Enhancing the Pre- and Postcondition
Technique for More Expressive Specifications

Gary T. Leavens and Albert L. Baker

Department of Computer Science, lowa State University
226 Atanasoff Hall, Ames, Iowa 50011-1040 USA
phone: +1 515 294 1580, fax: +1 515 294 1580
http://www.cs.iastate.edu/~leavens/index.html
http://www.cs.iastate.edu/~baker/baker.html
leavens@Qcs.iastate.edu and baker@cs.iastate.edu

Abstract. We describe enhancements to the pre- and postcondition
technique that help specifications convey information more effectively.
Some enhancements allow one to specify redundant information that can
be used in “debugging” specifications. For instance, adding examples to
a specification gives redundant information that may aid some readers,
and can also be used to help ensure that the specification says what is
intended. Other enhancements allow improvements in frame axioms for
object-oriented (OO) procedures, better treatments of exceptions and
inheritance, and improved support for incompletely-specified types.
Many of these enhancements were invented by other authors, but are not
widely known. They have all been integrated into Larch/C++, a Larch-
style behavioral interface specification language for C++-. However, such
enhancements could also be used to make other specification languages
more effective tools for communication.

Keywords: specification language design, expressiveness, liberal specifica-
tion, redundancy, debugging, history constraint, Larch.

1 Introduction

1.1 Background and Motivation

The pre- and postcondition technique was described by Hoare in his classic article
[26]. This technique forms the basis of most contemporary specification languages
for sequential systems [II, [I5] [16], I8 23, 28, B} [41], [40, 42| [43], 47 [50, [51].
(However, Z [24,[52] is an exception, as Z preconditions are not explicitly stated,
but instead are calculated from the specification given [60], Chapter 14].)

We take as our starting point an excellent article by Jonkers [30], which, like
this paper, is addressed to specification language designers. Jonkers says (page
428):

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 10871106}, 1999.
© Springer-Verlag Berlin Heidelberg 1999

1088 Gary T. Leavens and Albert L. Baker

“Nowadays the pre- and postcondition technique is considered a stan-
dard technique in software development as it is being taught in almost
every basic software engineering course. This gives the impression that
the technique has fully matured and that it can be applied everyday in
software development practice. The fact that this is not really the case
is camouflaged by the sloppy and informal way pre- and postconditions
are generally used in practice.”

Besides reconstructing the pre- and postcondition technique, Jonkers de-
scribes several enhancements. These enhancements are found in the specifica-
tion language COLD-1 [15]. The following briefly summarizes the enhancements
COLD-1 makes over previous specification languages, such as VDM [l [16, 28]
and other languages in the Larch family [23]:

— Dependent variables, the declaration of which allows the dependent variable
to be modified whenever the variables it depends on are modified. Depen-
dent variables can be specified either directly, or indirectly using pre- and
postconditions. (See also Leino’s work on dependencies [37].)

— Fine-grained frame axioms using wild cards and expressions, which allow one
to specify the variables that can be changed more concisely and precisely.

— Let clauses, which allow the introduction of local named abbreviations.

— Some extensions for the specification of reactive systems.

1.2 Contribution

Our work extends Jonker’s work in that all the extensions we discuss in this
paper are new with respect to COLD-1. Many enhancements that we describe
are the work of other authors. Except for the ideas of user-selectable partial
vs. total correctness, and certain forms of redundancy, it is not our intention to
claim the other enhancements as our own. Instead we wish to highlight them so
that they might become more widely known and used in specification language
design.

We show how all these enhancements are integrated in Larch/C++ [32] [33],
a Larch-style behavioral interface specification language for C++. Larch/C++
adopts most of the COLD-1 extensions, except for the technical ideas for fine-
grained frame axioms and the extensions for the specification of reactive systems,
and includes the enhancements discussed below. This integration enhances the
rhetorical effectiveness and utility of Larch/C++.

Nevertheless, the enhancements we discuss would apply equally well to other
specification languages, including those outside the Larch family. That is, the
ideas themselves are not specific to Larch/C++ or even to Larch, but to the pre-
and postcondition technique generally.

We believe that specifications written using these enhancements provide more
precise and more easily understandable contracts. Briefly, we hope that our en-
hancements make specifications more expressive.

Enhancing the Pre- and Postcondition Technique 1089

By more expressive we mean that the specifications convey information more
immediately to the reader. That is, in this paper we care not so much about what
can be expressed, but how easy it is to express and understand.

It is beyond the scope of this paper to experimentally validate our hopes for
increased expressiveness. Instead, we claim just to demonstrate the plausibility
of increased expressiveness by showing suggestive examples, and leave for later
experiential or experimental validation. What we present is a necessary first step.
Furthermore, we believe that too little attention is paid to the expressiveness
of specifications in the formal methods and reuse communities. We believe that
it would be interesting to investigate the degree to which the expressiveness of
formal methods affects their use and cost-effectiveness.

We also claim that some of the enhancements we describe can increase the
quality of specifications. This is particularly true of the redundancy enhance-
ments described in Section Bl which can be used to check that the specification
says what is intended [55, (54, [56].

1.3 Overview

In Section Blbelow we show how to allow the specifier to choose either total or
partial correctness specifications. In Section B, we describe a syntactic sugar,
“case analysis,” that helps break specifications up into more easily understood
pieces. In Section H, we describe some improvements to frame axioms. In Sec-
tion[d, we describe how to add redundancy, including examples, to specifications.
In Section [l we describe “history constraints” that can constrain how states can
change. Finally, we offer some conclusions.

2 Liberal Specifications

Most pre- and postcondition-based specification languages have a total correct-
ness [13] semantics. That is, a specification such as Figure [l must always termi-
nate if the precondition is satisfied.

extern void inc(int& i) throw();

//@ behavior {

//@ requires assigned(i, pre) /\ i~ < INT_MAX;
//@ modifies ij;

//@ ensures i’ = i~ + 1;

//@ }

Fig. 1. The Larch/C++ specification of the C++ function inc.

1090 Gary T. Leavens and Albert L. Baker

(In Figure [the first line gives the C++ function’s interface. It says that
inc takes an integer argument passed by reference, returns nothing, and may
not throw exceptions. The behavior of inc is specified in the remaining lines.
The precondition starts with the keyword requires, and the postcondition with
the keyword ensures. The notation i~ is the pre-state value of the variable i,
and i’ is its post-state value. The notation assigned (i, pre) means that i has
been assigned a proper value in the pre-state; /\ means “and”. The modifies
clause is a frame axiom, which says that only the object i can have its value
changed.)

A partial correctness, or liberal, semantics means that when the precondi-
tion is satisfied, then if the procedure terminates, the postcondition must hold.
However, termination is not required. By termination, we mean return to the
caller of a procedure, either normally or by throwing an exception. Infinite loops,
jumps to other parts of the program, and program abortion are not termination.

In Larch/C++, users can specify procedures using either the total or partial
correctness semantics. Specifications that use just the keyword ensures have
a total correctness semantics, and those that use ensures liberally have a
partial correctness semantics. (The keyword 1iberally is inspired by Dijkstra’s
terminology [L3]; it has been suggested that on exit might be better.)

One use for partial correctness specifications, as in Hoare’s original work [26],
is to avoid finiteness issues. For example, instead of specifying inc as in Fig-
ure[dl, one could drop the precondition conjunct i~ < INT_MAX and use ensures
liberally in the postcondition. In this altered specification, the postcondition
would only need to be satisfied if the procedure terminated; for example, a correct
implementation could abort the program if the result could not be represented.
As a contract this is less precise since no call need terminate, but it is shorter.

Such finiteness issues often arise in allocation routines, such as C++ con-
structors. For example, if an implementation of a constructor might plausibly
need to allocate some memory from the heap, a total correctness specification
would have to describe the circumstances in which there is enough memory avail-
able. Not only would such a specification be tedious and longer, but it might
also overly constrain implementations. The problem is that there is no way to
know how much memory all possible implementations might need.

Although one might specify that a very generous amount of memory is re-
quired for termination, doing so with just a total correctness specification would
impose no obligation at all on implementations when the very generous amount
was not available. In Larch/C++, one can combine total and partial correctness
specifications for the same procedure, and thus more precisely specify both when
a call must terminate and what must be true on termination. The semantics of
such combinations uses the ideas of Dijkstra and others [13, [46, [25].

Another way out of the difficulty with allocation routines would be to change
the meaning of total correctness. For example, one could use a variation on
Poetzsch-Heffter’s semantics [49) page 48] and require termination only if no
memory allocation errors occur.

Enhancing the Pre- and Postcondition Technique 1091

However, there are other uses for partial correctness. A prime use is in speci-
fying when a procedure must not terminate. A simple example is the C++ abort
procedure, which can be specified as in Figure 2| This procedure can always be
called, but when called must abort program execution instead of terminating,
and hence cannot be specified with a total correctness semantics.

void abort();
//@ behavior {
//@ ensures liberally false;

//@ }

Fig. 2. Specification of abort.

The use of partial correctness, together with case analysis (see below), allows
one to specify exactly under what conditions a procedure must not terminate.
This technique is useful in precisely specifying contracts for procedures written
for languages (or compilers) without exception handling. This idea appears in
sugared form in the LCL checks clause [23] 55| b4l (6]

Partial correctness is also useful for specifying procedures for which there
is no known totally-correct implementation. Interpreters for Turing-complete
languages are examples.

3 Case Analysis

A simple syntactic sugar, which we call case analysis, is helpful in breaking up
specifications into more manageable chunks, and in specifying procedures that
can throw exceptions. Its advantage over special-purpose notations for exceptions
(as in LM3 [29, 23], to cite just one example) is that it is also useful for other
kinds of case analysis This sugar was pioneered by Wing [59, Section 4.1.4].
The idea is that a specification can be split into several cases, all of which
must be satisfied by a correct implementation. This concept was independently
reinvented by Wills [57]. Wills called specification cases “capsules”, and used
them effectively in OO specifications.

In Larch/C++, specification cases are separated by the keyword also. Con-
sider the example of Figure[3l This example shows a specification with two cases.
The first case specifies an exception, the second the function’s “normal” behav-
ior, which is to set each element of the argument array to zero. (The notation
\A means “for all”.)

The desugaring of a specification with case analysis turns it into a specifica-
tion with a single total correctness and a single partial correctness case. Each

1092 Gary T. Leavens and Albert L. Baker

#include "BadSize.h"
extern void ZeroArray(double x[], int n) throw(BadSize);
//@ behavior {

//@ requires n <= 0;
//@ ensures throws(BadSize);
//@ also

//@ requires 0 < n /\ n <= size(x) /\ allocated(x, pre);
//@ modifies x;

//@ ensures returns
//@ /\ (\A i: int (0 <= i /\ i < n) => x’[i] = 0.0));
//@ }

Fig.3. Specification of the C+4 function ZeroArray. The predicate
throws (BadSize) is true when the function terminates and throws the named
exception; returns is true when the function terminates normally. The predicate
allocated(x, pre) is true when x is allocated in the pre-state.

such desugared case has as its precondition the disjunction (written \/) of the
preconditions of each corresponding case, and as its postcondition a conjunction
of implications, with each precondition implying (written =>) the corresponding
postcondition. For example, the specification in Figure [is the desugaring of
the specification in Figure Bl We think that Figure [3] is significantly easier to
understand.

The interaction of frame axioms with this desugaring is subtle. The frame
for the desugared specification has to allow all modifications permitted in each
original case, since that permission is needed by the whole procedure. To keep
the original meaning, however, the operator unchanged is used as needed in each
case. For example, in Figure M, unchanged (x) is conjoined to the original first
case’s postcondition.

With just this sugar, however, precondition conjuncts that are shared among
cases would have to be repeated in each case. To avoid such repetition, cases in
Larch/C++ can be put in the scope of a precondition (and can also be nested).
For example, in Figure [d, the precondition assigned(s, pre) applies to both
cases. The desugaring first conjoins the outer precondition to each of the inner
ones, and applies the previous desugaring. Extracting common parts of precondi-
tions like this also highlights them for the reader. (We attach no special semantics
to such common preconditions, unlike Poetzsch-Heffter [49, pages 96-97].)

For OO specification languages, Wills pointed out that one can understand
inheritance of specifications as meaning that subtype objects must satisfy the
cases specified for them explicitly, as well as those of their supertypes. This
ensures that subtyping is behavioral [IT], 42]; that is, subtype objects can be
reused according to their supertypes’ contracts.

Enhancing the Pre- and Postcondition Technique 1093

#include "BadSize.h"

extern void ZeroArray(double x[], int n) throw(BadSize);

//@ behavior {

//@ requires n <= 0 \/ (0 < n /\ n <= size(x) /\ allocated(x, pre));
//@ modifies x;

//@ ensures ((n <= 0) => (throws(BadSize) /\ unchanged(x)))

//@ /\ ((0 < n /\ n <= size(x) /\ allocated(x, pre))

//@ => (returns

//@ /N \A i:oint (0 <=1 /\ i <n) =>x’[i] = 0.0)));
//e %

Fig. 4. Desugared specification of ZeroArray.

4 Framing

A frame axiom in a procedure specification says that “nothing else changes” [5].
VDM and Z both have features to permit the specification of frame axioms (write
permissions in VDM, and A in Z). In the Larch family, interface specifications
languages have followed Wing’s design for Larch/CLU [58] in using the modifies
clause to say that only the objects listed may have their abstract values changed.

In Larch/C++, the meaning of the modifies clause “modifies 1i;” is trans-
lated by a predicate like the following (see [33), Section 6.2.3.4] for exact details),
which can be thought of as conjoined to the postcondition.

ModifiedObjects(pre, post) \subseteq {i, residue_i}

In the above, the term ModifiedObjects(pre, post) denotes the set of all
objects modified in the transition from the pre-state to the post-state, and
\subseteq is a subset operator. The object residue_i stands for whatever ob-
jects 1 may depend on that are not in scope [37, Section 11.3]. The modifies
clause gives considerable notational abbreviation, because it asserts that all ob-
jects not mentioned retain their values.

4.1 Trashing

In the Larch family, predicates use the logic of the Larch Shared Language,
which is a logic of total functions [2I] B5]. In such a logic, the pre- and post-
states, which are modeled by functions, will return proper values for objects that
are not allocated or that are not assigned a proper value. To avoid ill-defined
specifications, it is important that a specification written in such a logic ensures
that whenever an object’s value is mentioned in a given state, the object is
allocated (i.e., found in the domain of the state function), and assigned (i.e., given
a proper value). If this is not done, then logical problems may occur [8 27, [36].

1094 Gary T. Leavens and Albert L. Baker

#include "Stack.h"

#include "BadSize.h"

extern void pop2(Stack & s) throw(BadSize);
//@ behavior {

//@ requires assigned(s, pre);

//e A

//@ requires size(s”) < 2;

//@ ensures throws(BadSize);

//@ also

//@ requires size(s™) >= 2;

//@ modifies s;

//@ ensures returns /\ s’ = pop(pop(s));

//@ ensures redundantly size(s’) = size(s”) - 2;
//e }

//e }

Fig. 5. Specification of pop2. The ensures redundantly clause is explained
below.

To avoid such problems in the semantics of the modifies clause, the set
ModifiedObjects(pre, post) can only include objects that are assigned values
in both the pre- and post-states and change their values, or that are allocated
in the pre-state and become assigned in the post-state.

However, in C++ and other languages without garbage collection, procedures
can trash an object, either by deallocating it or by making it unassigned (for
example, by “uninitializing” it from an unassigned variable). Since these actions
are not considered modifications, they are not covered by the modifies clause.
However, without additional support from the specification language, specifiers
would have to make assertions about which objects remain allocated and assigned
in each postcondition [7], which would be inconvenient and verbose.

To avoid having users write in postconditions assertions about what is not
trashed, Chalin [7] argued for a second part to the frame axiom in Larch interface
specifications. In Larch/C++ this is called the trashes clause. Only the objects
listed in the trashes clause may be trashed; hence all objects not mentioned
must remain assigned and allocated if they were in the pre-state, and an omitted
trashes clause means that nothing may be trashed.

As with the modifies clause, the trashes clause is a permission, not a
requirement to trash the objects mentioned. Consider the example in Figure
B3, Section 6.3.2.1]. The object pointed to by cp may be trashed, since it is
mentioned in the trashes clause. The postcondition says that it must be trashed
when the value of ref_count drops to 0, but may not be otherwise.

Enhancing the Pre- and Postcondition Technique 1095

extern void dec_ref(char *cp, int & ref_count) throw();

//@ behavior {

//@ requires allocated(cp, pre) /\ assigned(ref_count, pre)
//@ /\ ref_count™ >= 1;

//@ modifies ref_count;

//@ trashes *cp;

//Q ensures ref_count’ = ref_count™ - 1

//@ /\ (if ref_count’ = O then trashed(*cp) else ~trashed(*cp));
//@ ensures redundantly ref_count”™ > 1 => “trashed(*cp);

//Q example ref_count”™ = 1 /\ ref_count’ = 0 /\ trashed(*cp);
//e %

Fig. 6. Specification of the C++ function dec_ref. The ensures redundantly
and example clauses are explained below.

)

In Larch/C++, the meaning of the trashes clause “trashes *cp;” is trans-
lated by a predicate like the following (see [33] Section 6.2.3.4] for details), which
can be thought of as conjoined to the postcondition.

TrashedObjects(pre, post) \subseteq {*cp, residue_star_cp}

As above, the object residue_star_cp stands for whatever objects *cp may
depend on that are not in scope [37, Section 11.3].

5 Redundancy

A redundant part of a specification does not itself form part of the contract,
but instead is a formalized commentary on it. By allowing a specifier to state
redundant properties explicitly, a specification language becomes more expres-
sive. First, it allows specifiers to state properties that are important for readers,
without cluttering up the main parts of the specification. More importantly, re-
dundant parts, since they are marked as redundant, allow checking of the main
parts of the specification. One important benefit is that the reader can check his
or her understanding of the main parts against the redundant parts. Another
benefit is that the specifier can record more of the thinking that went into the
specification; for example, various examples or properties of the specification
may be thought of first, and these do not have to be dropped when a more
general form is discovered.

The Larch family has emphasized the benefit of checking how well a specifica-
tion captures the specifier’s intuition by comparing the redundant parts against
the main parts; such checking is called “debugging” a specification [I7]. For ex-
ample, the Larch Shared Language incorporates features that can be used to
state redundant claims about theories [23 Chapter 7].

1096 Gary T. Leavens and Albert L. Baker

5.1 Redundant Postconditions

Tan’s work on LCL introduced redundancy into a specification language with
pre- and postconditions [65, [54] B6]. Of particular relevance here are Tan’s “pro-
cedure claims,” which state redundant properties that follow from the main part
of a specification. In Larch/C++, one can use an ensures redundantly clause
to state procedure claims. For example, in Figure[d the ensures redundantly
clause in the second specification case highlights a property of that case; it says
that the stack’s size decreases by two. Another example occurs in Figl[6l

To use redundant postconditions in debugging a specification, for each such
redundancy claim, one would try to prove the following, where Pre is the case’s
precondition, Frame is the predicate that translates its frame axioms, Post is its
postcondition, and RedunPost is the claimed redundant postcondition [55] 54, (6]
[33, Section 6.8]. (All of these should be in their desugared forms.)

Pre A\ Frame A\ Post = RedunPost (1)

5.2 Examples

When we give problem statements to students, we observe that many students
primarily focus on examples. By adding examples as another form of redundancy
to specifications one gains the benefits of additional redundancy as well as the
ability to convey more clearly what is to be done. (Examples as part of interface
specifications first appeared in Larch/C++ [32].) For instance, in Figure [7, ex-
amples are used to show that isqrt is underspecified; the two examples given
show different approximations that may be returned for the square root of 31.

extern unsigned int isqrt(unsigned int & x) throw();

//@ behavior {

//@ requires assigned(x, pre);

//@ ensures (result-1)*(result-1) < x~ /\ x~ < (result+1)*(result+1);
//@ example x~ = 31 /\ result = 6;

//@ example x~ = 31 /\ result = 5;

//e }

Fig. 7. Specification of the C++ function isqrt.

One might wonder whether examples are needed when one has case analysis;
for example, why not specify isqrt as in Figure 87 One reason is that this style
of specifying examples would not mark the examples as redundant for the reader.
Worse, the specification in Figure[] is inconsistent, because it says that when x
is 31, the result must be both 5 and 6.

Enhancing the Pre- and Postcondition Technique 1097

extern unsigned int isqrt(unsigned int & x) throw();
//@ behavior {
//@ requires assigned(x, pre);

//e {

//@ ensures (result-1)*(result-1) < x~ /\ x~ < (result+1)*(result+1);
//@ also

//@ requires x~ = 31;

//@ ensures result = 6;

//@ also

//@ requires x~ = 31;

//@ ensures result = 5;

//@ }

//@ }

Fig. 8. A bad (inconsistent) specification of isqrt; this shows how examples are
different than specification cases.

Examples can also be used to help debug specifications. What should be
checked is that an example, together with the frame, describes a pair of states
that are in the relation specified by the specification’s main parts. In terms
of predicates, this means that for each example, one should prove the following,
where Example is the example predicate, and Pre, Frame, and Post are as before.

(Ezample N\ Frame) = (Pre = (Frame N\ Post)) (2)
By predicate calculus, this is the same as the following.
(Exzample A Frame N Pre) = Post (3)

We believe that it is best to give examples that do not contradict the precon-
dition of a specification; hence it is also worthwhile to check that the conjunction
of the example predicate, frame, and precondition is consistent.

The reason why the frame is conjoined to the example predicate in Formula
is to avoid forcing the specifier to state what objects are not modified in exam-
ples. For instance, in Figure [1, if the frame axiom were not conjoined to the
example predicate, then there would be no way to prove that the example and
the precondition imply the frame and the postcondition for that example, since
the example predicate says nothing about the value of x in the post-state.

5.3 Redundant Preconditions

One can also apply the idea of redundancy to the precondition. The requires
redundantly clause in Larch/C++ is the analog of the ensures redundantly

1098 Gary T. Leavens and Albert L. Baker

clause for the precondition. It allows one to state redundant preconditions. Re-
dundant preconditions are sometimes useful for pointing out to the reader prop-
erties that follow from the semantics of the specification language, such as that
certain objects are allocated or assigned. For example, in Figure @ the requires
redundantly clause highlights the fact that reference arguments are implicitly
required to be allocated, and that unsigned integers are non-negative.

extern unsigned int isqrt(unsigned int & x) throw();

//@ behavior {

//@ requires assigned(x, pre);

//@ requires redundantly allocated(x, pre) /\ x~ >= 0;

//@ ensures (result-1)*(result-1) < x~ /\ x~ < (result+1)*(result+1);
//@ example x~ = 31 /\ result = 6;

//@ example x~ = 31 /\ result = 5;

//e }

Fig. 9. A specification of isqrt that shows the use of requires redundantly.

To use the requires redundantly clause in debugging a specification, one
would prove the following, where again Pre is the desugared precondition, and
RedunPre is the redundant precondition.

Pre = RedunPre (4)

It would be possible to have an analog of the example clause for precondi-
tions, say with an example input clause. The example input predicates would
be used in debugging the specification by checking that they are consistent with
the precondition. Example inputs are not included in the current version of
Larch/C++ [33], because we have not found a great need for them.

5.4 Redundant Frames

Larch/C++ was also the first interface specification language to extend the idea
of redundancy to the modifies and trashes clauses. In Larch/C++, one can
use modifies redundantly and trashes redundantly clauses. One use for
such clauses is to highlight objects that are implicitly allowed to be modified
or trashed because some explicitly named object has been declared to depend
on them [37]. The debugging of redundant frames is analogous to that used for
redundant preconditions; that is, one would prove that the permissions that are
claimed to be redundant follow from the language’s semantics and the explicit
permissions.

Enhancing the Pre- and Postcondition Technique 1099

5.5 An Alternative Design for Redundancy

We now briefly describe an alternative design for redundancy that has been
considered for Larch/C++, but never adopted. We are experimenting with it
in our specification language for Java [34], and it may be of interest to other
specification language designers.

The idea is that instead of having clauses that allow the specification of
redundancy, that one label entire specification cases as redundant or examples.
For example, one might write the specification of Figure[fl as in Figure

extern void dec_ref(char *cp, int & ref_count) throw();

//@ behavior {

//@ requires allocated(cp, pre) /\ assigned(ref_count, pre)
//@ /\ ref_count™ >= 1;

//@ modifies ref_count;

//@ trashes *cp;

//Q ensures ref_count’ = ref_count™ - 1
//@ /\ (if ref_count’ = O then trashed(*cp) else ~“trashed(*cp));
//e %

//@ behavior redundantly {

//@ requires allocated(cp, pre) /\ assigned(ref_count, pre)
//@ /\ ref_count™ > 0;

//@ modifies ref_count;

//@ trashes *cp;

//Q ensures ref_count™ > 1 => “trashed(*cp);
//e %

//@ example {

//Q requires ref_count™ = 1;

//@ modifies ref_count;

//@ trashes *cp

//Q ensures ref_count’ = 0 /\ trashed(*cp);

//@ }

Fig.10. An alternative style for writing redundancy into specifications. This is
not part of Larch/C++, but given in a Larch/C++ style.

One advantage of this style is that it more cleanly separates the redundant
parts of a specification from the main parts. Also, examples seem clearer, because
the descriptions of the pre- and post-states are separated into the requires and
ensures clauses of the example.

The disadvantage of this style is that the specifications become somewhat
more verbose. In a behavior redundantly clause, one must repeat the precon-
dition and frame, which is not necessary with ensures redundantly. While an

1100 Gary T. Leavens and Albert L. Baker

example clause does not need to repeat the precondition, it does seem necessary
to repeat the frame in examples, because this keeps the semantics of an omitted
modifies or trashes clause uniform. However, there might be ways of making
this more palatable.

6 History Constraints

Many specification languages allow one to state invariants for the values of an
abstract data type (ADT). An invariant property is one that must be true of each
object of the ADT in all visible states. A visible state is one that can be observed
by clients of the ADT. Such invariants can be seen as an expressive way to state
properties that would otherwise have to be repeated in every operation’s pre-
and postcondition. However, invariants are not mere notational abbreviations,
because they apply to all operations, even when new ones are added to an ADT.

Liskov and Wing introduced a similar idea as an aid to specifying OO pro-
grams that use behavioral subtyping [39, [38]. A history constraint for a type
describes a property of objects of that type (and all subtypes) that must hold
for any ordered pair of visible states in a computation, where the first state oc-
curs before the second. To make sense, such a property must describe a reflexive
and transitive relation on states. History constraints, if not stated as such, would
otherwise have to be repeated in every operation’s postcondition. However, his-
tory constraints are not mere notational abbreviations, because they apply to
all operations, even new ones added in subtypes.

A simple example is the constraint that some field of an object never changes
its value, once initialized. For instance, in the specification of a BoundedStack
class in Larch/C++, one might write the following history constraint, to state
that a Stack’s field max_size never changes.

//@ constraint max_size” = max_size’;

The max_size field is allowed to be initialized, because history constraints do not
apply to constructors, as the pre-state value of the object is not visible. (Techni-
cally, in Larch/C++ this is because the field has not yet been assigned a proper
value upon entry to a constructor.) For analogous reasons history constraints
do not apply to destructors. However, the example constraint does say that one
cannot list make_size in a modifies clause for a normal operation (C++ mem-
ber function) of the type BoundedStack. It thus collects information that would
otherwise be spread out in all the modifies clauses of all the operations. Fur-
thermore, the immutability of a field like this would only be written negatively,
by not being listed in all these modifies clauses. Finally, the immutability of a
field could be changed by new operations or by subtypes if it were not listed in
the history constraint.

History constraints can also be used to succinctly express monotonic rela-
tionships between pre- and post-states. For example, the Larch/C++ manual’s
specification of a class Person [33), Section 7.1.1], includes the following history
constraint, which expresses the inexorable arrow of time.

Enhancing the Pre- and Postcondition Technique 1101
//@ constraint age” <= age’;

To allow debugging of invariants and history constraints, Larch/C++ also al-
lows one to state redundant invariants and history constraints, using invariant
redundantly and constraint redundantly clauses.

An innovation in Larch/C++ is that one can limit a history constraint so
that it only applies to various named operations [I1] [33, Section 7.4]. This can
be used to collect common, monotonic, parts of the postconditions of several
operations in one place. A more general version of this idea was advocated by
Borgida et al. as an approach to dealing with frame axioms [5]. The form found in
Larch/C++ is useful in specifying history constraints for types that are intended
as supertypes of weak behavioral subtypes [L1] [I0] [33, Section 7.8]. However,
an explanation of weak behavioral subtyping is outside the scope of this paper.

7 Other Related Work

Our goal of making pre- and postcondition specifications more expressive is
also served by the refinement calculus [2 3] 4] 43} [44], 45]. The major exten-
sion in the refinement calculus is the use of abstract programs as specifications.
These are programs that may include specification statements (and other kinds
of nonconstructive statements). This makes it possible to specify higher-order
procedures conveniently, and is particularly useful in component-based or event-
driven settings [6]. However, this extension is orthogonal to the techniques we
have discussed.

The work of Perry on Inscape [48] also has as one of its goals making pre-
and postcondition specifications more practical. It adds to postconditions the
notion of an obligation, which clients are expected to satisfy eventually. Again,
this extension is orthogonal to those discussed in this paper. Inscape also splits
preconditions up into three kinds, although none of them are redundant and
thus cannot be used for debugging specifications. Perry’s Instress tool uses static
analysis to help debug programs, not specifications.

The Extended Static Checker from Compaq SRC [9] carries on this tradition
of static analysis using specifications to help debug programs; again the work is
not aimed at helping debug specifications. The specifications used in this checker
do, however, have some additional constructs for more expressive framing than
what is described in this paper.

Our emphasis on expressiveness in specifications can be seen as following
the emphasis on expressive notation in the “calculational school” of Dijkstra,
Gries, and others (see, e.g., [12, 4] 19, 20]). These authors have considerably
adapted standard mathematical notations to be more consistent and commu-
nicative. However, they have not directed much attention to the pre- and post-
condition technique itself. Similarly, the specification language Z has a great
variety of notational refinements, but these refinements are not aimed at the
pre- and postcondition technique.

1102 Gary T. Leavens and Albert L. Baker

8 Conclusions

In this paper we have described several enhancements to the pre- and postcondi-
tion technique for specifications. These enhancements contribute to the expres-
siveness of Larch/C++, and could be adapted to other specification languages.
We have suggested how the enhancements help the specifier communicate more
effectively with potential clients and implementors. Moreover, they do not result
in any loss of formal rigor.

In our experience, the most significant of these enhancements is the ability
to add redundant examples to specifications. In addition to their potential use in
debugging specifications, we have found that they can help make specifications
clearer. We are also excited about their potential for automated testing [22].

Besides examples, the enhancement we use most often is case analysis [59]
Section 4.1.4] [57]. This is helpful in stating specifications of procedures that
may throw exceptions. However, since it is more general than a special-purposed
notation for exceptions, it is also useful in breaking up the logic of a specification
into more easily understood parts.

Even if specification language designers do not like our syntax, we hope
they will address the issues we have raised and go beyond them. We also look
forward to experimental tests of the expressiveness of these enhancements, and
the eventual refinement of our ideas by that research.

Acknowledgments

Thanks to Yoonsik Cheon, Krishna Kishore Dhara, Matt Markland, and Clyde
Ruby for their work on Larch/C++. Thanks to Patrice Chalin, Peter Miiller,
and Rustan Leino for several discussions about the semantics of Larch/C++.
Thanks to Kishore, Peter, Rustan, and Arnd Poetzsch-Heffter, for many helpful
suggestions about an earlier draft of this paper.

The work of both authors was supported in part by the National Science
Foundation under Grant CCR-9803843. Leavens’s work was also supported in
part under Grant CCR-~9503168.

References

[1] Derek Andrews. A Theory and Practice of Program Development. FACIT.
Springer-Verlag, London, UK, 1997.

[2] R.J.R.Back. A calculus of refinements for program derivations. Acta Informatica,
25(6):593-624, August 1988.

[3] R. J. R. Back and J. von Wright. Combining angels, deamons and miracles in
program specifications. Theoretical Computer Science, 100(2):365-383, June 1992.

[4] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998.

[5] Alex Borgida, John Mylopoulos, and Raymond Reiter. . and nothing else
changes’: The frame problem in procedure specification. In Proceedings Fifteenth
International Conference on Software Engineering, Baltimore, May 1993. Prelim-
inary version obtained from the authors.

¢

[6]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

Enhancing the Pre- and Postcondition Technique 1103

Martin Biichi and Emil Sekerinski. Formal methods for component soft-
ware: The refinement calculus perspective. In Proceedings of the Sec-
ond Workshop on Component-Oriented Programming (WCOP), June 1997.
ftp://ftp.abo.fi/pub/cs/papers/mbuechi/FMforCS.ps.gz.

Patrice Chalin. On the Language Design and Semantic Foundation of
LCL, a Larch/C Interface Specification Language. PhD thesis, Con-
cordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec,
Canada, October 1995. Available as CU/DCS TR 95-12, from the URL
ftp://ftp.cs.concordia.ca/pub/chalin/tr.ps.Z.

Patrice Chalin, Peter Grogono, and T. Radhakrishnan. Identification of and so-
lutions to shortcomings of LCL, a Larch/C interface specification language. In
Marie-Claude Gaudel and James Woodcock, editors, FME ’96: Industrial Bene-
fit and Advances in Formal Methods, volume 1051 of Lecture Notes in Computer
Science, pages 385-404, New York, N.Y., March 1996. Springer-Verlag.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. SRC Research Report 159, Compaq Systems Research Center,
130 Lytton Ave., Palo Alto, Dec 1998.

Krishna Kishore Dhara. Behavioral subtyping in object-oriented languages. Tech-
nical Report TR97-09, Department of Computer Science, lowa State University,
226 Atanasoff Hall, Ames IA 50011-1040, May 1997. The author’s Ph.D. disser-
tation.

Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping
through specification inheritance. In Proceedings of the 18th International Confer-
ence on Software Engineering, Berlin, Germany, pages 258-267. IEEE Computer
Society Press, March 1996. A corrected version is lowa State University, Dept. of
Computer Science TR #95-20c.

E. W. Dijkstra, editor. Formal Development of Programs and Proofs. University
of Texas at Austin Year of Programming series. Addison-Wesley Publishing Co.,
1990.

Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1976.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and program se-
mantics. Springer-Verlag, NY, 1990.

L. M. G. Feijs and H. B. M. Jonkers. Formal Specification and Design, volume 35 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 1992.

John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools in
Software Development. Cambridge, Cambridge, UK, 1998.

Stephen J. Garland, John V. Guttag, and James J. Horning. Debugging Larch
Shared Language specifications. IEEE Transactions on Software Engineering,
16(6):1044-1057, September 1990.

M. Gogolla, S. Conrad, G. Denker, R. Herzig, N. Vlachantonis, and H. Ehrig.
TROLL light — the language and its development environment. In Manfred
Broy and Stefan J&hnichen, editors, KORSO: Methods, Languages and Tools for
the Construction of Correct Software, volume 1009 of Lecture Notes in Computer
Science, pages 205—220. Springer-Verlag, New York, N.Y., 1995.

David Gries. Teaching calculation and discrimination: A more effective curricu-
lum. Communications of the ACM, 34(3):44-55, March 1991.

David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Texts
and Monographs in Computer Science. Springer-Verlag, New York, N.Y., 1994.

1104

[21]

[22]

[23]

[24]

[25]

[30]

[33]

[34]

Gary T. Leavens and Albert L. Baker

David Gries and Fred B. Schneider. Avoiding the undefined by underspecification.
In Jan van Leeuwen, editor, Computer Science Today: Recent Trends and Devel-
opments, number 1000 in Lecture Notes in Computer Science, pages 366—373.
Springer-Verlag, New York, N.Y., 1995.

M. Gurski and A. L. Baker. Testing SPECS-C++: A first step in validating
distributed systems. In Intellegent Information Management Systems, pages 105—
108, Anaheim, 1994. The International Society for Mini and Microcomputers -
ISMM.

John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M.
Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag, New
York, N.Y., 1993.

1. Hayes, editor. Specification Case Studies. International Series in Computer
Science. Prentice-Hall, Inc., second edition, 1993.

Wim H. Hesselink. Programs, Recursion, and Unbounded Choice, volume 27 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
New York, N.Y., 1992.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-583, October 1969.

C.B. Jones. Partial functions and logics: A warning. Information Processing
Letters, 54(2):65-67, 1995.

Cliff B. Jones. Systematic Software Development Using VDM. International Series
in Computer Science. Prentice Hall, Englewood Cliffs, N.J., second edition, 1990.
Kevin D. Jones. LM3: A Larch interface language for Modula-3: A definition and
introduction: Version 1.0. Technical Report 72, Digital Equipment Corporation,
Systems Research Center, 130 Lytton Avenue Palo Alto, CA 94301, June 1991.
Order from src-report@src.dec.com.

H. B. M. Jonkers. Upgrading the pre- and postcondition technique. In S. Prehn
and W. J. Toetenel, editors, VDM ’91 Formal Software Development Methods
4th International Symposium of VDM Europe Noordwijkerhout, The Netherlands,
Volume 1: Conference Contributions, volume 551 of Lecture Notes in Computer
Science, pages 428—-456. Springer-Verlag, New York, N.Y., October 1991.

Kevin Lano. The B Language and Method: A guide to Practical Formal Develop-
ment. Formal Appoaches to Computing and Information Technology. Springer-
Verlag, London, UK, 1996.

Gary T. Leavens. An overview of Larch/C++: Behavioral specifications for C++
modules. In Haim Kilov and William Harvey, editors, Specification of Behavioral
Semantics in Object-Oriented Information Modeling, chapter 8, pages 121-142.
Kluwer Academic Publishers, Boston, 1996. An extended version is TR #96-01d,
Department of Computer Science, lowa State University, Ames, Iowa, 50011.
Gary T. Leavens. Larch/C++ Reference Manual. Version 5.41. Available in
ftp://ftp.cs.iastate.edu/pub/larchc++ /lepp.ps.gz or on the World Wide Web at
the URL http://www.cs.iastate.edu/~leavens/larchc++.html, April 1999.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. Technical Report 98-06e,
Towa State University, Department of Computer Science, June 1999.

Gary T. Leavens and Jeannette M. Wing. Protective interface specifications.
In Michel Bidoit and Max Dauchet, editors, TAPSOFT ’97: Theory and Prac-
tice of Software Development, 7th International Joint Conference CAAP/FASE,
Lille, France, volume 1214 of Lecture Notes in Computer Science, pages 520—-534.
Springer-Verlag, New York, N.Y., 1997.

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]
[46]

[47]

(48]
[49]
[50]

[51]

Enhancing the Pre- and Postcondition Technique 1105

Gary T. Leavens and Jeannette M. Wing. Protective interface specifications.
Formal Aspects of Computing, 10:59-75, 1998.

K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-
03.

Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811-1841, Novem-
ber 1994.

Barbara Liskov and Jeannette M. Wing. Specifications and their use in defining
subtypes. ACM SIGPLAN Notices, 28(10):16-28, October 1993. OOPSLA 93
Proceedings, Andreas Paepcke (editor).

David Luckham. Programming with Specifications: An Introduction to Anna, A
Language for Specifying Ada Programs. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, New York, N.Y., 1990.

David Luckham and Friedrich W. von Henke. An overview of anna - a specification
language for Ada. IEEE Software, 2(2):9-23, March 1985.

Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,
N.Y., second edition, 1997.

Carroll Morgan. Programming from Specifications: Second Edition. Prentice Hall
International, Hempstead, UK, 1994.

Carroll Morgan and Trevor Vickers, editors. On the refinement calculus. Formal
approaches of computing and information technology series. Springer-Verlag, New
York, N.Y., 1994.

Joseph M. Morris. A theoretical basis for stepwise refinement and the program-
ming calculus. Science of Computer Programming, 9(3):287-306, December 1987.
Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517-561, October 1989.

William F. Ogden, Murali Sitaraman, Bruce W. Weide, and Stuart H. Zweben.
Part I: The RESOLVE framework and discipline — a research synopsis. ACM
SIGSOFT Software Engineering Notes, 19(4):23-28, Oct 1994.

D. E. Perry. The Inscape environment. In Proceedings of the 11th International
Conference on Software Engineering, pages 2-12, May 1989.

Arnd Poetzsch-Heffter. Specification and verification of object-oriented programs.
Habilitation thesis, Technical University of Munich, January 1997.

David S. Rosenblum. A practical approach to programming with assertions. IEEE
Transactions on Software Engineering, 21(1):19-31, January 1995.

Murali Sitaraman, Lonnie R. Welch, and Douglas E. Harms. On specification of
reusable software components. International Journal of Software Engineering and
Knowledege Engineering, 3(2):207-229, 1993.

J. Michael Spivey. The Z Notation: A Reference Manual. International Series in
Computer Science. Prentice-Hall, New York, N.Y., second edition, 1992.

Susan Stepney, Rosalind Barden, and David Cooper, editors. Object Orientation
in Z. Workshops in Computing. Springer-Verlag, Cambridge CB2 1LQ, UK, 1992.
Yang Meng Tan. Formal specification techniques for promoting software mod-
ularity, enhancing documentation, and testing specifications. Technical Report
619, Massachusetts Institute of Technology, Laboratory for Computer Science,
545 Technology Square, Cambridge, Mass., June 1994.

Yang Meng Tan. Interface language for supporting programming styles. ACM
SIGPLAN Notices, 29(8):74-83, August 1994. Proceedings of the Workshop on
Interface Definition Languages.

1106 Gary T. Leavens and Albert L. Baker

[56] Yang Meng Tan. Formal Specification Techniques for Engineering Modular C Pro-
grams, volume 1 of Kluwer International Series in Software Engineering. Kluwer
Academic Publishers, Boston, 1995.

[57] Alan Wills. Specification in Fresco. In Stepney et al. [53], chapter 11, pages
127-135.

[58] Jeannette M. Wing. Writing Larch interface language specifications. ACM Trans-
actions on Programming Languages and Systems, 9(1):1-24, January 1987.

[59] Jeannette Marie Wing. A two-tiered approach to specifying programs. Technical
Report TR-299, Massachusetts Institute of Technology, Laboratory for Computer
Science, 1983.

[60] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice Hall International Series in Computer Science, 1996.

	Introduction
	Background and Motivation
	Contribution
	Overview

	Liberal Specifications
	Case Analysis
	Framing
	Trashing

	Redundancy
	Redundant Postconditions
	Examples
	Redundant Preconditions
	Redundant Frames
	An Alternative Design for Redundancy

	History Constraints
	Other Related Work
	Conclusions

