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Abstract. An emerging trend in the engineering of complex systems
is the use of component integration frameworks. Such a framework pre-
scribes an architectural design that permits flexible composition of third-
party components into applications. A good example is Sun Microsys-
tems’ Enterprise JavaBeansTM (EJB) framework, which supports object-
oriented, distributed, enterprise-level applications, such as account man-
agement systems. One problem with frameworks like EJB is that they
are documented informally, making it difficult to understand precisely
what is provided by the framework, and what is required to use it. We
believe formal specification can help, and in this paper show how a formal
architectural description language can be used to describe and provide
insight into such frameworks.
Keywords: Software architecture, software frameworks, component in-
tegration standards, component-based software, Enterprise JavaBeans.

1 Introduction

Component integration frameworks1 are becoming increasingly important for
commercial software systems. The purpose of a component integration frame-
work is to prescribe a standard architectural design that permits flexible com-
position of third-party components. Usually a framework defines three things:
(a) the overall structure of an application in terms of its major types of con-
stituent components; (b) a set of interface standards that describe what capa-
bilities are required of those components; and (c) reusable infrastructure that
supports the integration of those components through shared services and com-
munication channels.

A successful framework greatly simplifies the development of complex sys-
tems. By providing rules for component integration, many of the general prob-
lems of component mismatch do not arise [8]. By providing a component inte-
gration platform for third-party software, application developers can build new

1 Component integration frameworks are sometimes referred to as component archi-
tectures
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applications using a rich supply of existing parts. By providing a reusable infras-
tructure, the framework substantially reduces the amount of custom code that
must be written to support communication between those parts.

A good example of a framework is Microsoft’s Visual BasicTM system, which
defines an architecture for component integration (Visual Basic Controls), rules
for adding application-specific components (such as customized widgets, forms,
graphics, etc.), and code that implements many shared services for graphical user
interfaces (for example, to support coordination and communication among the
parts via events.)

Another, more recent example is Sun’s Enterprise JavaBeansTM (EJB) ar-
chitecture. EJB is intended to support distributed, Java-based, enterprise-level
applications, such as business information management systems. Among other
things, it prescribes an architecture that defines a standard, vendor-neutral in-
terface to information services including transactions, persistence, and security.
It thereby permits application writers to develop component-based implemen-
tations of business processing software that are portable across different imple-
mentations of those underlying services.

One critical issue for users and implementors of a framework is the docu-
mentation that explains what the framework provides and what is required to
instantiate it correctly for some application. Typically a framework is specified
using a combination of informal and semi-formal documentation. On the infor-
mal side are guidelines and high-level descriptions of usage scenarios, tips, and
examples. On the semi-formal side one usually finds a description of an appli-
cation programmer’s interface (API) that explains what kinds of services are
provided by the framework. APIs are formal to the extent that they provide
precise descriptions of those services – usually as a set of signatures, possibly
annotated with informal pre- and post-conditions.

Such documentation is clearly necessary. However, by itself it leaves many
important questions unanswered – for component developers, system integrators,
framework implementers, and proposers of new frameworks. For example, the
framework’s API may specify the names and parameters of services provided by
the infrastructure. However, it may not be clear what are the restrictions (if any)
on the ordering of invocations of those services. Usage scenarios may help, but
they only provide examples of selected interactions, requiring the reader to infer
the general rule. Moreover, it may not be clear what facilities must be provided
by the parts added to the framework, and which are optional.

As with most forms of informal system documentation and specification, the
situation could be greatly improved if one had a precise description as a for-
mal specification of the framework. However, a number of critical issues arise
immediately. What aspects of the framework should be modeled? How should
that model be structured to best expose the architectural design? How should
one model the parts of the framework to maintain traceability to the original
documentation, and yet still improve clarity? How should one distinguish op-
tional from required behavior? For object-oriented frameworks what aspects of
the object-oriented design should be exposed in the formal model?
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In this paper we show how one can use formal architectural modeling to pro-
vide one set of answers to these questions. The key idea is to provide an abstract
structural description of the framework that makes clear what are the high-level
interfaces and interactions, and to characterize their semantics in terms of proto-
cols. By making explicit the protocols inherent in the integration framework, we
make precise the requirements on both the components and on the supporting
infrastructure itself. This in turn yields a deeper understanding of the frame-
work, and ultimately supports analysis of its properties. Furthermore, we can
validate that the model is a useful abstraction of “reality” by checking that the
model exhibits the properties that are required informally in the specification of
the software framework.

In the remainder of this paper we describe our experience in developing a
specification of Sun’s Enterprise JavaBeans integration framework. The primary
contributions of this paper are twofold. First, we show how formal architectural
models based on protocols can clarify the intent of an integration framework, as
well as expose critical properties of it. Second, we describe techniques to create
the model, and structure it to support traceability, tractability, and automated
analysis for checking of desirable properties. These techniques, while illustrated
in terms of EJB, shed light more generally on ways to provide formal architec-
tural models of object-oriented frameworks.

2 Related Research

This work is closely related to three areas of prior research. The first area is
the field of architectural description and analysis. Currently there are many
architecture description languages (ADLs) and tools to support their use (such
as [11], [17], [14], [13]). While these ADLs are far from being in widespread use,
there have been numerous examples of their application to realistic case studies.
This paper contributes to this body of case studies, but pushes on a different
dimension – namely, the application of architectural modeling to component
integration frameworks.

Among existing ADLs the one used here, Wright, is most closely related
to Rapide [11], since both use event patterns to describe abstract behavior of
architectures. Wright differs from Rapide insofar as it supports definition of
connectors as explicit semantic entities and permits static analysis using model
checking tools. As we will see, this capability is at the heart of our approach for
modeling integration frameworks.

The second related area is research on the analysis of architectural standards.
An example close in spirit to our work is that of Sullivan and colleagues, who
used Z to model and analyze the Microsoft COM standard [18]. In our own pre-
vious work we looked at the High Level Architecture (HLA) for Distributed
Simulation [2]. HLA defines an integration standard for multi-vendor distributed
simulations. We demonstrated that Wright could be used to model this frame-
work and identify potential flaws in the HLA design. EJB differs from HLA in
that it provides a different set of challenges. In particular, unlike HLA, EJB is
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an object-oriented framework; it has a diverse set of interface specifications; and
its has weaker (but more typical) documentation.

The third related area is protocol specification and analysis. There has been
considerable research on ways to specify protocols using a variety of formalisms,
including I/O Automata [12], SMV [4, 5], SDL [10], and Petri Nets [15]. While
our research shares many of the same goals, there is one important difference.
Most protocol analysis assumes one is starting with a complete description of the
protocol. The problem is then to analyze that protocol for various properties. In
contrast, in architectural modeling of systems like EJB, protocols are typically
implicit in the APIs described in the framework documentation. Discovering
what the protocols are, and how they determine the behavior of the system is
itself a major challenge.

3 Enterprise JavaBeansTM

3.1 Background

One of the most important and prevalent classes of software systems are those
that support business information applications, such as accounting systems and
inventory tracking systems. Today these systems are usually structured as multi-
tiered client-server systems, in which business-processing software provides ser-
vices to client programs, and in turn relies on lower level information manage-
ment services, such as for transactions, persistence, and security (see Fig. 1.)

Transaction
Processing

Persistency Security

Information
management

services

Business Application Software

Clients

Fig. 1. A three-tiered business application

Currently one of the problems with writing such software is portability: ap-
plication software must be partially rewritten for each vendor’s support facilities
because information management services provided by different venders often
have radically different interfaces.
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Additionally, clients of application software are faced with a huge variety
of interfaces to those applications. While some differences are inevitable, given
that different applications must provide different capabilities, one would wish
for certain levels of standardization for generic operations such as creating or
deleting business process entities (such as accounts).

To address this problem several vendors have proposed component integra-
tion frameworks for this class of system. One of these is Sun Microsystems’
Enterprise JavaBeansTM framework, a component architecture for building dis-
tributed, object-oriented, multi-vendor, business applications in the Java pro-
gramming language. The basic idea of the framework is to standardize on three
things. First, the framework defines a standard interface to information man-
agement services, insulating application software from gratuitous differences in
vendors’ native interfaces. Second, the framework defines certain standard oper-
ations that can be used by client software to create, delete, and access business
objects, thereby providing some uniformity across different business applications
software. Third, the framework defines rules for composing object-oriented busi-
ness applications using reusable components called beans.

By standardizing on these aspects of an information management application,
EJB intends to promote application portability, multi-vendor interoperability,
and rapid composition of applications from independently developed parts.

The remainder of this section elaborates on the elements of EJB that are
necessary to follow the formalization in Sect. 6.

3.2 Overview of Enterprise JavaBeansTM

Sun’s “Specification of the Enterprise JavaBeansTM Architecture” [6], (hence-
forth, EJB spec) defines a standard for third parties to develop Enterprise
JavaBeansTM deployment environments (henceforth, EJB servers). An appli-
cation running in one of these environments would access information manage-
ment services by requesting them of the EJB server, via the EJB API, in the
way prescribed by the EJB spec.

Figure 2 illustrates a system with a remote client calling an application that
implements some business logic, for which Orders and Accounts are relevant
operational entities. In the object-oriented paradigm, such entities are termed
objects. An object can be viewed as a unit that holds a cohesive piece of infor-
mation and that defines a collection of operations (implemented by methods) to
manipulate it.

The EJB framework defines particular kinds of objects, termed Enterprise
JavaBeansTM (beans, for short). Beans must conform to specific rules concerning
the methods to create or remove a bean, or to query a population of beans for the
satisfaction of some property. Hence, whenever client software needs to access a
bean, it can take some features for granted.

It is the job of EJB server providers to map the functionality that the EJB
spec describes into available products and technologies. In version 1.0, released
in March 1998, the EJB spec covers transaction management, persistence, and
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Transaction
Processing

Persistency Security

EJB API

Application

Account bean

Order bean
Client

EJB server

Fig. 2. The EJB server offering access to information management services.

security services.2 The EJB spec does not regulate how these services are to be
implemented, however: they may be implemented by the EJB server provider,
as part of the server; or they may rely on external products, eventually supplied
by other vendors. Such products, however, are invisible to the beans.

A typical example of the symbiosis between an EJB server and an external
product would be for an EJB server provider to offer access to one or more in-
dustry standard databases. The customer organization could then develop new
applications that access existing corporate databases, using the persistency ser-
vices provided by the EJB server. All that the developers of the new application
would need to be aware of is the logical schema of the existing databases.

Standard

Vendor specific
mapping

Transaction
Processing

Persistency Security

Container

Bean

Client

Client
Contract

Bean
Contract

Bean

Fig. 3. The EJB container.

2 Actually, version 1.0 views persistency services to be optional.
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The EJB spec refers to the collection of services that both the beans and the
client software use as a container (see Fig. 3). A container provides a deployment
environment that wraps the beans during their lifecycle. Each bean lives within
a container. The container supports (directly or indirectly) all aspects that the
bean assumes about the outside world, as defined in the EJB spec.3 The protocols
that regulate the dialog between a bean and its container are termed the bean
contract.

The container also supports a set of protocols, termed the client contract,
that regulate the dialog between client software and a bean. The client contract
defines two interfaces that a client uses to communicate with a specific bean: the
Home Interface and the Remote Interface. Both interfaces are implemented at
deployment-time by special-purpose tools supplied by the EJB server provider.4

The Remote Interface reflects the functionality of the bean it represents, as it
publishes the so-called business methods of the bean. Each bean has one such
interface. The Home Interface contains the methods for creation and removal of
beans, as well as optional methods for querying the population of beans (finder
methods). There is one such interface per bean class.

To use the services of a bean a client first obtains a reference to the bean’s
class Home Interface using the Java Naming and Directory InterfaceTM (JNDI).
Using this reference, the client software can call a create method in the class’s
Home Interface, thus obtaining a reference to the bean’s Remote Interface im-
plemented by the container. The Remote Interface then delegates subsequent
method calls to the corresponding bean. The fact that the client uses JNDI to
obtain a reference to the Home Interface of the class is a necessary condition for
distribution transparency. Any piece of software, including a bean, may use the
client contract to communicate with some bean if the software does not know (or
care) where the target bean is actually being deployed. Such software calls the
interfaces in the container holding the target bean using Java’s Remote Method
Invocation.

An EJB server manages the population of beans that reside in main memory
in a way that is transparent to the client software. As the population of beans
inside a container grows beyond a certain limit, determined by the EJB server,
the container sends some number of the least recently used beans to secondary
memory. The EJB spec refers to the beans that are subject to this operation
as passivated. Since every call to a bean flows through the interfaces in the

3 This does not mean the container restrains beans from accessing the world outside
EJB. For instance, a bean may include Java Database Connectivity (JDBC) code to
access a database directly. However, in doing so, the bean sacrifices implementation
independence and distribution transparency.

4 In Java, the Home and Remote Interface are termed EJBHome and EJBObject,
respectively. These two interfaces in the EJB spec are extended by user-written,
domain-specific, Java interfaces. Such domain-specific Java interfaces are read by
the deployment tools to produce the container-specific classes that implement the
two interfaces. The latter classes are, however, invisible to the user. For the sake of
clarity we will continue to refer to the user-specified interfaces as Home and Remote
Interface.
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container, it is the container that relays the call to the bean, as appropriate. So,
whenever a method call is addressed to a passivated bean, the bean is brought
back to primary memory by the container. The EJB spec refers to beans that
are subject to this latter operation as activated.

Although passivation and activation are transparent to the client calling the
bean, it is not so to the bean itself. Before being passivated, the bean is required
to release the shared resources it acquired previously, so as not to lock them dur-
ing passivation time. Likewise, upon activation, the bean may have to reacquire
the resources to serve the client’s request. Therefore, in order to allow the bean
to perform these actions, the container issues synchronization messages to the
bean just before passivation and immediately after activation, before the client’s
call is relayed (ejbPassivate and ejbActivate, in Fig. 4.)

Client Home
Interface

Remote
Interface

Container Bean

create(args)
newInstance

setContext()

ejbCreate(args)

businessMethod(args)
businessMethod(args)

ejbPassivate()

businessMethod(args)

businessMethod(args)

ejbActivate()

remove()
ejbRemove()

Fig. 4. Sample event trace for the lifecycle of a bean.

3.3 The Enterprise JavaBeansTM Specification

The EJB spec [6] released by Sun is a 180-page document, in which the concepts
and their interplay are described in English, much in the same way as Sect. 3.2. A
few informal state diagrams complement the explanation. There are also some
chapters dedicated to the presentation of illustrative scenarios of interactions
described using event trace diagrams. For instance, the event trace in Fig. 4 is
an adaptation of the ones in pages 32 to 36 of the EJB spec. The document has
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an appendix enumerating the Java API that the elements of the architecture
should follow. The signature and purpose of each method is briefly described,
in English, along with an enumeration of the exceptions that may be raised. No
pre- and post-conditions are provided.

Although voluminous, documentation such as this has two intrinsic problems.
First, related information is spread throughout the document. For example, to
determine what sequence of method calls a bean must follow to request a typ-
ical service from the container, the reader must locate the explanation in the
text (hopefully covering all relevant operations), refer to the API method de-
scriptions, examine any examples of sample executions, and consult the list of
possible raised exceptions.

Second, the lack of a precise definition makes it difficult for a reader to
resolve inconsistencies and ambiguities, and to determine the intended semantics
of the framework. As an example of unresolvable inconsistencies, in one place
the documentation says the Home Interface should “define zero or more create
methods” (page 14), while in another it says “one or more create methods”
(page 20). Without a single place in the document that has the precise definition,
it is impossible to determine which of the two (if either) is correct (even assuming
we can determine what a create method should do).

As another example, consider the issue of the interaction between bean dele-
tion and bean passivation. Suppose a client decides to remove a bean that the
client has not accessed in some time. If the container has passivated that bean, it
is not clear what happens. The normal rules of method invocation would imply
that the bean would first have to be activated (reacquiring all resources needed
for its normal operation), only to be immediately removed. This seems like a
strange kind of behavior, and it is not clear if it is intended by the standard.

Finally, as with any documentation that only provides examples of method
sequences, rather than formal rules, it is impossible for a reader to be sure what
generalization is intended.

It seems clear that much could be gained by a formal unambiguous spec-
ification of EJB as a supplementary (or even central) resource for framework
implementers, bean providers, and developers of client software. In the remain-
der of this paper we examine one such specification.

4 Wright

Wright is a formal language for describing software architecture. As with most
architecture description languages, Wright describes the architecture of a sys-
tem as a graph of components and connectors. Components represent the main
centers of computation, while connectors represent the interactions between com-
ponents. While all architecture description languages permit the specification of
new component types, unlike many languages, Wright also supports the explicit
specification of new architectural connector types [1].5

5 Wright also supports the ability to define architectural styles, check for consistency
and completeness of architectural configurations, and check for consistent specifica-
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A simple Client-Server system description is shown below:

Configuration SimpleExample

Component Server

Port Provide = <provide protocol>

Computation = <Server specification>

Component Client

Port Request = <request protocol>

Computation = <Client specification>

Connector C-S-connector

Role Client = <client protocol>

Role Server = <server protocol>

Glue = <glue protocol>

Instances

s: Server

c: Client

cs: C-S-connector

Attachments

s.Provide as cs.Server;

c.Request as cs.Client

end SimpleExample.

This example shows three basic elements of a Wright system description: com-
ponent and connector type declarations, instance declarations, and attachments.
The instance declarations and attachments together define a particular system
configuration.

In Wright, the description of a component has two important parts, the
interface and the computation. A component interface consists of a number of
ports. Each port defines a point of interaction through which the component
may interact with its environment.

A connector represents an interaction among a collection of components. For
example, a pipe represents a sequential flow of data between two filters. A Wright
description of a connector consists of a set of roles and the glue. Each role defines
the allowable behavior of one participant in the interaction. A pipe has two roles,
the source of data and the recipient. The glue defines how the roles will interact
with each other.

The specification of both components and connectors can be parameterized,
either with a numeric range – allowing a variable number of ports or roles with
identical behaviors – or with a process description – instantiating the generic
structure of a component (or connector) to a specific behavior. A typical case
of parameterization is a Client-Server connector that allows the attachment of a
variable number of Clients, multiplexing their requests according to rules defined
in the glue protocol:

tions of components and connectors. In this paper we restrict our presentation to
just those parts of Wright that concern the specification of EJB. See [3] for further
details.
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Connector C-S-connector(nClients:1..)

Role Client1..nClients = <client protocol>

Role Server = <server protocol>

Glue = <client multiplexing glue protocol>

Each part of a Wright description – port, role, computation, and glue – is defined
using a variant of CSP [9]. Each such specification defines a pattern of events
(called a process) using operators for sequencing (“ → ” and “ ; ”), choice
(“ u ” and “ ”), parallel composition (“ ‖ ”) and interruption (“ 4 ”).6

Wright extends CSP in three minor syntactic ways. First, it distinguishes
between initiating an event and observing an event. An event that is initiated
by a process is written with an overbar. Second, it uses the symbol § to denote
the successfully-terminating process.7 (In CSP this is usually written “SKIP”.)
Third, Wright uses a quantification operator: <op> x : S • P(x). This operator
constructs a new process based on the process expression P(s), and the set S,
combining its parts by the operator <op>.

For example, i:1,2,3 • Pi = P1 P2 P3 .

5 Component or Connector?

When defining the architectural structure of a framework, a key question is what
are the connectors. This question is important because many frameworks are es-
sentially concerned with providing mediating infrastructure between components
that are provided by the user of the framework. Making a clear distinction be-
tween the replaceable componentry, and the mechanisms that coordinate their
interaction greatly improves the comprehensibility of the framework.

From our perspective, the entities that are a locus of application-specific
computation are best represented as components. The infrastructure that is
prescribed by the framework to assure the interconnection between application
components is a likely candidate to be represented as a (set of) connector(s).

In general, however, it may not always be obvious what should be represented
as a component and what should be represented as a connector. Consider the
system illustrated in Fig. 5a, consisting of three components: A, B, and C. In
some cases the purpose of C is to enable the communication between A and B,
using an A-C protocol over connector X, and a C-B protocol over connector Y.
If those two protocols are completely independent, it makes sense to represent
C as a distinct component, and keep X and Y as separate connectors.

On the other hand, if events on X are tightly coupled with those on Y (or
vice versa), then it may make more sense to represent the protocol between X

6 We assume familiarity with CSP. For details on the semantics of the mentioned
operators see the extended version of this paper in electronic format, available from
Springer Verlag.

7 Wright uses a non-standard interpretation of external choice in the case in which one
of the branches is § : specifically, the choice remains external, unlike, for example,
the treatment in [16]. See [3] for technical details.
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A

C

BX Y

A B
C

(a)

(b)

Fig. 5. Component or connector?

and Y directly using a single connector, as indicated in Fig. 5b. In this case, the
connector itself encapsulates the mediating behavior of C as glue.

Representing a complex piece of software as a connector is a judgement call
that is enabled by describing connectors as first class architectural entities. This
perspective departs from a notion of connection that is restricted to relatively
simple mechanisms like method calling, event announcing, or data pipelining.
It requires the ability to describe the protocols that go on at each end of the
connector (the roles in Wright) as well as the rules that tie those protocols to-
gether (the glue). In addition, it requires the ability describe complex topologies
of connection, beyond simple point-to-point, like having multiple clients com-
municating with a server over the same set of protocols (a parametric multi-role
connector in Wright – see Sect. 4.)

6 Formalizing Enterprise JavaBeansTM

Turning now to EJB (as illustrated in Fig. 3), it seems clear that clients and beans
should be represented as components. Each performs significant application-
specific computation, and is best viewed as a first class type of computational
entity in the architectural framework. However, as the actual computations of
the clients and beans cannot be defined at the framework level (since they will be
determined when the framework is used to develop a particular application), we
will represent those components parametrically. That is, the actual application
code will be used to instantiate them at a later time.

What about the EJB container? While it would be possible to represent it
as a component, as in Fig. 5a, it seems far better to consider it a rich connector,
as in Fig. 5b. Not only is the container primarily responsible for bridging the
gap between clients and beans, but also the container-client and container-bean
sub-protocols are so tightly interwoven that it is makes sense to describe them
as a single semantic entity (i.e., the connector glue). For example, the effect of
a remote method call from a client to a bean is mediated by the container so
that if the target bean is passivated it can be activated using the container-bean
activation protocol. The resulting general structure is illustrated in Fig. 6.
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Container

Home Interface

Remote Interface

BeanClient

Component Port Role

Legend

Connector

Fig. 6. One Client connected to one Bean.

In this case the Remote and Home interfaces become roles in the Container
connector that both a Client and a Bean interact with. In Wright this structure
is described (schematically) as:

Configuration one-Client-one-Bean

Component Client (BusinessLogic: Process)

Port UseHomeInterface = <...>

Port UseRemoteInterface = BusinessLogic

Computation = <...>

Component EJBean (BusinessLogic: Process)

Port BeanHome = <...>

Port JxBean = <...>

Port RemoteInterface = BusinessLogic

Computation = <...>

Connector Container (BusinessLogic: Process)

Role HomeInterface = <...>

Role RemoteInterface = BusinessLogic

Role UseBeanHome = <...>

Role UseJxBean = <...>

Role UseRemoteInterface = BusinessLogic

Glue = <...>

Process SomeBusinessLogic = <...>

Instances

A: Client(SomeBusinessLogic)

B: EJBean(SomeBusinessLogic)

C: Container(SomeBusinessLogic)

Attachments

A.UseHomeInterface as C.HomeInterface

A.UseRemoteInterface as C.RemoteInterface

C.UseBeanHome as B.BeanHome

C.UseRemoteInterface as B.RemoteInterface

C.UseJxBean as B.JxBean

end one-Client-one-Bean.
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As indicated earlier, we use a placeholder process BusinessLogic as a parameter
to clients, beans, and the Container connector. (The connector is parameterized
by the business logic because it also needs to know about the BusinessLogic
protocol.)

The Wright specification of the configuration also defines the attachments be-
tween the ports of each component and the corresponding roles in the Container.
The next sections examine each part in turn.

6.1 The Client

The specification of a Client component is:

Component Client (BusinessLogic: Process)

Port UseRemoteInterface = BusinessLogic

Port UseHomeInterface

= create→ ( GoHomeInterface

4 noSuchObjectException

→ UseHomeInterface )

4 remove → ( x removeException → x ))

Where GoHomeInterface

= getEJBMetaData → GoHomeInterface

Computation = create → CallBean

Where CallBean

= ( (UseRemoteInterface ‖ GoHomeInterface)

4 noSuchObjectException → create → CallBean )

4 remove → ( x removeException → x )

It has two ports for accessing the Bean: UseHomeInterface and UseRemote-
Interface. As noted above, the latter is defined by a process that describes
the application logic implemented by the Bean and is passed to the Client as a
parameter (BusinessLogic).

The process describing the client’s view of the Home Interface consists of
three events: create and remove, with the obvious meaning, and getEJBMeta-
Data, which is a service provided by the container that returns meta-information
about the methods supported by the bean. Note that the port is initialized by a
create event and terminated by a remove event. The auxiliary process definition
GoHomeInterface, describes the Home Interface perspective of what may go on
between the creation of a bean and its removal: getting the bean’s meta-data.

An event that may occur at any time after the creation, noSuchObject-
Exception, corresponds to an exception being raised by the container. In fact,
the EJB spec says that “a Client must always be prepared to recreate a new
instance (of a bean) if it looses the one it is using” (pp. 24).8 Hence, if the Client
gets a noSuchObjectException, it should go back to create another bean. The

8 In a distributed computing environment, it is possible to loose communication with
a remote server. The distribution transparency provided by EJB, however, has the
potential to hide from the client whether the reinitialized home interface is directed
to the same, recovered, server or to another that supports the same bean class.
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Wright specification exhibits this property in both the specification of the process
GoHomeInterface and in the process CallBean in the Client’s computation: the
occurrence of a noSuchObjectException event causes the Client to reinitialize
the Home Interface by issuing a create event. In Sect. 7 we see how less trivial
properties can be checked by the use of automated tools.

The main body of computation, once it is initialized by a create, is the par-
allel composition of the processes UseRemoteInterface and GoHomeInterface.
What goes on in this composition is dictated by the application logic, passed
as a parameter to the client, in parallel with the initialized Home Interface. Fi-
nally, at any time (after initialization) the client may decide to remove the bean.
This is signaled by the client-initiated remove event interrupting the process
described above (using the 4 operator). However, the Client must be prepared
to handle a removeException, thrown by the Container. After a remove, either
the computation successfully terminates, or it accepts a removeException, after
which it also terminates. The EJB spec does not define how components should
handle exceptions. So we only note the fact that an exception may be received.
It should be clear now that the specification of the UseHomeInterface port is
actually a view of the Client’s computation, restricted to the events recognized
by the Home Interface.

The HomeInterface role in the container expresses the possible behaviors of
the client that attaches to this role:

Connector Container (BusinessLogic: Process)

Role HomeInterface = create → GoHomeInterface

Where GoHomeInterface

= ( getEJBMetaData → GoHomeInterface

noSuchObjectException → HomeInterface )

u remove → ( x removeException → x )

The process specification for this role is equivalent to the process in the Use-
HomeInterface of the Client component, in the sense that it will generate the
same set of traces. After being initialized by create, the attached component will
choose (internally) whether or not to remove the bean. If the component chooses
not to remove the bean, it may initiate a request for meta-data. It also admits
a noSuchObjectException, which resets the role. If the component chooses to
remove the bean, it admits a removeException, but terminates afterwards, in
either case.9

6.2 The Container and the Bean

In the container, there are three Wright roles that are involved in the creation of
a bean. The first is the HomeInterface role, as discussed in Sect. 6.1, to which

9 Again, for simplicity, we focus on a single run of the protocols between the client
and the container, in order to distinguish between a situation where the protocol
demands a reset, from a situation where it runs through successfully and could go
back to create another bean.
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the client attaches. The other two are the UseBeanHome and UseJxBean roles, to
which the bean attaches:

Connector Container (BusinessLogic: Process)

alpha Created = αUseJxBean \ {setContext, ejbRemove}
...

Role UseBeanHome = newInstance → ejbCreate → x

Role UseJxBean = setContext → GoJxBean

Where GoJxBean

= ejbPassivate → ejbActivate → GoJxBean

ejbRemove → UseJxBean

Glue = ...

Where BeanLive

= create → newInstance → setContext → ejbCreate

→ ( RUNCreated

4 remove → ejbRemove → x )

...

Component EJBean (EJBObject: Process)

Port BeanHome = newInstance → ejbCreate → x

Port JxBean = setContext → GoJxBean

Where GoJxBean

= ejbPassivate → ejbActivate → GoJxBean

ejbRemove → x

Since it is often the case that a protocol refers to events in more than one role,
the perspective that a specific role has of a protocol is limited by the alphabet
of the role. It is the glue that links what goes on in each role, thus completing
the protocol followed by the connector.

In order to single out each piece of the glue that corresponds to a particular
protocol in the software framework, we introduce auxiliary process definitions.
BeanLive is one of them. Since this is a glue process, it takes the viewpoint
of the container: hence, the create event is initiated by the environment (in
the HomeInterface role). After receiving a create, the container initiates the
newInstance event in the UseBeanHome role, sets the newly created bean’s run-
time context (setContext in the UseJxBean role,) and signals the new bean to
run the appropriate initialization method (ejbCreate in UseBeanHome).

The BeanLive process then accepts any event in the alphabet of the UseJx-
Bean role, except for setContext (part of the initialization) and ejbRemove (part
of the termination). When interrupted by a remove event in the HomeInterface
role, the BeanLive process signals the bean to run the appropriate termination
method (ejbRemove in the UseJxBean role) and then terminates.10

The Container relays the business logic events in the role RemoteInterface
(to which the Client attaches) to the role UseRemoteInterface (to which the

10 The roles take the viewpoint of the environment (of the components that attach to
the roles,) as opposed to the viewpoint of the container. So, the parity of initiation
is reversed in the glue and in the roles. Note also that the processes in the roles
UseBeanHome and UseJxBean match the processes in the corresponding ports in
the Bean component, BeanHome and JxBean.



Formal Modeling of the EJBTM Architecture 1297

Bean attaches). The glue process Delegate assures this by simply stating that
any event e in the RemoteInterface role is followed by the (container-initiated)
same event e in the UseRemoteInterface role.

Recall now that the container may decide to passivate a bean according to
a least recently used policy. The glue process SwapBean (see below) accepts any
event in the alphabet of the Container,11 except for the events ejbPassivate
and ejbActivate. Whenever the container decides to initiate an ejbPassivate
event, the SwapBean process waits for the next event in the RemoteInterface
role. After that, and before the event is relayed to the UseRemoteInterface role,
an ejbActivate event is interleaved. The parallel combination of the processes
SwapBean and Delegate in the glue produces the desired effect: the business logic
events are normally relayed, but whenever the bean was passivated, it receives
an activation event just before the business logic event is sent.

Connector Container (BusinessLogic: Process)

alpha Activated = αContainer \ {ejbPassivate, ejbActivate}
Role UseJxBean = setContext → GoJxBean

Where GoJxBean

= ejbPassivate → ejbActivate → GoJxBean

ejbRemove → UseJxBean

...

Role RemoteInterface = BusinessLogic

Role UseRemoteInterface = BusinessLogic

Glue = BeanLive

‖ Delegate

‖ SwapBean

Where Delegate = e: αRemoteInterface •
RemoteInterface.e → UseRemoteInterface.e → Delegate

Where SwapBean

= RUNActivated 4 ejbPassivate

→ ( e: αRemoteInterface • RemoteInterface.e

→ ejbActivate → UseRemoteInterface.e → SwapBean )

7 Using the Model

By precisely specifying the implied protocols of interaction for EJB, one achieves
a number of immediate benefits. First, the formal specification is explicit about
permitted orderings of method calls, and about where the locus of choice lies.
Second, the specification makes explicit where different parts of the framework
share assumptions. In particular, the role of BusinessLogic as a parameter helps
clarify the way in which assumptions about the application-specific behavior are
shared among the parts of the framework. Third, the model helps clarify some
of the more complex aspects of the model by localizing behavior. For example,
the murky role of passivation becomes clear in the Container glue.

Furthermore, it is also possible to submit the model to formal analysis via
model checking tools. To do this we used the FDRTM model checker for CSP [7]
11 Taken here as the union of the alphabets in all roles.
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to check for deadlocks in the container.12 In addition to checking for deadlocks,
FDR can also be used to make sure that specific required behaviors13 still hold
in the overall result of the composition of all local specifications. For that we
use the CSP notion of process refinement. Specifically, we can check if a process
describing the desired behavior is refined by the overall specification; for instance,
if a process describing the client’s recovery after a container failure is refined by
the one-Client-one-Server specification. If that is the case, that means that the
intended behavior was not lost due to a mistake during the process of specifying
all the interacting behaviors.

For the current model, analysis revealed one significant problem. The prob-
lem concerns a possible race condition between the delegation and passivation
processes inside the Container. Suppose that the Client initiates an event in the
RemoteInterface role. Then, before the Delegate process relays the event to
the bean through the UseRemoteInterface role, the SwapBean process, oper-
ating concurrently, decides to passivate the bean. Now, the Delegate process
must relay the received business logic event to the UseRemoteInterface role,
before it can accept the next event in the RemoteInterface role. However, the
SwapBean process just issued an ejbPassivate notification to the bean, and
hence it waits for the next event in the RemoteInterface role to reactivate the
bean. Therefore, the processes that go on inside the Container cannot agree on
what to do next, and the connector deadlocks.

A simple correction for the deadlock is:

Connector Container (EJBObject: Process)

...

Where Delegate

= ( e: αRemoteInterface •
RemoteInterface.e → UseRemoteInterface.e → Delegate )

ejbPassivate → Delegate

...

That is, the Delegate process must prevent passivation between receiving an
event in the RemoteInterface role and relaying it to the UseRemoteInterface
role. One way to model it in CSP is to explicitly allow the ejbPassivate event
outside the mentioned “critical section”.

While arguably one might attribute the detected problem to our specification,
and not to Sun’s EJB spec, it does point out a place where the complexity of the
specification can lead to errors that might be hard to detect otherwise. Without
a precise model and effective automated analysis tools to identify problem areas,
such errors could easily be introduced, undetected, into an implementation.

12 Translation from Wright to FDR is accomplished semi-automatically using the
Wright tool set. See [1].

13 For instance, Sun’s document (pp. 24) states that any implementation of the EJB
protocol between a client and an EJB server must allow the client to recover from
EJB server crashes.
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8 Conclusions and Future Work

In this paper we have outlined a formal architectural model of part of Sun’s EJB
component integration framework. In doing this we have attempted to shed light
both on EJB itself, and on the way in which one can go about modeling object-
oriented architectural frameworks. The key idea in our approach is to take an
architectural view of the problem that makes explicit the protocols of interaction
between the principle parts of the framework. In particular, we have shown how
representing the framework’s mediating infrastructure as a connector with a
well-defined protocol helps to clarify the overall structure of the framework and
to localize the relationships between the various method calls that connect the
parts.

The use of formal architectural modeling languages to represent frameworks
such as EJB opens up a number of important questions to investigate. First,
while our specification focused on certain properties of the framework, there are
many others that one might want to model. For example, although potential
deadlocks are highlighted by our model, we do not handle important issues such
as performance, reliability, and security. For many frameworks finding notations
that expose such properties will be crucial.

Second, given a formal specification, such as the one we have presented, it
should be possible to influence conformance testing. Currently, conformance to
a framework can only be loosely checked – for example, by making sure that an
implementation provides the full API. However, given a richer semantic model,
it should be possible to do much better.

Third, the EJB spec uses inheritance to organize the presentation of many
of its concepts. For example, the SessionBean class inherits behavior from the
EnterpriseBean class, which in turn inherits from the java.io.Serializable
class. In contrast, the formal model that we have presented is essentially flat. To
come up with our model we had to fold together the implicit semantic behavior
defined in several classes. It would have been much nicer to have been able to
mirror the inheritance structure in the architectural specification. While such
extension is relatively well-understood with respect to signatures, it is not so
clear what is needed to handle interactive behaviors – such as protocols of inter-
action. Finding a suitable calculus of protocol extension is an open and relevant
topic for future research.
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