a random sequence (50-50 chance 
of 0 or l),  and they should not be predictable, but they may be distinctly identifiable after 
the fact as the output of a generator. 

Definition 1 An Unpredic tab le  Random N u m b e r  generator ( U R N )  G is a triple 
(G, b, B ) ,  where G and b are poly-time algorithms and B ( k )  is a polynomial, and such that 
on input k, integer i between 1 and B(k), and a string z of length k, G outputs a string 
G(k,i,?), and 6 ( G ( k , i , x ) )  outputs a bit. For initialization purposes, G may also output a 
string G( k, 0,:). 

The Blum-Blum-Shub [7] generator provides a nice example. 

W e  call b ( G ( k , i , s ) )  the i'" bit o f G  and we also write it as G(k,i,x). 

We define a poly-strong ("cryptographically-strong") URN as follows. Let P be a pre- 
dictor, namely a poly-size circuit family that takes an input i and a string w, (representing 
the output of the generator a t  the i'h step and the "revealable" information, eg. successive 
squares) and outputs a bit Let D be a distinguisher, namely a family of circuits that 
outputs 0 or 1. 

Briefly, P attempts to predict the next bit a t  each stage; its guesses are compared to  the 
answers, and the grades it gets ("right" us. "wrong," as opposed to the answers themselves) 
should be pseudorandom. 

Definition 2 The predict ion pattern of predictor P with respect to an URN G is 
the sequence. of bits obtpined as follows. Run P on E ( k , O , x ) ,  &(k,O,z) o G(k, l ,z ) ,  
G(k, 0, x) o G(k ,  1, z) o G(k,  2, z), etc., obtaining the predic ted  b i t s  a ] ,  a z , . .  . , a s ;  The 
prediction pattern is  the sequence: 

( P * G ) ( k )  = ( P 1 , P 2 , * . . 7 P B ( k ) )  = (a1 $G(k,1,2),Q2$G(k,2,z),...,aB(k)$G(lc,B(k),z)). 

Let UNIF denote the uniform distribution on {0,1}. 

Definition 3 An URN is poly-strong if for  all poly-size predictors P and distinguishers 
D ,  for  all c > 0 ,  

where D ( Z ( k ) )  indicates the probability that D outputs 0 on strings sampled according to 
distribution Z ( k ) .  

In the sequel, we often omit (k) for the sake of clarity. 

1 I D ( ( P ,  ~ ) ( k ) )  - D ( u N I F ~ ( ~ ) ) I  < Gc, 

An URN is stronger than a CSPRG, as is easily seen in the following: 
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T h e o r e m  1 If (G,b,B) is a poly-strong URN, then the bits output by G fie. 
G( k, 1, z), . . . , G ( k ,  B, z), not the strings given b y  G) form a cryptographically-strong pseu- 
dorandom sequence. 

Proof. If this sequence of bits fails a next-bit test, then the next-bit test can-be used 
directly as an equally successful- predictor against (G, b, B): given G(k, 0, z), . . . , G ( k  i, 1 1 1  

simply feed b(G(k, l ,z)) ,  . . . , b(G(k, i ,z))  to the next-bit test. 0 

2.1 
For purposes that will be clear in 54, we show that a generalized form of the BBS random 
bit generator provides an unpredictable number generator of a form suitable for distributed 
evaluation. Rather than repeatedly squaring, we repeatedly raise to  a power that is itself 
a fixed power of two. Roughly speaking, we start with a slightly modified seed and follow 
the BBS approach, skipping over many of the bits that the BBS generator gives. We output 
these bits in reverse order. 

Specifically, given B(k), k, an integer n chosen randomly from BLUMk, and poly-time 
computable functions a ( k )  and P(k) with P(k) odd, we use arithmetic over 2; to define the 
URN Go,p as follows (omitting k’s for clarity): 

A Poly-Strong URN Based on Blum-Blum-Shub 

- z 4 B - l b  Go,R(k, i, x )  - 
b(Y) = L S B ( ~ ’ ~ - ’ ~ )  

summarized by 
LsB(z2(B-*)ata-Ip 

). - G a d k ,  2,  .) - 
The BBS generator is the special case of a(k) = p(k) = 1. Like the BBS generator, Ga.p 
provides a poly-strong pseudorandom sequence of bits, under the QRA. Our unsurprising 
but necessary goal in this section is to show that, even knowing the bits and I ’ ~ - ’ ) ~  values 
used so far, a predictor cannot predict the next bit to  come. 

L e m m a  2 Ga,p is a poly-strong URN unless the QRA fails. 
Proof. We first show that a successful predictor would provide a way to compute LSE(zB) 
from z2 (compare computing LSB(Z) from zz in the BBS case). Next, we show how to 
determine quadratic residuosity using the ability to compute L S B ( Z ~ )  from t2.  

First, however, assume by way of contradiction that G m , ~  is not a crypto-strong URN. 
Then there exists a c > 0, a distinguisher D, and a predictor P such that 

1 IPr[D((P,G,,p)(k)) = 01 - Pr [D(uNIFB(’)) = 011 1 - 
kc 

for infinitely-many k. We omit the absolute value symbols without loss of generality. 
Define a hybrid distribution by taking i bits of (P, G,,p), concatenating B - i uniformly 

random bits to the end, and then running D on the result. The probability that D outputs 
0 on the result is denoted by: 

D, = Pr [D((P,G,,p)[l..i] o U N I F ~ - ‘ )  = 01 . 
Now, given some y, we wish to  compute L S B ( Z ~ )  where z2 = y and z is the principal 

square root of y. On input y, choose i from { 1,. . . , B }  at  random, and run P on 

y2(*-1b, y2(l-’)a 
,.*.,Y. 

P will output i guesses, a l , .  . . , a , ;  let pl , .  , . , p , - ]  be the exclusive-or’s with the known 
“correct” values (that is, p j  = a, @ LSB(~’’-I-’)~P)). NOW, choose bits p , ,  . . . . p ~  uniformly 
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at random. Run D on ( P I , .  . . , p ~ ) ,  and output D $pi $ a ; .  (Intuitively, a 0 from D is more 
likely with distribution Di than with Di- l ,  which indicates that pi = U ~ $ L S B ( Z ~ ) . )  Through 
a fairly standard argument, the probability that this method gives the correct answer for 
LSB(Z@) is a t  least 

1 1 Pr [correct] 2 - . (- + Di - D;-l - o ( ~ ) )  
i=l  B 2  

In other words, for infinitely many k and for some c1 > 0 ,  we have: 

Finally, we must show how to turn this non-negligible advantage into a method to de- 
termine residuosity. Following [7], on input I, set z = I’ and let w denote the square root 
of z that is a quadratic residue. Thus, x = ~ Z W  (else x has Jacobi symbol -1, and clearly 
is not a quadratic residue). Calculate L S S ( X ~ )  and compare it to  the guess for LSB(W@) ob- 
tained by running the algorithm described above on z. If the bits are the same, then output 
“x 6 QR,,” else output “I @ QR,.” Observing that 5 = -w e xP = -wp because p is 
odd, and that L S B ( - ~ )  # L S B ( ~ ) ,  we see: 

x = w e LSB(IP) = LSB(W@), 

so we obtain a correct answer with probability exceeding 
Although at  first glance the techniques of [I] might seem adaptable to  show that we could 

actually factor n, their argument does not apply directly to the case at hand (with L S B ( Z ~ )  
rather than LSB(Z)) ,  and a fix is not obvious. CI 

+ A, infinitely often. 

3 Unpredictable Global Bits in Distributed Systems 
We turn to  the problem of generating global coin flips in a distributed system. This section 
defines the problem and gives a primitive solution; our solution is found in 54. 

Consider a network of N processors (“players”), connected by private channels but lacking 
a broadcast channel. For simplicity, we assume that a trusted host is available to  initialize 
the network. Both of these assumptions can be weakened by using encryption and initial 
secret computation protocols, but we leave this to another level of analysis. 

At the end of each of B phases, each processor should receive a random bit - and all 
processors should receive the same bit. (We omit the goal of generating more than one bit 
per phase, as it is a simple modification to our analysis.) 

If a trusted host (incorruptible processor) were available, the direct solution would be for 
it to flip a coin during each phase and simply send the result to  each processor. A slightly 
less direct solution might be for the trusted host to  generate a pseudorandom sequence from 
an initial seed x, and then reveal these bits to  the network, one by one. Or it might just send 
out a string during each phase, from which the current bit can be calculated. The important 
property is that any attempt to predict the bits will fail. 

Definition 4 An ideal URN protocol for URN G is a protocol that operates in phases. 
On input N (network size) and k a trusted host TH selects a k-bit seed at random, and 
evaluates a poly-strong URN, G. A t  the end o/ phases 0 through B(k ) ,  TH sends G ( k ,  i, z) 
to all players, who compute their local output, b ( G ( k , i , z ) ) .  

Trusted hosts are a t  best available only for initialization, if at all. Thus we consider 
networks in which no trusted host is available. If a protocol can be reduced to an ideal URN 
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protocol. via security-preserving reductions such as “relative resilience” or related notions 
[2, 121, we shall say it is a global URN protocol. We quickly outline the formalization. 

A protocol Q is as resilient as a protocol /3 if there exists an interface 1 such that for any 
adversary d attacking a, there is an attack by I(d) on /3 yielding “equivalent” results. In 
particular, the vector of random variables describing A’s view and the outputs of nonfaulty 
players should be indistinguishable (in some sense) in the two scenarios. We refer the reader 
to [2, 121 for details. 

Definition 5 A global bit protocol  or global URN protocol  is a protocol that is com- 
putnfionnlly as resilient as an ideal URN prolocol for  some URN G. 

Definition 6 A global URN protocol is non-interactive i f  each phase (apart from ini- 
tialization) requires each processor to send at most one message to each other processor 
(order-independent) p e r  phase. 

Definition 7 A player is said to disseminate  message m in round p if it sends m to all 
other players in round p .  

3.1 A Simple Solution For Constant t 
A very simple solution exists when at most a constant number of faults can occur. Interest- 
ingly, this solution permits random access to the bits (ic. they can be revealed in any order), 
but nevertheless violates the impossibility result of [8], apparently because the bits are not 
represented as ‘shares” in the particular form considered in that work. 

For clarity, consider N = 3 and t = 1, and consider only omission-failures ( i e .  no 
player sends bad messages, but messages can be dropped). Let G be any pseudorandom bit 
generator (whether in the sense of the CSPRG’s of [6] or an URN as defined above). 

To initialize the system, a trusted host generates seeds s1,sz,s3 randomly and gives 
(sI,s~) to player 1, (82, s3) to player 2, and (s3,sl) to  player 3. 

Bit bj isdefined a G ( k , s l , j ) $ G ( k , ~ , , j ) $ G ( k , s ~ , j ) .  
To generate bit b,, player 1 disseminates (G(k,s l ,  j ) ,G(k ,sZ,  j ) ) ,  player 2 disseminates 

(G(k , s z , j ) ,G(k , s3 ,  j ) ) ,  and player 3 disseminates (G(k,s3, j ) , G ( k , s , ,  j ) ) .  Because t = 1, 
even if one pair is omitted, all three values G(k,s,,j),G(k,sz,j),G(k,ss,j) are present. 
Each player calculates bj from the appropriate exclusive-or. 

Clearly, any t = 1 or fewer players cannot predict b,. It is not hard to  see that this 
technique generalizes for any constant minority t :  each (N - t)-subset o is given a seed 
s, from which each member can calculate G(k,s , ,  j ) .  Because N > 2t ,  for each u there 
is always a nonfaulty player who disseminates G(k , s , ,  j) at  the appropriate time. On the 
other hand, for any t-subset T there is always a u that excludes T, so that curious players 
cannot predict the bit until the appropriate time. 

Since t is constant, this protocol uses polynomial time and messages. It uses only dis- 
semination a t  each round and is thus “non-interactive.? 

4 Main Result: Fast, Non-interactive Global Bit 
Generat ion 

Our distributed bit generator is based on the URN Go,o described in 53.1, with a and /3 
defined by 2”p = 4(N!)’. Based on a secret seed I, the iV-player network computes and 
reveals the followingnumbers. phase by phase: 

Z2(B-’)a.2(N!)’ 12(B-”o Z(N!)* 320 ‘ .Z(N!)Z , . . .  I 
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The parities of these numbers are the desired, unpredictable bits. In fact, the parities of 
these numbers are the bits output by the URN G,,J. (The strings output by the URN are 
predecessors (roots) of these values, but the bit extraction function ultimately takes the 
LSB's of the values shown here.) 

In an ideal protocol, a trusted host could broadcast these numbers (or equivalently, the 
strings given by G,J) phase by phase. Without a trusted host, we focus on revealing and 
agreeing upon each number using simple, non-interactive dissemination (ie. in one round 
without broadcast channels). 

For simplicity, let us assume the initialization is taken care of either by a trusted party or 
an initial multiparty protocol requiring broadcast. Thereafter, neither trust nor broadcast 
is needed. 

Initialization(N, t ,  k, B )  
/ /  .V: number of players; t < N/2:  fault tolerance bound; 
/ /  k = R(N log N ) :  security parameter; B: number of bits. 

Let Q,M be such that 2QM = N !  and M is odd. 
C V t 2 Q + 2  
n t RANDOM(BLUM~) 
g t RANDOM(Z;) 

Let f(u) = a + alu + Q ~ U *  + .. - a f u f  
for i = 1..N do 

// a = IY, /3 = M 2  

/ /  see footnotea 
( a , a l ,  a2, .  . . , af)  +- RANDOhl(Z&,))'+' 

y; + gl(w! 
Ti + YT 

/ /  represents x = 2" = g j ( " ) N !  = (g")N! 
8 W  

for i = 1..N do 
give (n, yi, (zI ,z2, .  . . , ZN)) to  player i. 

OThe values n and g should be chosen so that the powers of g span a polynomial fraction of Z:, 
but we omit such considerations for the sake of presentation. 

After initialization, each party holds a "share" y; of a secret value X = gN!' = zN!, 
similar to Feldman's VSS scheme [9]. Any other piece y, can be "checked" by raising it to  
an appropriate power and comparing the result to tj, thus avoiding the need to share the 
shares for verification purposes. 

More to the point, because this scheme is homomorphic, each player i can generate a 
share of A' raised to any desired power, simply by raisin y to that power. Thus, with- 
out interaction, each player can generate shares of X2' , . . . , zZo, simply by computing 
Y, 

At each phase, each player disseminates its share of the current power of X to be revealed. 
Unfortunately, it is not clear how to interpolate X (or a power of it) directly from the pieces, 
since we do not know how to take arbitrary roots. Instead, X2"!) (and its various powers) 
are computed. The N !  arises from making sure that a unique interpolation can be done over 
the integers without taking roots (ie. division in the exponents). The factor of 2 arises from 
squaring the revealed pieces to prevent malicious players from disseminating -y instead of 
y (since the pieces are verified by repeated squaring, an adversary cannot successfully reveal 
a valid piece other than hy). 

For a (correct) subset 

&&, 
, . . . , y;O. 2l8-ltw 

E { 1 , 2 , .  . . , N } ,  define the following functions over Z: 
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(A straightforward argument shows that each coefficient in i/;iT is not only integral but
divisible by »(?)•) If /(«) is a polynomial of degree t, then as long as 7 contains ( + 1 or
more elements, we can "interpolate" a unique value:2

Protocol URN PHOTO - code for player t
Player(i,iV,fc,5)
/ / i: id; N: number of players; k: security parameter; B: number of bits.

Receive (n,;/,, {zi,z2,... ,zN)) at startup.
)

[I Correct players.
( , , ) ( , ,

7 = {1,2, . . . , N}
for phase j = X..B do

{ Generate bit b, }
Disseminate y?
Receive (u>i, u) 2 , . . . , WN) / / Apparent pieces
/ / Verify pieces against known, higher squares
7 <- {/ e 71 wf = v,}
(v\,v2,...,vN) *- {wuw2,...,wN)
II Interpolate j " 1 value X*"-')W*N',
II using {wiY values to avoid malicious negation.

2L, ,(0)

Because an adversary cannot substitute false pieces, the interpolation of x(j)
o»iv p r o d u c e d b y t h e

= J]

2

4.0.1 An Optimization

Because the bits are output in reverse order, the brute-force computation of the powers
of each j / , would require @(B2) repeated-squarings, or B per bit. Alternatively, storing
the intermediate results would use Q(B) space - a factor whose disadvantages themselves
motivate using pseudorandom number generators rather than "one-time pads."

In the full paper, we present a simple technique we call "signposting," which uses a total
of 0(51ogB) repeated-squarings, or log B repeated-squarings per bit, but 0(logB) space
overall. This algorithmic optimization is merely a faster local computation; it does not
change the protocol in any way.

4.0.2 A Second Solution

At the cost of some extra exponentiation, we can base our results on the weaker assumption
that factoring is intractable. Letting x = g°, observe that Ga_p outputs numbers of the form

'The value we obtain is unique regardless of 7; but it is N'.f(0), not /(0).
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Because of the odd factor hrlZ in the exponent, we have thus far only been able to  base 
unpredictability on the QRA. If, instead, we use numbers of the form 

namely if we omit the odd factors in the exponent, then there is a straightforward modifica- 
tion of the arguments of 92.1 and [I]  to show that predicting the LSB’S is as hard as factoring. 
Let us call this second generator Vo.p. 

The problem is that the polynomial interpolation used in the secret sharing introduces 
an A‘! factor in the exponent, apparently making the odd power unavoidable. But let US 

say that the number u ( j  - 1) = is available - this next higher “power of two” 
already played a role in the bits revealed earlier. Then u ( j )  can be calculated from z ( j )  and 
u ( j  - 1): 

u ( j )  = z ( j ) / u ( j  - I)+ 
as is demonstrated by the following: 

Thus, at additional cost, we can in fact calculate a “puren power-of-two ex onent of the 
original seed. The cost is one division and an exponentiation to  the power 4, where M 
is the odd part of N!. If we  make u(0 )  = zzBw available at the start, subsequent u(j ) ’s  can 
be derived using the same trick as shown above. 

4.1 Proof of Security 
Theorem 3 Protocol URNPROTO is a non-interactive global bit protocol, unless the QRA 
fails. 

Proof .  Non-interaction holds by definition. We show a security reduction from URNPROTO 
to an ideal URN protocol (call it T H U R N )  in which the trusted host broadcasts the sequence 
generated by the URN Ga,p of 92.1. For clarity, we consider only the case of a static adversary 
(the set of faulty players is chosen in advance). Given an adversary A, we must show how 
an interface I maps A’s attacks on URNPROTO to attacks on THURN.  The main job of 1 
is to  construct initial ( y i ,  (z,,  2 2 , .  . . , ZN)) vectors for corrupted players and to simulate the 
shares yf8B-J)w disseminated in each phase j by nonfaulty processors. We show how Z does 
this accurately, conditioned on A being unable to take square roots (a condition violated 
with negligible probability). 

In short, 1 selects 6, & I , .  . . , i t  at random, sets i(u) = 6 + &,r i  + . . + +*, and for each 
faulty player i computes the value 

Note that Z cannot compute “real” shares of a polynomial with free term a because it will not 
receive go in the ideal protocol until it’s too late. Now, when player i becomes corrupted, Z 
pretends i’s piece is yi = h”. This will cause no problem, as long as: (1) A never substitutes 
an undetected but incorrect piece (fl factors are acceptable); (2) Z can accurately generate 
pieces disseminated by nonfaulty processors. Event (1) occurs with negligible probability 
(else factoring is easy), so we focus on (2). 

At round j, then, Z must generate fake but convincing values y;2(B-J)w from nonfaulty 
players. The N! interpolation factor would normally prevent I from directly interpolating 
consistent pieces, but the initial exponentiation (representing X = zN! rather than z) permits 
Z to get away with introducing an N! factor. Interpolating from h ,  , . . . , h f B : J ) W  and 
z2(B-”w,  z computes yi  = gN!f( i )2(B-J)w where the polynomial f (u)  agrees with f(u) at t 

hi  = @), 

Z(B-J)W 
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places but satisfying f(0) = a. This provides fake pieces from correct players a t  any phase 
(including the initial verification values, zi) .  

The result is a distribution identical to that obtained when A attacks URNPROTO, con- 
ditioned on event (1) not occurring. When event (1) is included, the distributions are sta- 
tistically indistinguishable. Intuitively, we have shown that an attack by A on URNPROTO 
achieves nothing that an attacker against the ideal trusted host protocol can’t achieve - and 
in particular, predicting the bits is impossible. 0 

5 Discussion 
We have presented two unpredictable bit generators requiring neither broadcast nor inter- 
action other than simple dissemination (after an interactive initialization stage). The local 
computation is reasonably fast - repeated squaring, like the BBS generator, dong with “in- 
terpolation” that requires some exponentiation - yet there is no need for “shares of shares” 
or other complicated constructs. A share is verified simply by squaring it. 

Our bit generators differ from the secret bit generators discussed in [8] in that they do 
not provide “random access” (the constant-t generator of 33.1 is a notable exception), and 
they focus on unpredictability rather than the subtly different notion of pseudorandomness. 

Although the unpredictability of the simpler of our generators is based on the QRA, we 
conjecture that it is in fact unpredictable unless factoring is easy. The methods of [I] do not 
seem to apply immediately, and further work is required. 

We also conjecture that the number of squarings can be reduced by 50%; our protocol 
includes an apparently superfluous N! factor to  facilitate the proof of security. 

Recently, a fast, non-interactive, global URN based on elliptic curves over rings has 
been developed and investigated in [3]. This solution shares the property of ours that extra 
“verification” procedures (such as shares of shares) are not needed. As shown in [8] for the 
case of doubly shared bits, we conjecture that our methods will apply to any homomorphic 
scheme. 
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