
Global, Unpredictable Bit Generation
Without Broadcast

Donald Beaver Nicol So +

Penn State University Penn State University

Abstract

We investigate the problem of generating a global, unpredictable coin in a dis-
tributed system. A fast, efficient solution is of fundamental importance to distributed
protocols, especially those that rely on broadcast channels. We present two unpre-
dictable bit generators, based on the Blum-Blum-Shub generator, that can be evaluated
non-interactively; that is, each bit (or group of bits) requires each processor merely to
send one message to the other processors, without requiring a broadcast or Byzantine
Agreement.

The unpredictabjlity of our generators (and the security of our protocols) are based
provably on the QRA or the intractability of factoring. Remarkably, their structure
seems to violate an impossibility result of [a], but our generators escape that lower
bound because they achieve a slightly weaker god: producing unpredictable bits di-
rectly, rather than producing "shares" of random bits. In doing so, they avoid the
extra machinery (eg., "sharing shares") of similar results discovered independently in
IS].

1 Introduction
Randomness has a variety of purposes in cryptography and computer science:

avoiding exhaust ive search: eg. finding a witness that a number is composite;

c i rcumventing worst-case analysis: eg. choosing a random pivot in Quicksort;

breaking symmetr ies : eg. choosing a leader in a ring of processors;

hiding information: eg. one-time pads;

measur ing information: eg. indistinguishability and Turing-like tests;

unpredictability: eg. defeating an adversary's committed attack through unpre-
dictable future choices.

For these and other reasons, a great deal of attention has been focused on ways to expand
short (and scarce) random strings into long pseudorandom sequences.

For many applications, such as Byzantine Agreement [13,4, 16) - the problem of agreeing
on a common value in a network with unreliable nodes - randomness itself is simultane-
ously not enough and too much. Secret sharing, multiparty protocols, reliable decentralized
databases, multicasts, and even timestamping protocols can depend very strongly on agreed-

'317 Pond Laboratory, Penn State University, IJniversity Park, PA 18802; (814) 8650147;

+Computer Science Dept.. Pond Laboratory, Penn State University, University Park, PA 16802;
beaverOcs.psu.edu.

soOcs.pau.edu.

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT '93, LNCS 765, pp. 424-434, 1994.
0 Spnnger-Verlag Berlin Heidelberg 1994

425

upon information in a system. Thus, in addition to making efficient use of scarce random
sources, we must also be worried about agreeing about the bits and protecting them from
manipulation.

On the other hand, for Byzantine Agreement, the backbone of decentralized network
protocols, it is not randomness but merely unpredictability that suffices to prevent an adver-
saryk attack from having more than 50-50 chance of success. There are ingenious solutions
[4, 161 requiring only two expected rounds of communication if a common but unpredictable
coin is available.

In this paper, we show how to generate unpredictable bits efficiently and in one round
of communication. In fact, this one round of communication is very simple: it requires
each processor to send the same message to all the other processors, but it does not require
the system to check whether each processor did so. We call this weak form of broadcast
"dissemination," and we show how t o achieve an unpredictable coin using one round of
dissemination.

We present two solutions, one based on the QRA' and one based on the intractability
of factoring. (The first solution is more efficient, but basing it on the weaker assumption
(factoring) is not an obvious task.) Each solution uses a homomorphic technique for secret
sharing in the style of Feldman [9]. (Caution is required, however; applying Feldman's VSS
scheme as a "subroutinen leads to an easily predictable generator.) In a nutshell, it applies
a generalized form of the Blum-Blum-Shub (BBS) pseudorandom number generator (71 to
a hidden seed. and reveals the bits in a coordinated manner: no bit is revealed until some
n - t processors decide it is time to do so, according to their programs.

In [8], Cerecedo, Matsumoto and Imai have independently developed a method to gen-
erate secretly-shared bits using "no interaction." (Informally, a value is "secretly shared"
if any collection of n - t processors can determine it while any t or fewer cannot, where t
is a bound on faulty processors.) Their method seems related to ours, but it requires more
expensive computation to generate and verify the shares of the bits, M well as an order of
magnitude increase in message size.

Furthermore, because our construction is based on the BBS generator, it is of a type
that an impossibility result in their work excludes. It escapes impossibility partly because
it attempts to achieve a weaker goal (obtain bits, not "shares of bits"). This weaker goal is
sufficient to provide a very efficient implementation of Byzantine Agreement as well M any
other protocol that relies on common, unpredictable bits to overcome an adversary.

2 Unpredictable Random Number Generators
This section provides background and technical lemmas for the main results described in 94.

We depart somewhat from the standard treatment of so-called cryptographically-strong
pseudorandom number generators, in order to consider situations in which more than just the
number stream itself becomes public. In particular, when a seed is revealed, it is clear that a
pseudorandom bit stream no longer is indistinguishable from a uniformly random bit stream.
It might be useful to permit a seed to be revealed at some later point (although, from the
point of cryptographers bent on protecting communications, this seems to have no immediate
use). In this case, we can no longer employ a standard treatment of pseudorandomness, but
must turn to something new.

'The Quadratic Residuosity Assumption (QRA) s t a t e that no poly-size circuit family can determine
whether z is a square modulo n with probability greater than 1/2 + k - C - asymptotically, for any c > 0, for
randomly chosen z with Jacobi symbol +1, and for n a randomly chosen Blum integer of size k.

426

The key property that we intend to capture is that the bits are unpredictable - namely,
an adversary has little better than a 50-50 chance to predict the next bit, although once it is
generated, the sequence may be clearly distinguishable from uniformly random bits because
other (useless) information is present.

Briefly, it is based on
selecting a random residue z modulo a Blum integer n, repeatedly squaring I, and outputting
the least-significant bit of each successive value in reverseorder (LSB(Z?), . . . , LSB(Z~')). The
bits themselves form a sequence indistinguishable from uniformly random bits [7, 11, but if
the powers of I are revealed, even at some later point when the bits can be "permissibly"
compromised, the whole view is clearly identifiable as the output of a generator (most truly
random sequences would have no corresponding x and n which give rise to them).

This approach to randomness is suitable for problems such as Byzantine Agreement which
require coin flips that are unpredictable, but the machinery used for generating the coins
can be revealed afterward without harm. That is, the bits are used for algorithmic purposes
rather than privacy. They should have the properties of a random sequence (50-50 chance
of 0 or l), and they should not be predictable, but they may be distinctly identifiable after
the fact as the output of a generator.

Definition 1 An Unpredic tab le Random N u m b e r generator (U R N) G is a triple
(G, b, B) , where G and b are poly-time algorithms and B (k) is a polynomial, and such that
on input k, integer i between 1 and B(k), and a string z of length k, G outputs a string
G(k,i,?), and 6 (G (k , i , x)) outputs a bit. For initialization purposes, G may also output a
string G(k, 0,:).

The Blum-Blum-Shub [7] generator provides a nice example.

W e call b (G (k , i , s)) the i'" bit o f G and we also write it as G(k,i,x).

We define a poly-strong ("cryptographically-strong") URN as follows. Let P be a pre-
dictor, namely a poly-size circuit family that takes an input i and a string w, (representing
the output of the generator a t the i'h step and the "revealable" information, eg. successive
squares) and outputs a bit Let D be a distinguisher, namely a family of circuits that
outputs 0 or 1.

Briefly, P attempts to predict the next bit a t each stage; its guesses are compared to the
answers, and the grades it gets ("right" us. "wrong," as opposed to the answers themselves)
should be pseudorandom.

Definition 2 The predict ion pattern of predictor P with respect to an URN G is
the sequence. of bits obtpined as follows. Run P on E (k , O , x) , &(k,O,z) o G(k, l ,z) ,
G(k, 0, x) o G(k , 1, z) o G(k, 2, z), etc., obtaining the predic ted b i t s a] , a z , . . . , a s ; The
prediction pattern is the sequence:

(P * G) (k) = (P 1 , P 2 , * . . 7 P B (k)) = (a1 $G(k,1,2),Q2$G(k,2,z),...,aB(k)$G(lc,B(k),z)).

Let UNIF denote the uniform distribution on {0,1}.

Definition 3 An URN is poly-strong if for all poly-size predictors P and distinguishers
D , for all c > 0 ,

where D (Z (k)) indicates the probability that D outputs 0 on strings sampled according to
distribution Z (k) .

In the sequel, we often omit (k) for the sake of clarity.

1 I D ((P , ~) (k)) - D (u N I F ~ (~)) I < Gc,

An URN is stronger than a CSPRG, as is easily seen in the following:

427

T h e o r e m 1 If (G,b,B) is a poly-strong URN, then the bits output by G fie.
G(k, 1, z), . . . , G (k , B, z), not the strings given b y G) form a cryptographically-strong pseu-
dorandom sequence.

Proof. If this sequence of bits fails a next-bit test, then the next-bit test can-be used
directly as an equally successful- predictor against (G, b, B): given G(k, 0, z), . . . , G (k i, 1 1 1

simply feed b(G(k, l ,z)) , . . . , b(G(k, i ,z)) to the next-bit test. 0

2.1
For purposes that will be clear in 54, we show that a generalized form of the BBS random
bit generator provides an unpredictable number generator of a form suitable for distributed
evaluation. Rather than repeatedly squaring, we repeatedly raise to a power that is itself
a fixed power of two. Roughly speaking, we start with a slightly modified seed and follow
the BBS approach, skipping over many of the bits that the BBS generator gives. We output
these bits in reverse order.

Specifically, given B(k), k, an integer n chosen randomly from BLUMk, and poly-time
computable functions a (k) and P(k) with P(k) odd, we use arithmetic over 2; to define the
URN Go,p as follows (omitting k’s for clarity):

A Poly-Strong URN Based on Blum-Blum-Shub

- z 4 B - l b Go,R(k, i, x) -
b(Y) = L S B (~ ’ ~ - ’ ~)

summarized by
LsB(z2(B-*)ata-Ip

). - G a d k , 2, .) -
The BBS generator is the special case of a(k) = p(k) = 1. Like the BBS generator, Ga.p
provides a poly-strong pseudorandom sequence of bits, under the QRA. Our unsurprising
but necessary goal in this section is to show that, even knowing the bits and I ’ ~ - ’) ~ values
used so far, a predictor cannot predict the next bit to come.

L e m m a 2 Ga,p is a poly-strong URN unless the QRA fails.
Proof. We first show that a successful predictor would provide a way to compute LSE(zB)
from z2 (compare computing LSB(Z) from zz in the BBS case). Next, we show how to
determine quadratic residuosity using the ability to compute L S B (Z ~) from t2.

First, however, assume by way of contradiction that G m , ~ is not a crypto-strong URN.
Then there exists a c > 0, a distinguisher D, and a predictor P such that

1 IPr[D((P,G,,p)(k)) = 01 - Pr [D(uNIFB(’)) = 011 1 -
kc

for infinitely-many k. We omit the absolute value symbols without loss of generality.
Define a hybrid distribution by taking i bits of (P, G,,p), concatenating B - i uniformly

random bits to the end, and then running D on the result. The probability that D outputs
0 on the result is denoted by:

D, = Pr [D((P,G,,p)[l..i] o U N I F ~ - ‘) = 01 .
Now, given some y, we wish to compute L S B (Z ~) where z2 = y and z is the principal

square root of y. On input y, choose i from { 1,. . . , B } at random, and run P on

y2(*-1b, y2(l-’)a
,.*.,Y.

P will output i guesses, a l , . . . , a , ; let pl , . , . , p , -] be the exclusive-or’s with the known
“correct” values (that is, p j = a, @ LSB(~’’-I-’)~P)). NOW, choose bits p , , p ~ uniformly

428

at random. Run D on (P I , . . . , p ~) , and output D $pi $ a ; . (Intuitively, a 0 from D is more
likely with distribution Di than with Di- l , which indicates that pi = U ~ $ L S B (Z ~) .) Through
a fairly standard argument, the probability that this method gives the correct answer for
LSB(Z@) is a t least

1 1 Pr [correct] 2 - . (- + Di - D;-l - o (~))
i=l B 2

In other words, for infinitely many k and for some c1 > 0 , we have:

Finally, we must show how to turn this non-negligible advantage into a method to de-
termine residuosity. Following [7], on input I, set z = I’ and let w denote the square root
of z that is a quadratic residue. Thus, x = ~ Z W (else x has Jacobi symbol -1, and clearly
is not a quadratic residue). Calculate L S S (X ~) and compare it to the guess for LSB(W@) ob-
tained by running the algorithm described above on z. If the bits are the same, then output
“x 6 QR,,” else output “I @ QR,.” Observing that 5 = -w e xP = -wp because p is
odd, and that L S B (- ~) # L S B (~) , we see:

x = w e LSB(IP) = LSB(W@),

so we obtain a correct answer with probability exceeding
Although at first glance the techniques of [I] might seem adaptable to show that we could

actually factor n, their argument does not apply directly to the case at hand (with L S B (Z ~)
rather than LSB(Z)) , and a fix is not obvious. CI

+ A, infinitely often.

3 Unpredictable Global Bits in Distributed Systems
We turn to the problem of generating global coin flips in a distributed system. This section
defines the problem and gives a primitive solution; our solution is found in 54.

Consider a network of N processors (“players”), connected by private channels but lacking
a broadcast channel. For simplicity, we assume that a trusted host is available to initialize
the network. Both of these assumptions can be weakened by using encryption and initial
secret computation protocols, but we leave this to another level of analysis.

At the end of each of B phases, each processor should receive a random bit - and all
processors should receive the same bit. (We omit the goal of generating more than one bit
per phase, as it is a simple modification to our analysis.)

If a trusted host (incorruptible processor) were available, the direct solution would be for
it to flip a coin during each phase and simply send the result to each processor. A slightly
less direct solution might be for the trusted host to generate a pseudorandom sequence from
an initial seed x, and then reveal these bits to the network, one by one. Or it might just send
out a string during each phase, from which the current bit can be calculated. The important
property is that any attempt to predict the bits will fail.

Definition 4 An ideal URN protocol for URN G is a protocol that operates in phases.
On input N (network size) and k a trusted host TH selects a k-bit seed at random, and
evaluates a poly-strong URN, G. A t the end o/ phases 0 through B(k) , TH sends G (k , i, z)
to all players, who compute their local output, b (G (k , i , z)) .

Trusted hosts are a t best available only for initialization, if at all. Thus we consider
networks in which no trusted host is available. If a protocol can be reduced to an ideal URN

429

protocol. via security-preserving reductions such as “relative resilience” or related notions
[2, 121, we shall say it is a global URN protocol. We quickly outline the formalization.

A protocol Q is as resilient as a protocol /3 if there exists an interface 1 such that for any
adversary d attacking a, there is an attack by I(d) on /3 yielding “equivalent” results. In
particular, the vector of random variables describing A’s view and the outputs of nonfaulty
players should be indistinguishable (in some sense) in the two scenarios. We refer the reader
to [2, 121 for details.

Definition 5 A global bit protocol or global URN protocol is a protocol that is com-
putnfionnlly as resilient as an ideal URN prolocol for some URN G.

Definition 6 A global URN protocol is non-interactive i f each phase (apart from ini-
tialization) requires each processor to send at most one message to each other processor
(order-independent) p e r phase.

Definition 7 A player is said to disseminate message m in round p if it sends m to all
other players in round p .

3.1 A Simple Solution For Constant t
A very simple solution exists when at most a constant number of faults can occur. Interest-
ingly, this solution permits random access to the bits (ic. they can be revealed in any order),
but nevertheless violates the impossibility result of [8], apparently because the bits are not
represented as ‘shares” in the particular form considered in that work.

For clarity, consider N = 3 and t = 1, and consider only omission-failures (i e . no
player sends bad messages, but messages can be dropped). Let G be any pseudorandom bit
generator (whether in the sense of the CSPRG’s of [6] or an URN as defined above).

To initialize the system, a trusted host generates seeds s1,sz,s3 randomly and gives
(sI,s~) to player 1, (82, s3) to player 2, and (s3,sl) to player 3.

Bit bj isdefined a G (k , s l , j) $ G (k , ~ , , j) $ G (k , s ~ , j) .
To generate bit b,, player 1 disseminates (G(k,s l , j) ,G(k ,sZ, j)) , player 2 disseminates

(G(k , s z , j) ,G(k , s3 , j)) , and player 3 disseminates (G(k,s3, j) , G (k , s , , j)) . Because t = 1,
even if one pair is omitted, all three values G(k,s,,j),G(k,sz,j),G(k,ss,j) are present.
Each player calculates bj from the appropriate exclusive-or.

Clearly, any t = 1 or fewer players cannot predict b,. It is not hard to see that this
technique generalizes for any constant minority t : each (N - t)-subset o is given a seed
s, from which each member can calculate G(k,s , , j) . Because N > 2t , for each u there
is always a nonfaulty player who disseminates G(k , s , , j) at the appropriate time. On the
other hand, for any t-subset T there is always a u that excludes T, so that curious players
cannot predict the bit until the appropriate time.

Since t is constant, this protocol uses polynomial time and messages. It uses only dis-
semination a t each round and is thus “non-interactive.?

4 Main Result: Fast, Non-interactive Global Bit
Generat ion

Our distributed bit generator is based on the URN Go,o described in 53.1, with a and /3
defined by 2”p = 4(N!)’. Based on a secret seed I, the iV-player network computes and
reveals the followingnumbers. phase by phase:

Z2(B-’)a.2(N!)’ 12(B-”o Z(N!)* 320 ‘ .Z(N!)Z , . . . I

430

The parities of these numbers are the desired, unpredictable bits. In fact, the parities of
these numbers are the bits output by the URN G,,J. (The strings output by the URN are
predecessors (roots) of these values, but the bit extraction function ultimately takes the
LSB's of the values shown here.)

In an ideal protocol, a trusted host could broadcast these numbers (or equivalently, the
strings given by G,J) phase by phase. Without a trusted host, we focus on revealing and
agreeing upon each number using simple, non-interactive dissemination (ie. in one round
without broadcast channels).

For simplicity, let us assume the initialization is taken care of either by a trusted party or
an initial multiparty protocol requiring broadcast. Thereafter, neither trust nor broadcast
is needed.

Initialization(N, t , k, B)
/ / .V: number of players; t < N/2: fault tolerance bound;
/ / k = R(N log N) : security parameter; B: number of bits.

Let Q,M be such that 2QM = N ! and M is odd.
C V t 2 Q + 2
n t RANDOM(BLUM~)
g t RANDOM(Z;)

Let f(u) = a + alu + Q ~ U * + .. - a f u f
for i = 1..N do

// a = IY, /3 = M 2

/ / see footnotea
(a , a l , a2, . . . , af) +- RANDOhl(Z&,))'+'

y; + gl(w!
Ti + YT

/ / represents x = 2" = g j (") N ! = (g")N!
8 W

for i = 1..N do
give (n, yi, (zI ,z2, . . . , ZN)) to player i.

OThe values n and g should be chosen so that the powers of g span a polynomial fraction of Z:,
but we omit such considerations for the sake of presentation.

After initialization, each party holds a "share" y; of a secret value X = gN!' = zN!,
similar to Feldman's VSS scheme [9]. Any other piece y, can be "checked" by raising it to
an appropriate power and comparing the result to tj, thus avoiding the need to share the
shares for verification purposes.

More to the point, because this scheme is homomorphic, each player i can generate a
share of A' raised to any desired power, simply by raisin y to that power. Thus, with-
out interaction, each player can generate shares of X2' , . . . , zZo, simply by computing
Y,

At each phase, each player disseminates its share of the current power of X to be revealed.
Unfortunately, it is not clear how to interpolate X (or a power of it) directly from the pieces,
since we do not know how to take arbitrary roots. Instead, X2"!) (and its various powers)
are computed. The N ! arises from making sure that a unique interpolation can be done over
the integers without taking roots (ie. division in the exponents). The factor of 2 arises from
squaring the revealed pieces to prevent malicious players from disseminating -y instead of
y (since the pieces are verified by repeated squaring, an adversary cannot successfully reveal
a valid piece other than hy).

For a (correct) subset

&&,
, . . . , y;O. 2l8-ltw

E { 1 , 2 , . . . , N } , define the following functions over Z:

431

(A straightforward argument shows that each coefficient in i/;iT is not only integral but
divisible by »(?)•) If /(«) is a polynomial of degree t, then as long as 7 contains (+ 1 or
more elements, we can "interpolate" a unique value:2

Protocol URN PHOTO - code for player t
Player(i,iV,fc,5)
/ / i: id; N: number of players; k: security parameter; B: number of bits.

Receive (n,;/,, {zi,z2,... ,zN)) at startup.
)

[I Correct players.
(, ,) (, ,

7 = {1,2, . . . , N}
for phase j = X..B do

{ Generate bit b, }
Disseminate y?
Receive (u>i, u) 2 , . . . , WN) / / Apparent pieces
/ / Verify pieces against known, higher squares
7 <- {/ e 71 wf = v,}
(v\,v2,...,vN) *- {wuw2,...,wN)
II Interpolate j " 1 value X*"-')W*N',
II using {wiY values to avoid malicious negation.

2L, ,(0)

Because an adversary cannot substitute false pieces, the interpolation of x(j)
o»iv p r o d u c e d b y t h e

= J]

2

4.0.1 An Optimization

Because the bits are output in reverse order, the brute-force computation of the powers
of each j / , would require @(B2) repeated-squarings, or B per bit. Alternatively, storing
the intermediate results would use Q(B) space - a factor whose disadvantages themselves
motivate using pseudorandom number generators rather than "one-time pads."

In the full paper, we present a simple technique we call "signposting," which uses a total
of 0(51ogB) repeated-squarings, or log B repeated-squarings per bit, but 0(logB) space
overall. This algorithmic optimization is merely a faster local computation; it does not
change the protocol in any way.

4.0.2 A Second Solution

At the cost of some extra exponentiation, we can base our results on the weaker assumption
that factoring is intractable. Letting x = g°, observe that Ga_p outputs numbers of the form

'The value we obtain is unique regardless of 7; but it is N'.f(0), not /(0).

432

Because of the odd factor hrlZ in the exponent, we have thus far only been able to base
unpredictability on the QRA. If, instead, we use numbers of the form

namely if we omit the odd factors in the exponent, then there is a straightforward modifica-
tion of the arguments of 92.1 and [I] to show that predicting the LSB’S is as hard as factoring.
Let us call this second generator Vo.p.

The problem is that the polynomial interpolation used in the secret sharing introduces
an A‘! factor in the exponent, apparently making the odd power unavoidable. But let US

say that the number u (j - 1) = is available - this next higher “power of two”
already played a role in the bits revealed earlier. Then u (j) can be calculated from z (j) and
u (j - 1):

u (j) = z (j) / u (j - I)+
as is demonstrated by the following:

Thus, at additional cost, we can in fact calculate a “puren power-of-two ex onent of the
original seed. The cost is one division and an exponentiation to the power 4, where M
is the odd part of N!. If we make u(0) = zzBw available at the start, subsequent u(j) ’s can
be derived using the same trick as shown above.

4.1 Proof of Security
Theorem 3 Protocol URNPROTO is a non-interactive global bit protocol, unless the QRA
fails.

Proof . Non-interaction holds by definition. We show a security reduction from URNPROTO
to an ideal URN protocol (call it T H U R N) in which the trusted host broadcasts the sequence
generated by the URN Ga,p of 92.1. For clarity, we consider only the case of a static adversary
(the set of faulty players is chosen in advance). Given an adversary A, we must show how
an interface I maps A’s attacks on URNPROTO to attacks on THURN. The main job of 1
is to construct initial (y i , (z,, 2 2 , . . . , ZN)) vectors for corrupted players and to simulate the
shares yf8B-J)w disseminated in each phase j by nonfaulty processors. We show how Z does
this accurately, conditioned on A being unable to take square roots (a condition violated
with negligible probability).

In short, 1 selects 6, & I , . . . , i t at random, sets i(u) = 6 + &,r i + . . + +*, and for each
faulty player i computes the value

Note that Z cannot compute “real” shares of a polynomial with free term a because it will not
receive go in the ideal protocol until it’s too late. Now, when player i becomes corrupted, Z
pretends i’s piece is yi = h”. This will cause no problem, as long as: (1) A never substitutes
an undetected but incorrect piece (fl factors are acceptable); (2) Z can accurately generate
pieces disseminated by nonfaulty processors. Event (1) occurs with negligible probability
(else factoring is easy), so we focus on (2).

At round j, then, Z must generate fake but convincing values y;2(B-J)w from nonfaulty
players. The N! interpolation factor would normally prevent I from directly interpolating
consistent pieces, but the initial exponentiation (representing X = zN! rather than z) permits
Z to get away with introducing an N! factor. Interpolating from h , , . . . , h f B : J) W and
z2(B-”w, z computes yi = gN!f(i)2(B-J)w where the polynomial f (u) agrees with f(u) at t

hi = @),

Z(B-J)W

433

places but satisfying f(0) = a. This provides fake pieces from correct players a t any phase
(including the initial verification values, zi) .

The result is a distribution identical to that obtained when A attacks URNPROTO, con-
ditioned on event (1) not occurring. When event (1) is included, the distributions are sta-
tistically indistinguishable. Intuitively, we have shown that an attack by A on URNPROTO
achieves nothing that an attacker against the ideal trusted host protocol can’t achieve - and
in particular, predicting the bits is impossible. 0

5 Discussion
We have presented two unpredictable bit generators requiring neither broadcast nor inter-
action other than simple dissemination (after an interactive initialization stage). The local
computation is reasonably fast - repeated squaring, like the BBS generator, dong with “in-
terpolation” that requires some exponentiation - yet there is no need for “shares of shares”
or other complicated constructs. A share is verified simply by squaring it.

Our bit generators differ from the secret bit generators discussed in [8] in that they do
not provide “random access” (the constant-t generator of 33.1 is a notable exception), and
they focus on unpredictability rather than the subtly different notion of pseudorandomness.

Although the unpredictability of the simpler of our generators is based on the QRA, we
conjecture that it is in fact unpredictable unless factoring is easy. The methods of [I] do not
seem to apply immediately, and further work is required.

We also conjecture that the number of squarings can be reduced by 50%; our protocol
includes an apparently superfluous N! factor to facilitate the proof of security.

Recently, a fast, non-interactive, global URN based on elliptic curves over rings has
been developed and investigated in [3]. This solution shares the property of ours that extra
“verification” procedures (such as shares of shares) are not needed. As shown in [8] for the
case of doubly shared bits, we conjecture that our methods will apply to any homomorphic
scheme.

References
[l) W. Alexi, B. Chor, 0. Goldreich, C.P. Schnorr. “RSA and Rabin Functions:

Certain Parts are as Hard as the Whole.” SIAM J . Computing, 17:2 (1988),
194-209.

[2] D. Beaver. “Foundations of Secure Interactive Computing.” Proc. of Crypt0 1991,
377-39 1.

[3] D. Beaver, H. Shan. In preparation.

[4] M. Ben-Or. “Another Advantage of Free Choice.“ Proc. of 2”* PODC, 1983.

[5] Blakley, “Security Proofs for Information Protection Systems.” Proceedings of the
the 1980 Symposium on Security and Privacy, IEEE Computer Society Press, NY

[6] M. Blum, S. Micali. “How to Generate Cryptographically Strong Sequences of

(71 L. Blum, M. Blum, M. Shub. “A Simple Unpredictable Pseudo-Random Number

(1981), 79-88.

Pseudo-Random Bits.“ SIAM J. Comput. 13 (1984), 850-864.

Generator.” SIAM J . Computing, 15:2 (1986), 364-383.

434

[a] M. Cerecedo, T. Matsumoto, H. Imai. “Non-Interactive Generation of Shared

[9] P. Feldman. “A Practical Scheme for Non-Interactive Verifiable Secret Sharing.”

[lo] 0. Goldreich, S. Goldwasser, S. Micali. “How to Construct Random Functions.”

[ll] S. Goldwasser, S. Micali. “Probabilistic Encryption and How to Play Mental

112) S. Micali, P. Rogaway. “Secure Computation.‘ Proc. of Crypto 1991,392404.

[13] M. Pease, R. Shostak, L. Lamport. “Reaching Agreement in the Presence of

114) T. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret

Pseudorandom Sequences.” To appear, Auscrypt 92.

Proc. of the 28‘h FOCS, IEEE, 1987, 427-437.

JAChf 33:4 (1986), 792-807.

Poker Keeping Secret All Partial Information.

Faults.” JACM 27:2 (1980), 228-234.

Sharing.” Proceedings of CRYPT0 91, 129-140.

[15] hI .0 . Rabin. “Digitalized Signatures and Public-Key Functions as Intractable as
Factorization.” Technical Report LCS/TR-212, MIT, January, 1979.

[16] M.O. Rabin. “Randomized Byzantine Generals.” Proc. of the 24fh FOCS, IEEE,

[li] A. Shamir. “HOW to Share a Secret.” Communications of the ACM, 22 (1979),

1983, 403-409.

61 2-6 13.

	Global, Unpredictable Bit GenerationWithout Broadcast
	Introduction
	Unpredictable Random Number Generators
	A Poly-Strong URN Based on Blum-Blum-Shub

	Unpredictable Global Bits in Distributed Systems
	A Simple Solution For Constant t

	Main Result: Fast, Non-interactive Global Bit Generat ion
	An Optimization
	A Second Solution
	Proof of Security

	Discussion
	References

