The T-Recs Table Recognition
and Analysis System

Thomas Kieninger and Andreas Dengel

DFKI-GmbH, Postfach 2080, 67608 Kaiserslautern, FRG
Thomas.Kieninger@dfki.de, Andreas.Dengel@dfki.de
http://www.dfki.uni-kl.de/ kieni/t_recs/

Abstract. This paper presents a new approach to table structure recog-
nition as well as to layout analysis. The discussed recognition process
differs significantly from existing approaches as it realizes a bottom-up
clustering of given word segments, whereas conventional table structure
recognizers all rely on the detection of some separators such as delin-
eation or significant white space to analyze a page from the top-down.
The following analysis of the recognized layout elements is based on the
construction of a tile structure and detects row- and/or column spanning
cells as well as sparse tables with a high degree of confidence.

The overall system is completely domain independent, optionally ne-
glects textual contents and can thus be applied to arbitrary mixed-mode
documents (with or without tables) of any language and even operates
on low quality OCR documents (e.g. facsimiles).

1 Introduction

Document structure analysis is emerging as a key technology for enabling the
intelligent treatment of information and provides the key for an efficient handling
of documents. The information inherent to the layout of tables is even more
important, since their relational character requires different analysis techniques
in the context of document understanding.

This paper presents the approach of T-Recs, a system that deals with the
identification of tables within arbitrary documents, the isolation of individual
table cells and the analysis of the layout to determine a correct row/column
mapping.

We start with the initial block clustering — the central idea. Then we point
out required postprocessing steps to correct some system inherent errors. While
so far we focused on the segmentation, Sect. 4 sketches the analysis of the table
cell layout.

1.1 The T-Recs Document Model

The T-Recs document model has 3 different hierarchically organized structure
types and one non-hierarchically embedded auxiliary structure for text lines:

S.-W. Lee and Y. Nakano (Eds.): DAS’98, LNCS 1655, pp. 255-270, 1999.
© Springer-Verlag Berlin Heidelberg 1999

256 Thomas Kieninger and Andreas Dengel

Words are our elementary objects. Their bounding box geometry and option-
ally their textual contents constitute the input of the system. Formally, a
word is described as a triple W = (T, G, A), where T keeps the textual
contents, G denotes the bounding box geometry, specified by the quadruple
G = (x0,Y0,21,y1) and A holds the recognized font attributes.

Lines (also referred to as text lines) are an initially built aggregation of words
that serves as auxiliary structure for all following procedures!

They are described as quadruples L = (W, suce, G, A), specifying a sorted
list of words (with Wy naming the first word and succ the appropriate suc-
cessor function), the bounding box G and the attributes A = (linenumber,
rownumber, spc_len) that hold the unique linenumber, the logical rownumber
(see Sect. 3.5) and average space width.

Blocks are dynamic aggregations of words. Note that blocks are not aggregations
of lines! The initial word-to-block mapping is made by the central clustering
algorithm but is changed by the various postprocessing steps. Blocks thus
keep the main segmentation information.

Like lines, blocks are described as quadruple B = (W, suce, G, A). The addi-
tional block attributes A = (type, justification, height, nmbwords) describe
the classification into type 1 and 2 (see Sect. 3.2), the justification, height
(as number of lines) and number of words in the block.

Document The document is defined as quadruple D = (B, succ, G, A),
where By and succ specify a sorted list of blocks. The successor function
SUCCdoc(s) 1s defined for words, lines and blocks. The attributes A = (I_spc)
contain the average linespacing.

Significantly large distances between adjacent lines cause the construction of
dummy lines between them. This prevents the succgoc(line) function from
bridging large line spacings as between paragraphs.

In our notation, objects of higher level instances are denoted in a functional
way: block(w,) stands for the associated block of word w,. The attributes of
an object are denoted similarly but with brackets instead of parentheses around
the argument. Thus, fontsize[w,] would describe the fontsize attribute of the
word w,. The bounding box geometry G = (g, yo,x1,y1) itself is specified by
the upper-left and lower-right corner coordinates respectively.

Document

Fig. 1. Document model of the T-Recs System (hierarchical part)

The T-Recs Table Recognition and Analysis System 257

Omiting the subordinated textline structure we achieve the hierarchical doc-
ument model seen in Fig. 1, consisting of words, blocks and the document itself
(in bottom-up order). Each object is part of a higher level instance.

2 Segmentation

2.1 Top-Down vs. Bottom-Up

Structure recognition itself is a wide research area and numerous people are
addressing this topic. Existing approaches can be divided into systems which
are specialized to detect logical objects in a restricted domain such as business
letters as described in Dengel [3] or systems which try to identify more general
structure elements like paragraphs, headers or lists. Hu [7] and Condit [2] both
describe systems of that class. But only a small part of such systems consider
the specific problems of tabular structures. They rather focus on objects like
paragraphs, headers and lists in the general case or sender, recipient, date and
body in case of business letters.

The investigation of existing table structure recognition approaches discloses
a significant similarity: segmentation can always be characterized as a top-down
approach that is driven by the detection of separators. Rus and Summers [16]
present a system for the segmentation and labeling of general structures, also
considering tables where they are able to detect narrow columns, using so-called
White Space Density Graphs (WDG). Some other approaches relying on suffi-
ciently large white spaces are described by Rahgozar et al. [13] who operates on
word segments rather than on the bitmap, Tupaj et al. [18] who takes plain text
output of OCR systems as input and Spitz [17] who determines so-called hori-
zontal and vertical rivers of white space to define the boundaries of the islands of
print material. Others are explicitly looking for ruling lines that determine the
table structure. Representatives of this class are Green and Krishnamoorthy [5],
who apply a grammar-based analysis on the set of occuring lines to evaluate
the table layout, Itonori [3], who only considers the labeling aspects and expects
well segmented blocks as input, or Hirayama [6] with his interesting DP match-
ing method. Chandran and Kasturi [1] consider both (ruled lines and so-called
white streams) to determine the layout structure.

T-Recs differs from conventional table segmentation systems as it represents
a bottom-up approach. The central idea of T-Recs is to not explicitly look for any
kind of separators (lines or spacings) but rather to identify words that belong
to the same logical unit. The motivation for this unconventional strategy was
twofold:

While typical top-down systems rely on the detection of some evidence to
separate layout regions from each other, appropriate table segmentation systems
concentrate on either characteristic delineation or conspicuous white spaces. This
leads to a somewhat limited applicability of those systems.

The second reason for our design was driven by the insight that a human’s
way of recognizing a tabular structure within a document is based on the word-
segments themselves. When looking at a table, a human never tries to identify

258 Thomas Kieninger and Andreas Dengel

textlines which he then divides into fragments of columns nor does he search for
a given delineation to decompose layout regions. He rather realizes the blocks
and columns directly as aggregations of words.

2.2 The T-Recs Bottom-Up Clustering Approach

Elementary to bottom-up approaches is the fact that some ordered elements
(words) are aggregated to higher level instances (blocks). Since other bottom-up
clustering systems either rely on nearest neighbors [4], run-length smoothing [19]
or on the construction of Voronoi diagrams as block separators [12] [10] and
thus localize adjacent elements to all directions, they will not be able to detect
narrow column gaps. In contrast, T-Recs limits its search to neighboring words
in the previous and next line (relative to the currently inspected item) whose
bounding-boxes horizontally overlap with the inspected word. This symmetrical,
binary relation ovl(wi,ws) is given if the projections of the bounding boxes of
two words w; and wsg to the x-axis have a common range and if the words are
located in subsequent lines:

ovl(wi,ws) < (x1|wi] > zo[wa]) A (xo[wi] < x1[wa]) A
(line(wy) = succgoc(line(wy) V
line(ws) = succqoc(line(w))

Figure 2 shows a sample block and the area that contains potential overlap-
ping words (gray stripe over the initial word “consists”). The words (or bounding
boxes) that are “touched” by this virtual stripe will be clustered to the same
block as the initial word.

This| [is] [¢] [small] Thi all
lines]|[] [enough 1i gh|

Fig. 2. Vertical neighbors of the word “consists”

Based on this relation, the clustering works as follows:

. Find an unexpanded word w, := wqy (the seed) and create block b;;

. Mark current word w, as expanded and add it to b;;

. Evaluate all unezpanded words w; in ovl(w,,w;);

. For all w;, make it the current word w, and perform steps 2, 3 and 4;
. If no more matching words are found, increment ¢ and go to step 1;

. Stop, if all words are marked as expanded.

DD O W N~

Blocks are constructed “around” the block seed wy and can thus be described
as transitive hull ovl* of the overlapping relation. We also write w; ~gy- wy if
the words belong to the same cluster and define:

The T-Recs Table Recognition and Analysis System 259

M = {w;} the set of all words;
[wo) yppe = {Wz|wy € M A wo ~op+ Wy} the cluster of wo;
Mlovl* = {[wg] Wz € M} set of all clusters.

Since the ovl relation is symmetrical, and hence ~ ;= is an equivalence rela-
tion, it is obvious, that the choice of the block seed has no effect on the clustering
vesult: 1wy ~out- w0y — [, = [y,

We use the so called segmentation graph (Fig. 2, right) to visualize the clus-
tering. The nodes of that graph are the centerpoints of the bounding boxes
and an edge between two nodes indicates the overlapping relation between the
appropriate words.

Advantages of the T-Recs Approach The strengths of T-Recs are not di-
rectly visible in the context of the above example but at least it is obvious that
T-Recs is capable of recognizing and clustering regular blocks. It is moreover
clear, that isolated blocks will be recognized as isolated elements since their ele-
ments do not interleave mutually. An example of a tabular environment with a
dense column arrangement is seen in Fig. 3.

13868
6354
[17891
9413
13§41
3728

1338
09§57
10§02
13§24
10§34
10%50

blocklist.c

segmenter.c

Fig. 3. Segmentation of a tabular environment

A first advantage of this approach compared to top-down systems is the
independence of delineations or conspicuous white spaces. We can thus accept
any documents regardless of the occurence of the above features.

A second advantage is the independence of accurate vertical or horizontal
cuts between block. T-Recs is able to segment blocks whose rectangular block
bounding boxes intersect. In other words: the block layout is not limited to
rectangular shapes. Here we also speak of Non-Manhattan Layout [11].

System Inherent Errors Although the results look good on a large collection
of documents, we recognize that there are some segmentation errors that are in-
herent to this approach. Aiming towards the identification of significant features
of all mis-segmentations to provide appropriate corrections algorithms, we were
able to develop a series of specialized procedures.

Throughout this document we will use Fig. 4 (left) as reference to give ex-
amples of the different classes of errors but also for discussing appropriate post-
processing procedures. The error classes can be described as follows:

260 Thomas Kieninger and Andreas Dengel

i PR ST

a] IE] Jnade a] IE] Jnade

raph, denonstraces, the

raph, denonstraces, i
[t aecect Jso catied] non-tanactan

m

Jrosimoescipion

a
]
a

Fig. 4. Initial clustering, intermediate and remaining “split sons”

— Columns that are merged together by a common header which consistently
overlaps with the first word of each column (Fig. 4, left: a).

— Blocks that are split into parts by an occasional gap at the same X-position
throughout the block (so called rivers) (Fig. 4, left: b).

— Words that have neither an upper nor a lower neighbor will remain isolated.
Each word of a header will for instance produce an individual, isolated block
(Fig. 4, left: c).

The following paragraph discusses ways to escape these inherent errors. Each
error-class will have its own postprocessing procedure.

3 Postprocessing Steps

3.1 Isolation of Merged Columns

The first problem that we want to consider are column blocks that are joined
together by a common header which spans all the columns. In this case we need
to identify the subcolumns. Looking more closely at the segmentation graph, we
recognize a significant feature: the words of subcolumns all occur in a one-to-one
relation. This relation oneone (ws, wy) is given between two words, if word w, has
exactly one lower overlapping neighbor w, and w, has exactly this one upper
neighbor w,. Sequences of such words (as typically found in subcolumns) are
especially visually conspicuous. We need to introduce some new functions in
order to express this relation formally:

wy = ovlf 5t (w,) <= ovl(wy, wy) A
—Jw, : (wy = succiine(w,) A ovl(wg, w;))

Wy = m}lf’”t(2) = wy = ovl! T (w,) A line(w,) = succgoc(line(w,))

The T-Recs Table Recognition and Analysis System 261

lfirst

JI () <= wy, = ovl! T (wy,) A line(wy) = succgoc(line(wy))

Wy = OV

Using the above functions, we can define the one-to-one relation as follows:

first

G (We) N 0Vl (Wy, SUCCne(wy)) A

oNeone(Wy, Wy) <= (wy = ovl
Wy = ovl,{;mt(wy) A —ovl(wy, suctiine(wz))) V

ON€one(Wy, Wy) (this line ensures symmetry)

We now separate all sequences of words standing in such a one-to-one relation
and moreover call them Split Sons (B*P!"). No other parametrical limits are
applied at that point. The set of words for each of these newly created blocks is
characterized as the transitive hull of the one,,. relation :

stu];lit = [walope,, . = {wylwy € M A we ~one,, .~ wy}

The result of this step applied to our reference document is seen in Fig. 4
(center). The interesting regions are marked with ovals.

As expected, this negligent isolation step results in some B*P! blocks that
are incorrect (small ovals). But the value of each isolated block can best be rated
afterwards because the most significant factor for being a proper subcolumn is
given by the surrounding columns. As we know, table columns typically occur
only in the neighborhood of other columns. The basis for the split sons to re-
main isolated is calculated on the following features: number of directly adjacent
columns; average amount of space to the left and right neighbor; block height;
textual or structural similarity of the words (optional).

If the basis of a B*P“* block does not reach a given threshold, it will be
remerged with its father-block. The result of this remerging operation is seen in
Fig. 4 (right). The shaded ovals point to the “repaired” blocks.

3.2 Elimination of “Rivers”

In some cases a regular block might show some white space at the same x-position
throughout the complete block. These so called rivers of whitespace are said to
be bad layout and are tried to be avoided by modern typesetting programs and
wordprocessors. They are more likely to occur in small blocks of only a few lines,
using fixed width fonts (e.g. ASCII texts).

Applying the simple heuristics of merging adjacent blocks if the average gap
size between the words at the border is not significantly bigger than one space,
would end in the loss of isolated table columns with narrow gaps as well. To
avoid this error, the merging operation must be applied selectively.

A closer look at the blocks which would be affected points out a very dis-
tinctive feature: those table column blocks that we want to prevent from the
remerging are all characterized by having at most one word (or token) per line.

262 Thomas Kieninger and Andreas Dengel

We thus classify all blocks into two types: the typical column blocks with one
word per line are classified as type 1. All others are of type 2.

The actual postprocessing step is quite straightforward: we simply merge all
(and only!) adjacent type 2 blocks if the white space between the words of the
adjacent blocks is not significantly bigger than one space '. The intermediate
clustering after this merging operation is seen in Fig. 5 (left).

3.3 Clustering of Isolated Words

The third class of errors is caused by words which have neither upper nor lower
neighbor and thus would not be clustered to any block. A header would for
instance be interpreted as a table of one line height with each word representing
one column. In general, words that have neither upper nor lower neighbor might
either belong to an isolated line (e.g. a header), stick out of the end of a non-
justified block or represent the content of a table cell. For all except the last case
the initial clustering algorithm keeps these words isolated by fault.

— — n i —
ahove_tgble_congiges_of_uhat_ F:::D:D’g%
Jal: 1L 10(IO 1] nade_

Fig. 5. Closed “Rivers”, Reference points and clustered isolated words

We thus have to decide whether an isolated word fits into a table column or
not. To gain a global view over all potential columns, we scan through all blocks
and wherever a relatively narrow block or at least two blocks in a horizontal
neighborhood occur, we assume to be inside a potential table environment and
evaluate what we call the corresponding margin structure with its margin points
MP and the reference points RP.

Therefore, we visit all blocks sequentially and if a block presumably belongs
to a margin structure we evaluate the appropriate block cluster B2~ and the
list of margin points. These MPs indicate the left and right borders of blocks.

! The threshold value used for this comparison is given as an external parameter.

The T-Recs Table Recognition and Analysis System 263

An MP can represent more than one block if these blocks are aligned to the
appropriate side. The major attributes of an MP are the accumulated height of
its inducing blocks and its type (left or right) which corresponds to the triggering
block side and the z-position.

The reference points RP are then constructed based on a sorted list (by x
position) of margin points. The RPs gather a sequence of MPs with the same
type (not interrupted by different type MPs!) and within a threshold z-range.
The RPs accumulate the height of the MPs in the ref_counter attribute.

The reference points of our sample document are shown in Fig. 5 (center):
gray and black bars for the left and right RPs respectively. The dark ovals point
towards isolated words that should be bound to their horizontal neighbor. The
bright ovals point towards words that should remain isolated.

Thus, every block in a cluster B%-“'** has one left and one right RP. If any
of the appropriate RPs ref_counter of a block is smaller than a given limit, it is
presumed not to match with a surrounding column and will occasionally be
merged to surrounding neighbor blocks on the appropriate side.

The effect of this procedure is to select isolated words that do not fit into
a surrounding table column for the merging operation. The resulting blocks are
seen in Fig. 5 (right). The gray ovals point out the “repaired” parts.

3.4 Delineation Based Block Separation

The intuitive semantics of delineations is an explicit demarcation of the distinct
text areas. In the rare case of very dense blocksetting, it might happen, that the
initial clustering builds blocks over such delineations. Therefore we apply the
following processing steps.

We call a block strictly cut, if all endpoints of an intersecting line (or touching
lines) are outside of the block bounding box. If one end of a separator is outside
and one is inside of the block bounding box (thereby not touching any other
separator), we say it is weakly cut. In either case the block is subject to further
analysis.

AT T o [
L T T 1T ORI
- KILX X

L

Fig. 6. Separator based splitting of a strictly cut block

Separation of Strictly Cut Blocks In this case, we simply have to decide
for each word on which side relative to the separator it is positioned. The words
are moved to new blocks accordingly. Figure 6 gives an example of three blocks

264 Thomas Kieninger and Andreas Dengel

that are isolated by two separators (left). Due to the dense arrangements of
all words of these blocks, the initial clustering of T-Recs causes all words to
be mapped to one block, as indicated by the segmentation graph (center). The
above mentioned operation would achieve the final segmentation (right).

Separation of Weakly Cut Blocks Figures 7 and 8 both show examples of
blocks which are weakly cut by a horizontal separator. As the block geometry
itself gives no further discriminating information on how to proceed, we need to
have a closer look at the words themselves when dealing with weakly cut blocks.

I I . ~ AT A 5 C_ I]]
I I . . L0 LA | | | |
I I S . CXILXICX I | | | |
T T 0T 1 | Ea=dpirdp=a@>= I | |
— T T T I CY LY LI | |

Fig. 7. Example of an unaffected weakly cut block

Even as a human reader we have no intuitive idea how to deal with the
situation given in Figure 7. It is not clear, whether to break the block or not and
if yes, what to do with the words that are not projected onto the separator. We
decided to leave such blocks untouched.

[
|
[|
[
i
0

]

— T 1 | C_JC_ JC |
I S S o e
T 1 11 1 ﬁ% | i
7 f I I | [|

Fig. 8. Example of an affected weakly cut block

The example of Figure 8 is more intuitive: While one endpoint is inside the
block bounding box, the decomposition based on the given separator looks none-
theless reasonable. This is due to the fact that the projections of the words on
both sides of the separator to the extended line do not meet beside the separator
itself. The upcoming operation is straightforward: The words are being moved
to separate blocks according to their relative side.

3.5 Unification of Block Abstraction Level

Looking at the type 1 blocks (see Sect. 3.2) we realize that they all represent
columns (or parts of a column), whereas type 2 blocks represent atomic textual
units.

The T-Recs Table Recognition and Analysis System 265

To achieve a homogeneous view, we simply decompose all type 1 blocks into
their individual line segments. The resulting structure is seen on the left of Fig. 9.

Name -Anschluss-Raun|
B e I > < o 5 i 2 e 0) <iti | Eable | shown | 6 | Ehe| [Kieni 3485380 jThe Eable| shown| €9 Ehel
5 T Y i 3456 [365 | | ‘to_be.
Tin rasr_to] in orasz toj

EHE) GIued) -y e 27 0 JE5o1ats | £ glued | columns:|

£olloning|paragraph «

isjan]example]which]becomes documents, Jbutlit]is This]isJlan]exampleJwhichbecomes [documents, Jbutit]is

ine [smaller]and[smaller]tx

&

o
F
)
&

emo
|

[

[rv [seamentation]algorithn [co] Line. [sucha] Layouc] i)
haza]colfinalin] codays Js|ab1elto] recognize] ehe]oap | [reralcof £inalin] codaye Jllis b e col recognize[chelaap |

Pos | il

1 Ref .
. l PS Qulck Reference
32 Pattern]Recognition]Handbook

SPIE|Document |[Recognition|IV]

Fig. 9. Decomposed type 1 blocks and type 2 blocks split at row borders

The figure moreover shows some conspicuous black horizontal lines, called
(logical) row borders. These are triggered by the top edges of those blocks that
are standing inside a tabular environment. We might further observe two distinct
type 2 blocks (indicated by the gray ovals) which are intersected by some row
borders. If such a block is an aggregation of table cells, it will also be decomposed
at the edges of the row borders.

To decide whether or not a type 2 block has to be treated like this, we consider
that word processors try to fill the existing line space as much as possible. Thus,
a word at the beginning of each line would not have fit on the end of the previous
line. In this case we say that a block is properly filled and conclude that it contains
no explicit returns and hence builds a logical entity. The resulting structure which
represents the final segmentation result is seen on the right of Fig. 9.

We like to refer to [9] for a detailed description of the postprocessing steps
discussed in Sects. 3 and 3.5 and to the online demo of the T-Recs system under
http://www.dfki.uni-kl.de/~kieni/t recs/

4 Table Layout Analysis

To ensure a common terminology, we need to specify some objects used in the
context of tables. To point out the differences between the data cells and the
table tiles we take an example with an empty field as well as a column- and a
row spanning data cell as shown in Fig. 10. The block segments are represented

by black outlined rectangles. The gray filled rectangles indicate the structures
to be explained.

266 Thomas Kieninger and Andreas Dengel

[1]
) o) o |

| ———
| s] s

-

)

= —

Data Cells Table Columns Table Rows Table Tiles

Fig. 10. Logical elements of a table.

From left to right we see the original data cells represented by their bounding
boxes. Next we see the columns followed by the rows. The very right shows the
table tiles, a regular structure, defined by the combination of rows and columns.
The overall structure is called the table.

After the initial clustering and error correction phases as well as the unifica-
tion of the block abstraction level, we have a set of blocks that either represent
regular paragraphs or table cells. We now need to identify table cell blocks and
analyze their structural arrangement.

Wherever two or more blocks occur as horizontal neighbors (indicated by
blocks with a dedicated margin structure), we assume a table and construct a
structure that we call table tiles.

4.1 Construction of Table Tiles

Instead of rule based approaches that perform a bottom-up aggregation of higher
level objects, T-Recs evaluates a grid of tiles which is fine enough so that each
tile covers at most one table cell. Figure 11 (left) shows an example of some
blocks (indicated by bright rectangles) and some horizontal and vertical block
separators. The horizontal separators are identical to the row borders as de-
scribed in Sect. 3.5. The vertical separators overlay the areas between right and
left margin points as described in Sect. 3.3.

\ I|! I|! ! | \ I|! | [3 4 J|[3 4]
\ Il I|! ! | \ | L] L2 [3 L2 1

[I|! I|! ! \ [(3 {Le T3 [4]
\ Il Il Il |] L] 4 2] 1

Fig. 11. Tiles of a regular and a degenerated table and appropriate tile classifi-
cation

The tiles are defined by the grid that is made up of the horizontal and vertical
separators and in the case of Fig. 11 (left) they are identical with the blocks of
the cells themselves.

The T-Recs Table Recognition and Analysis System 267

It is obvious, that each tile is covered by at most one table cell while on the
other hand we do not have any more tiles than needed to achieve this condition.
We can further state, that the tiles are identical to the table cell blocks if the
table is dense and none of the cells spans more than one row and column.

In contrast, Fig. 11 (center) shows a degenerate table with various row or
column spanning cells and even “missing” cells (i.e. the table is sparse). None-
theless we get the same tile structure as in the example of Fig. 9, indicating 4 rows
and 4 columns. Obviously, the tiles are no longer identical to the cells. Again,
each tile is covered by at most one cell - but we also realize that some cells touch
more than one tile and moreover we see that some tiles remain untouched.

4.2 Internal Structured Representation

The internal representation of the document structure consists of a sequence
of regular paragraph blocks and blocks occuring as cells within a table. The
latter blocks contain pointers to appropriate tile structures. The presence of tile
structures causes the system to handle the appropriate blocks differently than
other blocks, i.e. with a function that is designed for that particular purpose.
First, we need to identify the different states of a tile:

1. A tile can be left blank (if a table is sparse).

2. A tile can be covered by a block that does not reach to adjacent tiles.

3. A tile can be the first (topmost and leftmost) in a sequence of tiles to be
covered by one column and/or row spanning cell.

4. A tile can be the “non-first” in a sequence of tiles to be covered by a column
and/or row spanning cell.

Figure 11 (right) shows the center example again, but with numbers in each
tile, indicating the appropriate classification according to the numbering of the
different states.

4.3 Generating Tagged Output of Tables

Since the current output of T-Recs is a HTML document, we briefly summarize
the main HTML tags that are used for the definition of tables. All tags specify
an environment which ends with the corresponding end-tag. The end-tags are
indicated by a slash in front of the actual tag name. An overall table will be
nested between a pair of <TABLE> and </TABLE> tags.

<TABLE> Defines the start of a new table
<TR> Defines begin of a new row of a table
<TH> Defines begin of a header cell
<TD> Defines begin of a data cell
COLSPAN=x Optional Parameter for <TD...> and <TH. . .> that de-
fines a cell to span x columns
ROWSPAN=y Optional Parameter for <TD...> and <TH...> that de-
fines a cell to span y rows

268 Thomas Kieninger and Andreas Dengel

The preparation of the tagged output of tabular environments is done by
traversing the tile structure from top to bottom, left to right. The actions per-
formed for each tile are thereby controlled by the discussed state. The following
abstract algorithm describes the individual operations:

1. If a new table starts, print “<TABLE>”.

2. If current tile is the first one in a new row, print “<TR>”.

3. If the status number of the current tile is 1, print “<TD></TD>” to define an
empty field.

4. If the status number of the current tile is 2, print “<TD>” .

5. If the status number of the current tile is 3, print “<TD COLSPAN=x
ROWSPAN=y>” where = and y denote the number of columns and rows re-
spectively that are covered by the associated block.

6. Skip tiles with a status number of 4.

7. If the status number of the current tile is 2 or 3, print the textual contents
of the associated block and the end tag “</TD>”.

8. If current tile is the last one the current row (regardless of the state), print
“</TR>” .

9. If the current table ends, print “</TABLE>"
else move to next tile and goto step 2.

5 Conclusion and Outlook

While classical character recognition systems do not show recent significant im-
provements [14] [15], commercial OCR systems focus more and more on the
detection of structural information (such as tables) as key technology for their
products.

Since benchmarking systems have not yet been developed for tabular struc-
tures, we cannot give quantitative statements about T-Recs results. But the
demonstrated interest of OCR vendors in the T-Recs technology might count as
proof for being on the right track.

Both of the T-Recs subsystems, segmentation and layout analysis, are still
subject to further research with the goal of an improved performance. We will
for instance implement new heuristics to avoid the misinterpretation of layout
objects in business letters as tables.

In order to allow an objective benchmarking of the recognition accuracy
we are currently developing a graphical user interface to gather ground truth
data. This frontend also allows us to manipulate the layout of given documents
while keeping track of the document logic. Thus, it is possible to construct
large collections of ground truth data in a ready-to-use format for the actual
application (no printing, scanning or OCR process neccessary) which is moreover
free of any unwanted noise.

Benchmarking not only allows us to compare different analysis systems but
also to document system progress and to optimize predefined system parameters.

The T-Recs Table Recognition and Analysis System 269

References

10.

11.

12.

13.

14.

15.

16.

. Surekha Chandran and Rangachar Kasturi: Structural Recognition of Tabulated

Data. In Proc. of International Conference on Document Analysis and Recognition
- ICDAR 93, 1993. 257

Allen S. Condit: Autotag - A tool for creating Structured Document Collections
from Printed Materials. Master’s thesis, Dept. of Computer Science, University of
Nevada, Las Vegas, 1995. 257

Andreas Dengel: About the Logical Partitioning of Document Images. In Proceed-
ings SDAIR-94, Int’l Symposium on Document Analysis and Information Retrieval,
Las Vegas, NV, pages 209-218, April 1994. 257

Lawrence O’Gorman: The Document Spectrum for Bottom-Up Page Layout Analy-
sis. In H. Bunke, editor, Advances in Structural and Syntactic Pattern Recognition,
pages 270 — 279. World Scientific, 1992. 258

E. Green and M. Krishnamoorthy: Recognition of Tables using Table Grammars.
In Proc. of the 4-th Symposium on Document Analysis and Information Retrieval
- SDAIRY5, Las Vegas, Nevada, 1995. 257

Yuki Hirayama: A Method for Table Structure Analysis using DP Matching. In
Proc. of International Conference on Document Analysis and Recognition - I[CDAR
95, Montreal, Canada, 1995. 257

Tao Hu: New Methods for Robust and Efficient Recognition of the Logical Struc-
tures in Documents. PhD thesis, Institute of Informatics of the University of
Fribourg, Switzerland, 1994. 257

. Katsuhiko Itonori: Table Structure Recognition based on Textblock Arrangement

and Ruled Line Position. In Proc. of International Conference on Document Anal-
ysis and Recognition - ICDAR 93, 1993. 257

Thomas Kieninger: The T-Recs Table Converting System. available at
http://www.dfki.uni-kl.de/~kieni/doc/trecs3.ps.gz, April 1998. 265

Koich Kise, Akinori Sato, and Keinosuke Matsumoto: Document Image Segmenta-
tion as Selection of Voronoi Edges. In Proc. of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition CVPR 97, June 1997. 258

George Nagy and S. Seth: Hierarchical Representation of Optically Scanned Doc-
uments. In Proc. of the 7th Intl. Conference on Pattern Recognition (ICPR), 1984.
259

T. Ohya, M. Iri, and K. Murota: A fast Voronoi Diagram Algorithm with Qua-
ternary Tree Bucketing. In Information Processing Letters, Vol. 18, No. 4, 1984.
258

M. Armon Rahgozar, Zhigang Fan, and Emil V. Rainero: Tabular Document
Recognition. In Proc. of the SPIE Conference on Document Recognition, 1994.
257

Stephen Rice, Frank Jenkins, and Thomas Nartker: The Fourth Annual Test of
OCR Accuracy. Technical report, Information Science Research Institute (ISRI),
Univ. of Nevada, Las Vegas, 1995. 268

Stephen V. Rice, Frank R. Jenkins, and Thomas A. Nartker: The Fifth Annual
Test of OCR Accuracy. Technical report, Information Science Research Institute
(ISRI), Univ. of Nevada, Las Vegas, 1996. 268

Daniela Rus and Kristen Summers: Using White Space for Automated Document
Structuring. Technical Report TR 94 - 1452, Department of Computer Science,
Cornell University, 1994. 257

270 Thomas Kieninger and Andreas Dengel

17. A. Lawrence Spitz: Recognition Processing for Multilingual Documents. In Pro-
ceedings of the International Conference on Electronic Publishing, Document Ma-
nipulation & Typography, Gaithersburg, Maryland, September 1990. 257

18. Scott Tupaj, Zhongwen Shi, and Dr. C. Hwa Chang: Extracting Tabular Informa-
tion from Text Files. Available at http://www.ee.tufts.edu/~hchang/paperl.ps,
1996. 257

19. K. Y. Wong, R. G. Casey, and F. M. Wahl: Document Analysis System. IBM
Journal of Research & Developement, 1982, 26(6):647-656, 1982. 258

	Introduction
	The T-Recs Document Model

	Segmentation
	Top-Down vs. Bottom-Up
	The T-Recs Bottom-Up Clustering Approach

	Postprocessing Steps
	Isolation of Merged Columns
	Elimination of "Rivers''
	Clustering of Isolated Words
	Delineation Based Block Separation
	Unification of Block Abstraction Level

	Table Layout Analysis
	Construction of Table Tiles
	Internal Structured Representation
	Generating Tagged Output of Tables

	Conclusion and Outlook

