An Operational Semantics for Timed RAISE

Xia Yong and Chris George

United Nations University/International Institute for Software Technology,
P.O.Box 3058, Macau
{xy,cwg}@iist.unu.edu
http://www.iist.unu.edu/{~xy,~cug}

Abstract. The reliability of software is an increasingly important de-
mand, especially for safety critical systems. RAISE is a mathematically
based method which has been shown to be useful in the development of
many kinds of software systems. However, RAISE has no particular fea-
tures for specifying real-time requirements, which often occur in safety
critical systems. Adding timing features to RAISE makes a new specifica-
tion language, Timed RAISE Specification Language (TRSL), and gives
it the power of specifying real-time applications. We then have to find a
theoretical foundation for TRSL. In this paper, an operational semantics
of TRSL is first introduced. Then we define a pre-order and test equiva-
lence relation for TRSL. Some proof rules for TRSL are listed, and their
soundness corresponding to our operational model is also explained.

1 Introduction

The reliability of software is an increasingly important demand, especially for
critical systems like train control systems or banking systems, for which failures
may have very severe consequences. Mathematically based “formal” methods
for specification and stepwise development of software have been invented in
order to increase the reliability of software. Some of these languages provide
facilities to specify concurrent systems, and therefore, they can capture various
qualitative aspects of system behaviour, such as deadlock, synchronisation and
safety. However, in a real-time system we may be concerned with the timing of
events. We might want not merely to say that an event occurs, but to say that
it occurs within a particular time interval.

RAISE is a mathematically based method which has been shown to be useful
in the development of many kinds of software systems. However, RAISE has no
particular features for specifying such real-time requirements. Adding real-time
features to RAISE Specification Language (RSL) is not only an interesting topic
for theoretical computer science research, but also a requirement of some RAISE
users.

Integrating RSL with a real-time logic, the Duration Calculus (DC) [ZHR91],
seems a good choice to achieve the above aim. RAISE has good features (in
particular modularity) for describing large systems, while DC is concerned only
with timing properties. The degree of overlap between the two languages is
therefore very small.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1008-[I027, 1999.
© Springer-Verlag Berlin Heidelberg 1999

An Operational Semantics for Timed RAISE 1009

We do not wish to perform a syntactic integration of RSL and DC. This
would create a large language and probably cause the added complications of
time to permeate much of RSL. Instead we note that adding time to a descrip-
tion can be seen as a design step. For example, going from “B must follow A”
to “B must follow A within 3 time units” adds an extra constraint, a design
decision. It therefore seems reasonable to add time within the part of RSL that
is used later in design. The idea is then to be able to (partially) interpret TRSL
descriptions in terms of DC formulae, and show that these formulae satisfy the
timing requirements, also written in DC.

So we have two tasks. The first is extending original RSL to Timed RSL
(TRSL) by introducing some real-time constructs. The second step is relating
TRSL to DC. This paper concentrates on the first of these.

The proposed TRSL, the syntactic extension to RSL, can be found in [GX9§].
Section [2] summarises the proposed extension and discusses its effect on the
existing language and its proof system.

After syntactically proposing TRSL, we should establish a theoretical foun-
dation for this new specification language. The theoretical foundation we need
is the proof system, the collection of rules that enable us to reason about spec-
ifications. In this paper we propose an operational semantics and show how it
can be used to establish validity of proof rules. We give an operational semantics
of TRSL in Section [3 define an equivalence relation among TRSL expressions
in Section @] and apply it to the proof of soundness of TRSL proof rules in
Section [l Section [B] considers future and related work.

2 Adding Time to RSL

We would like the addition of time to RSL to be the smallest extension that gives
us a useful language, and if possible for it to be a conservative extension, i.e. for
it to leave the existing proof rules unchanged. By “useful” we mean expressive
and convenient for establishing properties. The latter implies an intuitive and
simple proof system, which in turn suggests a simple semantics.

The simplest extension to RSL to include time would seem to be to add a
wait expression. Since we want eventually to relate timed RSL (TRSL) to DC
we will make the parameter type of wait non-negative reals, which we will define
as the type Time. For convenience, we allow natural numbers as arguments of
wait by overloading it. A Nat argument is converted to Time by the existing
RSL prefix operator real. For example, wait 1 is equivalent to wait 1.0.

If we need a parallel expansion rule, it seems necessary also to add a new
construct, “time dependence”, to input and output. An input, as well as return-
ing the value input, will also return a time value representing the time elapsed
between the input being ready and the the communication taking place. Sim-
ilarly, an output will return the time elapsed between the output being ready
and the the communication taking place.

The extension defined here owes much to the work of Wang Yi [Wang91]. He
in particular introduced time dependence. We also follow him in making only

1010 Xia Yong and Chris George

wait expressions, and input and output, cause or allow time to elapse. All other
evolutions of expressions are regarded as instantaneous.

We also follow Wang Yi in adopting the mazimal progress assumption. This
means that the time between an input or output being ready and the communi-
cation taking place is minimised. In other words, when an expression can evolve
without waiting for the environment, it will not wait.

This raises a question of what we mean by an internal (non-deterministic)
choice like

el [] wait 1 ; 2

where el and e2 do not initially wait. Blindly applying the maximum progress
assumption leads to this expression evolving only to el. But this would remove
the possibility of specifying an expression that might immediately perform el,
or might (non-deterministically) wait for one time unit and then perform e2. We
want to allow this possibility in specification. This leads to the need for a new
operator to replace internal choice in the parallel and interlock expansion rules,
where we need the “maximal progress” version of internal choice. But this is no
more than the addition of another special function internal to the proof rules: it
is not needed in the language.

To see how wait can be used in parallel or interlocked composition, consider

c? ; normal() [] wait 1 ; time_out()

The intention is that this expression initially waits for its environment to
offer an output on channel c. If this output on channel c¢ is available within 1
time unit then the communication should be accepted and normal() is executed.
If the output is not available within 1 time unit then it should instead execute
time_out(). We can specify these behaviours using the RSL interlock operator .
Interlocked composition is like parallel composition in that the expressions evolve
concurrently, but more aggressive: it forces them to communicate only with each
other until one of them terminates. We expect the following equivalences to hold
for any strictly positive k, assuming that time_out() can not itself initially wait:

(c? ; normal() [] wait 1 ; time_out()) # (wait(l — k) ; c!()) =
wait(l — k) ; normal()

(c? ; normal() [] wait 1 ; time_out()) # wait(1 + k) =
wait 1 ; (time_out() {f wait k)

2.1 Conservative Extension

Conservative extension of RSL to make TRSL, i.e. all existing RSL proof rules
being unchanged, would be ideal but does not seem to be achievable. There are
two problems.

An Operational Semantics for Timed RAISE 1011

First, introducing time can reduce non-determinacy. For example, specifying
an expression like the one we considered earlier, that will take a special action
(time-out) if some event does not occur within a specified period, can only be
specified without time as a non-deterministic choice between the normal and
time-out behaviour. When time is included we may be able to calculate which
behaviour will be taken; the non-determinacy may be reduced.

Secondly, there are are some rules in RSL that we expect not to hold because
of the kind of properties we are interested in when we want to relate TRSL to
DC. DC is concerned with the duration of states, i.e. for how long properties
hold. We expect properties to be reflected in the values of imperative variables
in RSL. Now consider the following equivalence that is valid in RSL, provided
the expression e does not involve input or output and is convergent:

c?;vi=e=v:i=e;c?

The assignment and the input can be commuted. In TRSL in general we have
to introduce a let expression for the time dependence. We would expect from
the RSL proof rules, provided again e does not involve input or output and is
convergent, and provided also that ¢ is not free in e, to be able to derive the
following:

lett =c?inv:=¢e end
let t = v :=e; c? in skip end

v:=e;let t = c? in skip end

It is not immediately clear what the meaning of the second expression should
be, but it is clear that the last would differ from the first in changing the duration
of the state in which v has the value e; the possible wait for the communication
on c shifts from before the assignment to after it. So this derivation cannot be
allowed in TRSL.

These two examples, of reduced non-determinism and restrictions on com-
muting expressions, do seem, however, to encompass the problems. It also seems
likely (though this is the subject of further work) that there is a reduction from
TRSL to RSL (just throwing away the timing information) that is consistent
with a “more deterministic” ordering: the ordering derived later in in Section [1.21
That is, any behaviour of a timed specification will be a possible behaviour of
its reduction to an untimed one. The second problem involves the strengthening
of applicability conditions for commuting sequential expressions.

3 Operational Semantics

For the sake of clarity, we follow the approach of [HI93, BD93, [Deb94]: the
operational semantics in this paper for untimed part of TRSL is closely based
on them, and we only consider a core syntax of TRSL. Our operational semantics
can be viewed as a version of Timed CCS [Wang91] without 7s.

1012 Xia Yong and Chris George

3.1 The Core Syntax

For simplicity we restrict the types of expressions to be Unit, Bool and Real.
The set of allowed expressions includes:

As constants the reals, the booleans true and false, the Unit value (). The

basic expression skip is an expression that immediately terminates success-

fully. We consider also the basic expression stop which represents deadlock
and the basic expression chaos which stands for the divergent process.

Three binding operators that are the abstraction, the recursion and the let

definition (A, rec, let). The reader should notice that the rec is not an RSL

binding operator: RSL does not syntactically distinguish recursion. In the
core syntax, it is convenient to indicate where recursion may occur.

Imperative aspects are supported through the notion of variables and as-

signment.

We have the following combinators:

—[]- : Nondeterministic choice between two expressions (also called internal
choice). One of the two expressions is selected nondeterministically for
evaluation.

_[]- : External choice between two expressions. The choice is context de-
pendent, i.e. the environment influences the choice between the two ex-
pressions.

_||- ¢ Parallel composition of two expressions.

_4- : The interlock operator. It is similar to the parallel operator, but more
aggressive. In other words, two interlocked expressions will communicate
if they are able to communicate with one another. If they are able to
communicate with other concurrently executing value expressions but
not with each other, they deadlock unless one of them can terminate.
The interlock operator is the main novelty in the RSL process algebra.
It has been devised mainly to allow implicit specification of concurrency.

_3-: Sequencing operator.

The above operators in TRSL have the same meanings as those in RSL. We

also have the extensions to be included:

TRSL is essentially independent of the time domain. For simplicity, in our
core syntax of TRSL, we just assume the time Domain to be Realt?.

The expression wait E means we first evaluate the expression E, get the
result d, then delay exactly d units of time.

Expressions may communicate through unidirectional channels. The expres-
sion let t = clE1 in E2 means: evaluate E1, send the result (when possible)
on the channel ¢, and then evaluate E2. ¢ records the time between the com-
munication on ¢ being ready and it occurring. The expression let t = ¢7x
in E means: assign any value received on the channel ¢ to variable x, and
then evaluate E. Again, ¢t records the time between the communication on ¢
being ready and it occurring.

More formally the BNF syntax of our language is:

An Operational Semantics for Timed RAISE 1013

Syntactic Categories:

E in Expressions

— X in Variables

t, id in Identifiers

— ¢ in Channels

— 1 in Reals

— T in Time

— 7 in Types

— V in ValueDefinitions

Expression The BNF grammar of expressions is:

Vio=id:7|id: 7,V

E = ()| true | false | r | T | id | x | skip | stop | chaos |
x:=E|ifE thenEelseE |letid =E in E |
wait E|lett =c¢?xinE |lett =clEinE |
EMEIEJE|E[E|E{E|E;E|
Aid:7eE|EE |recid: T e E|

In fact E ; E' is equivalent to let id = E in E’ provided id is chosen so as not
to be free in E'. We include E ; E to give a conventional presentation.

3.2 Definition
Store A store s is a finite map from variables (noted z) to values (noted v):

s=lrr—u,..]

Environment An environment p is a finite map from identifiers (noted id) to
values (noted v):
p=[d—v,..]

Closures A closure, [Aid : 7 e E, p], is a pair made of
— a lambda expression : Aid : 7 ¢ E
— an environment : p
Computable Values V is the least set which satisfies:
— V contains values from our types: (), true, false, ... , -1, ..., 0, ..., 1, ...

— if p is an environment, then V contains [\ id : 7 ¢ E, p]

Expressions and Computable Values The set £V of expressions and com-
putable values is defined as
EV =EUV

1014 Xia Yong and Chris George

Events “O” denotes any event;
“/\” denotes visible events and silent events.

Visible events
Visible events a consist of :
— input events : c?v
— output events : clv
where ¢ is a channel and v is a value in V.
a denotes the complement action of a (e.g. : c?v = clv).
Time-measurable events
e(d) denotes waiting d unit of time, where d is a value from the time domain
and d > 0.
Silent events

¢ denotes internal moves, including internal behaviours of communication
(which is denoted as “7” in CCS).

Time Model We assume that all silent events can perform instantaneously
and will never wait unnecessarily. Once both sides of a channel are ready for
communication, the communication will happen without any delay (unless some
other visible event or silent event happens instead) and the communication takes
no time.

The above assumptions are conventional and the reason for adopting them
is just to make proof theory easier.

Notations We introduce some notations that are used later.

1. v,v’, ... represent values drawn from V

2. d,d', ... represent values drawn from the Time domain.
3. ev,ev’, ... represent values drawn from £V,

4. a,a,e(d),e, A\, < ... represent events,

5. F, E;, ... represent expressions.

6. x,y, ... represent variables.

7. s,8,s", ... represent stores.

Configurations Our operational semantics is based on the evolution of config-
urations.
The set of basic configurations BC is defined as:

BC ={<ev,s>|ev € EV Ase Store}

The set of configurations, C, is the least set which satisfies:

.BCcc

a, € C implies « op 3 € C where: op =[], [], ||, #
o, € C implies a op s op B € C where: op = ||,
« € C implies v ; E,wait a,z:=a, (o E) € C

=

An Operational Semantics for Timed RAISE 1015

5. a € C implies av € C
6. a € C implies :
(a) Nid:Tea,p]vecC
(b) [Nid:TeE plaelC
7. a € C implies :
(a) letid=ain Ee€C
(b) if « then E; else Fy € C
(c)lett=clain EeC

3.3 Operational Rules

The operational rules are given in Figure[lland Figure[2l Each rule is divided into
two parts: the lower part describes the possible evolution of the configurations,
and the upper part presents the precondition of that evolution. O indicates that
there is no precondition.

We use the standard notation E[v/t] to describe the substitution of v for all
free occurrences of the identifier ¢ in E.

3.4 Semantic Function : Merge

merge(s, 8, ') = ' t [x — §”(x) | x € dom(s”) N dom(s) * s(x) # s"(x)]

3.5 Meaning of “Sorty” and “SORT,”

Sortg Sortg(w) is a set of ports (channel names tagged as input or output),
whose intuitive meaning is the possible (input or output) visible events that «
can evolve to within the next d units of time. We define “Sorty” inductively
according to configuration structures.

We find that there are three kinds of configuration that can evolve with e(d):
wait, input and output. So, they are named “Basic Forms”. There are some
other kinds of configurations that can evolve with £(d), if their components are
in Basic Forms. They are named “Extended Forms”.

BASIC FORMS:

— Sortg(a) = QforaeC
Sortq(c?) = Sortg(c!) and Sortg(c!) = Sorty(c?) for any channel ¢
Sortq(wait < (d + d'), s>) = 0
— Sortg(<lett = c?zxin E,s>) = {c?}
Sortg(lett = ¢! <wv,s> in E = {cl}

EXTENDED FORMS:
Assume that « and 3 are one of the Basic Forms.

— Sortgtqa (waitd; E) = Sorty (E)
— Sortg(a ; E) = Sortq(a)

1016 Xia Yong and Chris George

Basic Expressions
[m]

when {d > 0}

a

pF< skip,s >5< (), s >

o pFwait < (0), s >—< (), s>

p < stop, s >ﬂ2< stop, s > Input

a
[m}

c?u

pr<lett =c?zin E,s ><5< E[0/t],s 1 [z — v] >

p F< chaos, s >-5< chaos, s >

Configuration Fork

O a

d
pF< Ei op Ea,s >5< E1,5s> op < Ea,s > pk<lett =c?zin E,s >i2< let t = c?zin E[t +d/t],s >
Output

where op = [], [] p
Look Up o

] ph<lett = ¢! EinE, s>5 lett =c!<E, s> in E

ptlid— vl F<id,s >5< v,s >

pkaga’
=]
- phlett = clainE3lett = cla’in E
pE<id,stlid—v] >=< v, s [id — v] > o
Sequencin, -
q 8 phlett=cl!<v,s> inEi<E[O/t],s>
o u]
[. < B €
pE< By Bys>2<Brs> 5 Ba prlett=c! <1L,.-;>inE(;izlett:c!<7775>inE[t+d/t]
pFao Internal Choice
pFa;Eﬁva’;E o
5] —
pFan B35 a
pF<v, 8> ES< E,s> 58
Assignment
5 External Choice
pr<az:=E,s >>x:=<E,s > pFa®a
o pFalpd o
pra—=a ﬁﬂaia’
sz::agz:: o’
- pFa@o prpiQp
przi=<uv,8>5<(),s1[z— 0] > E’(J)
P pEa — a
Waiting Falp LG
. BlaZ® g o

pFaSa

pF< wait B, s >5 wait < E, s> _pre—=a
pralBSa [8

o -
pka—=ao Blas B[o
p b wait 2, wait o/ [m]
o pF<'u,s>ﬂa—s><v,s>
pF wait < (d+d'), s >28 wait <d’, s> a<v,s>5<v,s>

Fig. 1. Operational Rules for TRSL : Part 1

An Operational Semantics for Timed RAISE 1017

. <
Parallel Combinator pra=>a
o pFaH»sH»s’go/H»sH»s’
/ o '
prE< E1 || Ba, s >5< By, s>| s ||< B2, s> s %S%D‘H;HS%O‘
pFaia',pFﬁiﬁ' ph<u, s > s s S <wv,merge(s, s, s") >
oFallsll B85a | s | 8 s s f<v, 8" >5 <v,merge(s, s,) >
Bl sl asp |l sl o Function
p}—aga/ o
B
pralls | 85a | sl B prefubos>mc by, o> b

AN
Bl sl as81 sl o phaa

p}_aﬂa’v‘;l—ﬁﬂ[j’ pFaEi»o/E
e(d) =}
pral sl B—a || s g - = -
6 s I as(i)»ﬂ’ s |l o pr<Xid:TeE,s>5<[Nid:TeE,p|,s>
o
when { [i‘ZTr:‘dEZ; 2 goorgli(“ﬁ) :(2)0;} pE<[Nid:TeEi,pi],s> Bz S [Nid:7eE1,p1] <Ez, s>
ta a = 0;
o
Sortq(8) N SORT; = 0] oraao
pFNid:TeE,p1]a>[Nid:TeE, p1] o
a
[m]
€ /
phal S/”<U'b>_;a,“SHS pF[)\id:ToE,pl]<v,5>3>[)\id:‘ro<E,s>,p1]u
<v, > s || a=s | s || «] o
prifid—v]Fa—=a
°
pka—=a pl—[)\idzﬂ'oa,pl]vg[)\idzroa’,pl]v
pEa | s | s 2o | s | s . Lol ,
o HsHaﬁvs/ sl o priflid—v]Fa—= <o, s>
o pF[/\/id:Toa,pl]'ug<v’,S>
pk<wv, s >|s] s S<ov,merge(s, s, s") > Let Expression
s s < v, s >5< v, merge(s,s’,s"”) > u]
Interlocking phk<letid = Eiin Es, s >5 let id =< E1, s > in Es
[m]

pka&o/

pFletid = ain E Sletid = o in E

PE<E1L ¥ B2y s >5< By, s> s 4 < B2, s>

pFaia’,pFﬂi/B’ o
pFa ts ‘H‘ﬁi’ﬂl Y pFletid = <w, s> in ES < E[v/id], s >
BhsHhasSp fsa If Expression
[)Fuziu/ [m]
pFa s hpSa s 48 pF<if E then E; else E2, s > if < E, s > then Ejelse E»
BohsHhaSpg s

pl—ago/

e(d) e(d) o

pra—a ,pFp—2F8 ptF if a then E; else Ey iifa’thenEl else E>
prats B8 fsgp o
B s H»as(laﬁ’ s o prHif <true, s> then E; else B — < Ej,s>
[m]
when { Sortg(a) N Sortqe(3) = 0} pFif < false, s > then E; else B2 = < E,s>
o Recursion
prads p<uv s >Sa s s d
<v, s >hsHhaSs s o pF<recid: TeE, s >5< Elrecid: e E/id], s >

Fig. 2. Operational Rules for TRSL : Part 2

1018 Xia Yong and Chris George

— Sortg(z = «) = Sortq(a)

— Sortg(wait a) = Sortg(«)

— Sorty(let t = ¢! ain E) = Sorty(«)

— Sortg(a || s || ') = Sorta(s’ || s || @) = Sorta(c)
— Sortg(a ff s s') = Sortq(s’ # s {t @) = Sortq(a)

— Sortq(a E) = Sortg(a)

— Sortq(a v) = Sortg(c)

— Sortq([Aid : Te «, p] v) = Sortg(a)

— Sorty(let id = « in E) = Sortg(a)

— Sortq(if o then E; else Es) = Sortg(a)

— Sortg(a op B) = Sortg(a) U Sortgq(3) where op = “[]”, “||”

SORT,; SORT, is a set of ports. Its definition is just same as Sorty, but can
only be calculated if we know what the environment expressions are. I.e. port c?
(c!) € SORT, means that within d units of time, there are some other processes
that will be ready for complementary communication, ¢! (c?), on channel c.

3.6 Commentary on Operational Rules

The transition relation is defined as the smallest relation satisfying the axioms
and rules given in our operational rules. We note in particular:

Time-measurable event A configuration can evolve with a time-measurable
event only if all its sub-configurations on both sides of combinators [], || and
f#, can evolve with this same time-measurable event.

Maximal progress Maximal progress in RSL means that once a communica-
tion on a channel is ready, it will never wait. In the rules for interlocking, the
semantic function, Sorty, is used to specify that only if no pair of comple-
mentary actions, one from each side of the combinator, is ready for commu-
nication, can this configuration evolve with a time-measurable event. In the
rules for parallel combinator, the condition is stronger: a configuration can
evolve with a time-measurable event only when no communication is possi-
ble, either internal (between the parallel expressions) or external (between
one of them and the environment). (c.f. Section). Using “Sort (SORT)” to
guarantee that the composite processes satisfy maximal progress was first
proposed by Wang Yi in his work on Timed CCS [Wang91].

4 Time Test Equivalence

4.1 Definitions

— Let [be a sequence of events, «, [two configurations in C, d € Time and
d > 0. We define a = 0 by:
1L a =2 gifa (S) 6.

An Operational Semantics for Timed RAISE 1019

al’ . < a
2. « = fif for some o, o', @ we have : a« == o', ¢/ — o, and
l/
o = 3.

e(d)l’ . <> e(d)
3. a = fif for some a, o/, & we have : « == o', o/ — ", and

o’ £/> s.
where <> stands for the empty sequence. Moreover, we merge successive
time-measurable events by treating the sequence e(d;)e(dz)...€(d,) as the
event €(d1 +do+ ... + dn)
Let L be set of traces of a configuration, defined as :

L(a) ={l| for some 8, « N 8}

We define the following convergence predicates:
1. We write « | if there is no infinite sequence of internal moves:

a =y — o — ...

al<> if o

al al’if | and for all o if @ = o' then o/ | I/

al e(d)l'if a | and for all o if « S(zd; o theno' | I
.alifa | isfalseand a T [if a | [is false.

We define the set S(«) of the next possible moves of the configuration « by:

CUp W

S(a) ={c?| for some v and B3, « Ay 8} U
{c!'| for some v and (3, « R2cq 8}

We define A(a, 1), the acceptance set of events of « after performing the
events in the sequence [by :

Ala, 1) = {S(a') |a == o'}
We define : T(a) = m2(a), if for some d > 0 and « =)
(i.e. « can evolve an event of £(d) in the next step).
Otherwise T(«) is defined as .
o is a “projection” function, which returns the set of stores in a configuration
that can perform a time-measurable event:
For basic configurations: ma(<ev, s>) = {s}
For configurations, a op 8 where op = ||, #f : m2(ax op) = m2(a) 7 72(5)
For configurations: ma(a []) = ma(a) U m2(S)
For other configurations, e.g. ma(a ; E) = ma(«)

The function “5/” is defined by
{81,...,Sn1}v{tl,...,tng} = U {SiUtj}

1 =1..nl
j=1.n2

1020 Xia Yong and Chris George

— We define W(q, 1), the store set of events of « after performing the events
in the sequence [by :

Wa, 1) = {T(a))|a == o}

— We define also R(«, 1), the set of possible returned pairs (of values and stores)
after [:

Rla, 1) = {(v,8) | a ==<v,s>}

4.2 Equivalence of TRSL Expressions

We first define a pre-order between TRSL configurations.
Definition. For o, 8 in C, @ <gos f if for every [and for any given p:
all=a)p |1
b) A(B,1) cC A(a,l)
c) W(B,1) cc W(a,l)
d) R(8,1) C R(a,l)
where:
A CcC Bisdefinedby: VX € AedY cBe Y C X
Now, we begin to define the equivalence between TRSL expressions through
their operational semantics.
Actually, the equivalence between TRSL configurations: a , 3, can be defined
as:a Kgos P and f <gos «. For simplicity of future proof, we rewrite that
equivalence definition as follows.

a1l BT

—ifa|land 8|1 then
1. A(e, 1) cC A(B, 1) and A(B, 1) CC A(e, 1)
2. W(a, I) cc W(B, 1) and W(B, 1) cC W(a, 1)
3. R(e,) =R(B, 1)

Definition. For any TRSL expressions: P and Q, P = Q iff for any s and for
any given p, <P, s> = <Q, s>

4.3 Commentary and Examples

Pre-order Our definition of the pre-order relation on two configuration :
a Kgos [stands for

« is more general than (3, or

« is more nondeterministic than 3, or
« is implemented by (3, or

« is more unstable than 3, ...

= o =

Therefore, in order to guarantee the condition 2, we ask A(3, [) CC A(aq, 1) to
hold; and to guarantee the condition 4, we ask W(3, [) CC W(a, 1) to hold.

An Operational Semantics for Timed RAISE 1021

Time

Fig. 3. A Trajectory in Two-dimension Time Space

Time Model We view processes under a super-dense model [MP93] as a trajec-
tory in a two dimensional time space [ZH96|, PD97, [QZ97]. We suppose there are
countably infinite time axes, indexed by natural numbers. Events and processes
happen and evolve in this space. A process starts at some time on a time axis.
When the process executes a time-measurable event, time progresses horizon-
tally, and the process stays on the same time axis. When the process executes
visible and silent events, it jumps vertically up to another time axis, and may
have a new state there. A trajectory of a super-dense behaviour is shown in
Figure B

There are two types of turning point. One is called a start_turning_point
(points a, b, ¢, d in Figure B)), from which the process will execute a time-
measurable event. The other is called an end_turning_point (points a’, b’ ¢’, d’
in Figure [3)), from which the process will execute a visible or silent event.

The super-dense model distinguishes clearly between time measurable events
like delays and waits for synchronisation, and visible and silent events like syn-
chronisation and assignments. It allows arbitrary numbers of the latter to occur
instantaneously but in some order, which matches well with the interleaving
semantics of concurrency in (T)RSL.

In our time test equivalence definition, for two equivalent processes (expres-
sions), o and 3, demanding A(«, 1) = A(f, l) guarantees the same possible
temporal order of visible events and time-measurable events of the two pro-
cesses.

Demanding W(a, 1) = W(, [) guarantees that the stores (variable states)
of two processes (expressions) on every start_turning_point are the same.

Demanding R(«, 1) = R(8,) guarantees that two expressions, if they termi-
nate, can return the same sets of possible values and final stores.

5 Soundness of Proof Rules

5.1 Proof Rules of TRSL

One of the major reasons for expressing specifications in a formal language like
(T)RSL is to prove properties of specification. Therefore, a proof system for

1022 Xia Yong and Chris George

TRSL should be set up. We list some of the proof rules involving newly added
time constructs.

[wait_annihilation |
wait 0.0 ~ skip

[wait_plus|
wait er ; wait er’ ~ wait(er + er’)

[wait_introduction]
e ~ wait er ; shift(e, er)
when pure(er) A convergent(er) A er > 0.0 A must_wait(e, er)

The complete set of proof rules can be found in [GX9§]. The original “special
functions” convergent, pure, express,etc. are defined in [RMG95]. New special
functions must_wait, shift, etc. are defined in [GX98]. The parallel expansion
rule is changed to:

eu || eu ~
if parallel_ints(eu, eu’) = swap
then parallel_exts(eu, eu’) [| parallel_exts(eu’, eu)
else
(parallel_exts(eu, eu’)[| parallel_exts(eu’, eu)[| parallel_ints(eu, eu’))r1
parallel_ints(eu, eu’)
end
when isin_standard_form(eu) A isin_standard_form(eu’) A
(O assignment_disjoint (eu, eu’))

where the operator “I'7” is the “maximal progress” version of the internal choice
operator mentioned in Section B and defined in [GX98]. The other “dotted”
operators like “47 are simple extensions of the standard arithmetic operators,
returning zero if the result would otherwise be negative.

The revised definitions of parallel_exts, parallel_ints, and interlock_ints
are (showing just one case of each):

parallel_exts(wait er ; let (b,t) = c? in eu end, eu’) ~
wait er ; let (b,t) = ¢? in eu || shift(eu’, er + t) end
when no_capture(b, eu’) A no_capture(t, eu’) A
no_capture(b, er) A no_capture(t, er)

parallel_ints(wait er ; let (b,t) = c¢? in eu end,
wait er’ ; let t' = cle in eu’ end) ~
wait max(er,er’) ;
let b = e in subst_expr(er’ — er,t,eu) || subst_expr(er — er’t’,eu’) end
when no_capture(b, eu’) A no_capture(b, er) A no_capture(b, er’)

An Operational Semantics for Timed RAISE 1023

interlock_ints(wait er ; let (b,t) = c¢? in eu end,
wait er’ ; let t' = cle in eu’ end) ~
wait max(er,er’) ;
let b = e in subst_expr(er’ — er,t,eu) { subst_expr(er — er’t’,eu’) end
when no_capture(b, eu’) A no_capture(b, er) A no_capture(b, er’)

5.2 Soundness
We would like to show that

— The original RSL Proof Rules for the TRSL expressions not involving time
(e.g. simple assignment expressions) still hold in our semantic model.

— Most of the original RSL Proof Rules for TRSL expressions involving time
(e.g. input expressions, output expressions) with newly added side conditions
hold in our semantic model.

— New rules applied to extended operators are sound with respect to our op-
erational semantics

— In our semantic model, no new rules for the original RSL syntax are gener-
ated.

As mentioned in Section [2.1] not all the original RSL proof rules are sound
with respect to our semantic model.

However, it is trivial to prove that all the original proof rules for TRSL ex-
pressions not involving time-measurable events still hold in our semantic model,
because our semantics and the definition of equivalence are just the same as the
original one, if we ignore the “c(d)” transitions.

For the same reason, it is clear that no new rules for the original RSL syntax
are generated in our semantic model.

We need to add side conditions to some of the proof rules for TRSL ex-
pressions involving time-measurable events. We are interested in proving the
soundness of these rules with respect to our semantic model. Most of the rules
that we need to study are listed on page 457 of [RMG95].

Of course we should also prove the soundness of rules for the extended oper-
ators too. above recommendations.

Proof
Here we just show one example. Other detailed proofs can be seen in [GX98]

[ext_choice_replacement |
e I:I elge// I:l e///
when (e = e”) A (¢ =€)

1024 Xia Yong and Chris George

Proof for any s, for any given p,

— For Divergence: if one of the configuration is divergent, w.l.g. suppose
<e,s>1 I, because e = ¢, we have <e’s>7 [too. then from the 3rd
rule in External Choice (c.f. Section ?7), we know <e [] €/, s>1 [and <e”
e s>11

— if none of configurations are divergent, we would like to prove
1. for any [, we have A(<e [] €/, s>, 1) = A(<e” [] €, s>,1) :

For visible action, one branch will be selected. For silent action either e or
¢’ will evolve to next configuration. For time-measurable action, both of
them will evolve. So for any possible sequence of action, A(<e [] €/, s >,
) C A(<e, s>, 1) U A(<e’, s>, 1). On the other hand, for any possible
sequence, from semantics, it is clear A(<e [] €/, s >, 1) 2 A(<e, s>, 1)
and A(<e [] €/, s >,1) D A(<e’, s>,1). So A(<e [] ¢'>, 1) = A(<e, s>,
1) U A(<é', s>, 1). For the same reason, we know A(<e” [] €', s>,1) =
A(<e”; s>, 1) U A(<e”, s>, 1). Because e = ¢” and ¢ = €"”, A(<e, s>,
) = A(<e” s>, 1) and A(<é/, s>, 1) = A(<e”, s>, 1).

So A(<e [€, s>,1) = A(<e” [] €, s>, 1).

2. for any [, we have W(<e [] €, s>, 1) = W(<e" [", s>, 1) :

From the definition of “my” function : ma(a [| 8) = ma(a) U m2(8), we
can conclude trivially that W(<e [] >, 1) = W(<e, s>, 1) U W(<¢/, s>,
1) and W(<e” [] €, s>, 1) = W(<e”, s>, 1) U W(<e", s>,). Because
e=¢e" and ¢ =&, W(<e, s>, 1) = W(<e” s>, 1) and W(<e, s>, 1) =
W(<e"”, s>, 1).
So, we get W(<e [] €/, s>, 1) = W(<e" [] &, s>, 1).

3. for any [, we have R(<e [] €/, s>, 1) = R(<e” [] ¢, s>, 1) :

From semantics, we know only one branch of the choice can be selected
and evolve to its end. So R(<e [] €, s>,) = R(<e, s>, [) U R(<¢€/, s>,
1) and R(<e” [] €, s>, 1) = R(<e”, s>, [) U R(<e”, s>, [). because
e=c¢" and ¢ = ¢”, R(<e, s>, [) = R(<e” s>, [) and R(<€/, s>, 1) =
R(<e"”, s>, 1).

We get R(<e [] €, s>, 1) = R(<e” [] €, s>, 1) at last.

This completes the proof.

6 Discussion

6.1 Future Work

This paper gives a set of proof rules and an operational semantics for TRSL. A
denotational semantics and its formal interrelations with proof rules (axiomatic
semantics) and operational semantics needs to be further investigated. What
is more, a formal relation between an event-based process algebra and a state-
based logic like the Duration Calculus is a non-trivial research topic [Rav94l

An Operational Semantics for Timed RAISE 1025

PG96]. Actually, [LH99] gives a denotational DC semantics of TRSL, and an
“operational semantics with behaviour”, which relates TRSL with DC, has been
proposed in [HX99]. We need more time to give further results.

The method for developing timed RSL specifications is also an important
research direction for TRSL. Some initial results can be seen in [LH99).

6.2 Related Work

Over the past decade, a number of formal calculi (also called process algebras)
for real-time, concurrent systems have been developed; examples are TCCS
[Wang91] and TCSP [Dav93]. These calculi are suitable specification languages
to describe real-time system requirements. They give us ideas for our construc-
tion of Timed RSL and its operational semantics.

However, if one uses those specification languages, the design part of the
program has to be given in another language. Using TRSL, we can stay with the
same language in all steps of development. This is a major motivation for us to
add real-time features to RSL.

There are other approaches to adding real time features to a specification
language. [F92] represents RTL formulae in Z and [FHMO98] directly introduces
the differential and integral calculus operators into the Z notation. They are
essentially encodings of time using facilities already in Z. As such they add no
power to the language. In addition they allow all variables to be functions of
time and so permeate the language. For example, notions of refinement become
more complicated. [HX98] embeds DC into RSL using high order logic and also
proposes an extension of RSL syntax with DC constructs. But again this is an
encoding and the power of the language is not changed.

These notational extensions are also at the abstract specification level. They
provide no explicit assistance with implementation.

Our aim is rather different. The addition of the wait construct adds to the
power of RSL. Further, it allows both the abstract specification of timing fea-
tures in a DC notation and also the concrete specification of particular timed
algorithms that can be readily expressed in suitable programming languages.

The super-dense computation model is an important abstract model of real-
time systems [MP93]. Some industrially applicable programming languages, such
as Esterel, adopt similar models.

[ZH96.,[PDI7,|QZ97] use (Extended) Duration Calculus to give a denotational
semantics to an OCCAM-like programming language under the super-dense com-
putation model.

Acknowledgements

The authors thank Zhou Chaochen for his advice and guidance while doing this
research work, Anne Haxthausen for her ideas and comments on Timed RAISE,
and He Jifeng for his comments on a draft of this paper. Anonymous reviewers
also provided useful comments.

1026 Xia Yong and Chris George

References

[BD93]

[Dav93]

[Deb94]

[F92]

[FHMO8]

[GX08]

[HI93]

[HX98]

[HX99]

[LH9Y]

[MP93]

[Rav94]

[RLG92
[RMGO5]

[PD97]

[PG6]

[QZ97]

D.Bolignano, and M.Debabi. RSL: An Integration of Concur-
rent, Functional and Imperative Paradigms. Technical Report LA-
COS/BULL/MD/3/V12.48, 1993.

Jim Davies. Specification and Proof in Real-Time CSP. Distinguished
Dissertation Series. Cambridge University Press, 1993.

M.Debabi. Intégration des paradigmes de programmation parallele, fonc-
tionnelle et impérative : fondements sémantiques. Ph.D. Thesis (These de
Doctorat en Informatique), Université Paris XI, Centre d’Orsay, July 1994.
C. J. Fidge Specification and verification of Real-Time Behaviour Using Z
and RTL in J. Vytopil (ed.), Proc FME’92, LNCS571 (Springer), 1992.
C. J. Fidge, I. J. Hayes and B. P. Mahony, Defining Differentiation and
Integration in Z, Technical report 98-09, Software Verification Research
Centre, School of Information Technology, The University of Queensland,
September 1998.

Chris George and Xia Yong An Operational Semantics for Timed RAISE
Technical Report No. 149, United Nations University /International Insti-
tute for Software Technology, November 1998.

M. Hennessy and A. Ingdlfsdéttir. Communicating Process with Value-
passing and Assignments. In Formal Aspects of Computing, 1993.

Anne Haxthausen and Xia Yong A RAISE Specification Framework and
Justification Assistant for the Duration Calculus. In ESSLLI-98 Workshop
on Duration Calculus, August 1998.

Anne Haxthausen and Xia Yong. Linking DC together with TRSL. Re-
search Report, Department of Information Technology, Technical Univer-
sity of Denmark, April 1999.

Li Li and He Jifeng Towards a Denotational Semantics of Timed RSL
using Duration Calculus Technical Report No. 161, United Nations Uni-
versity /International Institute for Software Technology, April 1999.

Z. Manna and A. Pnueli. Models of reactivity. In Acta Informatica. 30(7),
609-678, Springer-Verlag, 1993.

Anders P. Ravn. Design of Embedded Real Time Computing Systems. PhD
thesis, Department of Computer Science, Technical University of Denmark,
Denmark, September 1994.

The RAISE Language Group. The RAISE Specification Language. The
BCS Practitioners Series. Prentice Hall Int., 1992.

The RAISE Method Group. The RAISE Development Method. The BCS
Practitioners Series. Prentice Hall Int., 1995.

Paritosh K. Pandya and Dang Van Hung. Duration Calculus of weakly
monotonic time. Technical Report No. 122, United Nations Univer-
sity /International Institute for Software Technology, September 1997.
Jifeng He, C.A.R. Hoare, Markus Miiller-Olm, Ernst-Riidiger Olderog,
Michael Schenke, Michael R. Hansen, Anders P. Ravn, and Hans Rischel.
The ProCoS Approach to the Design of Real-Time Systems: Linking Differ-
ent Formalisms. In Formal Methods Europe 96, Oxford, UK, March 1996.
Tutorial Material.

Qiu Zhongyan and Zhou Chaochen A Combination of Interval Logic and
Linear Temporal Logic Technical Report No. 123, United Nations Univer-
sity /International Institute for Software Technology, September 1997.

An Operational Semantics for Timed RAISE 1027

[Wang91] Wang Yi. A Calculus of Real Time Systems. PhD thesis, Department of
Computer Sciences, Chalmers University of Technology, G&terborg, Swe-
den, 1991

[ZH96] Zhou Chaochen and Michael R. Hansen. Chopping a point. In J. F. He et
al (Eds.), BCS-FACS 7Tth Refinement Workshop, Electronic Workshops in
Computing, Springer-Verlag, 1996.

[ZHR91] Zhou Chaochen, C.A.R. Hoare and A.P. Ravn. A Calculus of Durations.
Information Processing Letters, 40(5):269-276, 1991. Revised June 3, 1992.

	Introduction
	Adding Time to RSL
	Conservative Extension

	Operational Semantics
	The Core Syntax
	Definition
	Operational Rules
	Semantic Function : Merge
	Meaning of ``Sort$_d$'' and ``SORT$_d$''
	Commentary on Operational Rules

	Time Test Equivalence
	Definitions
	Equivalence of TRSL Expressions
	Commentary and Examples

	Soundness of Proof Rules
	Proof Rules of TRSL
	Soundness

	Discussion
	Future Work
	Related Work

