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Abstract. Math∫pad is a document preparation system designed and
developed by the authors and oriented towards the calculational con-
struction of programs. PVS (Prototype Verification System) is a theo-
rem checker developed at SRI that has been extensively used for ver-
ifying software, in particular in safety-critical applications. This paper
describes how these two systems have been combined into one. We dis-
cuss the potential benefits of the combination seen from the viewpoint
of someone wanting to use formal methods for the construction of com-
puter programs, and we discuss the architecture of the combined system
for the benefit of anyone wanting to investigate combining the Math∫pad
system with other programming tools.

1 Introduction

Math∫pad [5] is a document preparation system designed and implemented by
the first author under the direction of the second author, initially with the help
of Olaf Weber. The almost-WYSIWYG nature and flexibility of Math∫pad means
that it can be used for on-screen mathematical calculation (in any formal sys-
tem) and, in particular, for the calculational construction and documentation
of programs, this being indeed the purpose for which the system was originally
designed. The system has now been stable for several years and has been used
to write a number of Ph.D. and M.Sc. theses and articles in the area of the
mathematics of program construction [3] and program specification using Z [8],
as well as the on-line documentation of the system itself [6].

PVS (Prototype Verification System) is a theorem checker developed at SRI
that has been extensively used for verifying software, in particular in safety-
critical applications. A description of PVS is given on the “What is PVS?” page
at SRI [17]:

PVS is a verification system: that is, a specification language inte-
grated with support tools and a theorem prover. It is intended to capture
the state-of-the-art in mechanized formal methods and to be sufficiently
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rugged that it can be used for significant applications. PVS is a research
prototype: it evolves and improves as we develop or apply new capabili-
ties, and as the stress of real use exposes new requirements.

PVS is a large and complex system and it takes a long while to
learn to use it effectively. You should be prepared to invest six months
to become a moderately skilled user (less if you already know other
verification systems, more if you need to learn logic or unlearn Z)

Math∫pad and PVS have completely different design goals, stemming from
the fact that Math∫pad is intended to support the (formal) construction of com-
puter programs, whereas PVS is designed to support the verification of existing
programs. Thus Math∫pad supports the language of mathematics, in its full gener-
ality, whereas PVS constrains its user to its own ASCII-based teletype language.
But Math∫pad does not purport to validate or verify the user’s calculations in
any way, that being the responsibility of the user, whereas PVS does.

The design of Math∫pad reflects what we believe to be the highest priorities
in developing tools to support the use of formal methods for software design.
Above all, we concur wholeheartedly with Knuth’s view [12] that programming
is best viewed as a document preparation activity, the documentation serving
to integrate the many different aspects (requirements, specification, implemen-
tation, testing etc.) of a highly complex process. Furthermore the language of
programming specification is the language of mathematics — in other words,
precise and concise, but unconstrained and subject to continual evolution and
adaptation. Finally, the goal of formal methods is to ensure that programs are
correct by construction, i.e. that the discipline of programming guarantees (when
applied conscientiously and correctly) that the constructed program satisfies its
specification.

This is not to say that program verification is not important. Independent
checks on the validity of computer programs are vital to reliability guarantees
and quality control. Formal verification, model checking, extensive (manual) test-
ing and (independent) code walk-throughs all contribute in their own way, and
none should be neglected in the real world of software design, particularly where
safety is significant. But program verification can only be truly helpful if it
doesn’t require “unlearning” a mathematical specification language like Z in
favour of spending six months becoming a moderately skilled user of an awk-
ward teletype language.

This description of PVS might seem to be negative, but many interactive
theorem provers fit this description. For many theorem provers, the user interface
is not as important as the logical engine that does the reasoning. As a result,
users of theorem provers are often confronted with a system-specific specification
language, usually one-dimensional and based on ASCII. Since mathematics uses
special symbols and operators, a translation is needed from the mathematically
oriented language to the specification language, which reduces the readability
and can introduce errors. If the specification becomes unreadable, the user might
prefer the blackboard to do the calculations and consider using the theorem
prover to check it afterwards.
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Some constructors of theorem provers have recognized that the interface
should be improved, as discussed during the User Interfaces for Theorem Provers
(UITP) workshops [7, 4]. To improve the readability, the interface should use
mathematical notations, as used, for example, during lectures on the blackboard.
A good example of such an improved interface is the Jape system [20], where
the user works with a familiar notation, albeit one-dimensional except for some
specific in-built notations. The next step is to integrate the theorems, proofs and
documentation into one single document, as in Mathematica [22] and Maple[16].

Now that we have successfully achieved our own initial goals, in the form
of a stable, well-tested (mathematical-)document preparation system, the time
is ripe to couple it to other tools, such as program verifiers. This document
describes how we have combined Math∫pad with PVS. We discuss the potential
benefits of the combination seen from the viewpoint of someone wanting to
use formal methods for the construction of computer programs, and we discuss
the architecture of the combined system for the benefit of anyone wanting to
investigate combining the Math∫pad system with other programming tools. The
system we have implemented runs under Unix and may be downloaded from
http://www.win.tue.nl/cs/wp/mathspad.

2 User Model

The recent Ph.D. thesis by Matteo Vaccari [21] is illustrative of what we ulti-
mately want to achieve. In his thesis, Vaccari discusses the calculational con-
struction of hardware circuits, where the first 6 chapters contain theoretical
discussions of relation algebra, circuits and regular language recognizers, while
the later chapters contain simulations of the circuits using Tangram [18] and a
machine verification of the theory using PVS [14]. Vaccari used Math∫pad in the
process of developing and documenting the “theoretical” designs in the initial
chapters, and then hand-coded these into the forms acceptable to Tangram and
PVS. (See Fig. 1.)

Mathòpad
(construction)

Tangram
(testing) (verification)

PVS

Fig. 1. The user model

The use of two additional and entirely independent systems to check the
“theoretical” designs gives a remarkable level of confidence in the reliability of
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Vaccari’s designs that could not have been achieved by using any one of the
systems on its own. Tangram is a system comprising a language, a simulator
and a compiler developed at Philips Research Laboratories, Eindhoven, for the
design of asynchronous hardware circuits. Using it, Vaccari was able to test
that his designs functioned according to specification. In addition, Tangram has
features to analyse the efficiency of a circuit design (including area, speed and
energy consumption), and warns against unimplementable features. The PVS
system comprises its own, quite different, specification language based on higher-
order logic. Using it, Vaccari was able to formally verify all the lemmas and
theorems leading up to and including the final circuit design. Vaccari comments
in his thesis that neither systems showed up any errors in the calculated designs;
however, the use of Tangram gave practical feedback, whereas the use of PVS
obliged him to clarify certain elements in his calculations.

Independent checks are crucial to improving confidence, but there is one ma-
jor weakness in the procedure adopted by Vaccari: namely, the lack of any formal
link between the mathematical language in which his designs were constructed,
the language of Tangram in which his designs were tested, and the language of
PVS in which his designs were verified. This, however, is a weakness shared by
all validation systems (theorem provers, model checkers, etc.) that we know of
since such systems are invariably based on a language that is different to the
actual implementation language used by “real” programmers. Practical reality
compounds the problems drastically: since systems are subject to continual mod-
ification and evolution, it is almost inevitably the case that what is verified (or
even tested) is not what is executed.

We believe that the use of a system like Math∫pad can make a substantial
contribution to overcoming this weakness. Math∫pad is a structure editor — the
user of Math∫pad manipulates, in fact, an abstract structure which is viewed on-
screen as a mathematical expression but which can also be viewed as a Tangram
program or as a collection of theorems and proofs in the PVS system.

Of course, matters are not quite as simple as we have just sketched. The
process of viewing an abstract structure on screen involves, by design, a very
simple transformation of the structure into display events, whereas the process
of transforming the structure into a Tangram program is much less simple, and
the process of converting it into a collection of PVS theorems and proofs – the
topic of this paper – is far from trivial. But this is essentially what Vaccari did in
his thesis, mostly by hand but also with the aid of a number of automated tools.
Our goal in developing the interface with the PVS system was to automate this
process as much as possible.

A tool like Math∫pad has the potential to be useful as an interface for several
backend engines, such as symbolic computation systems and theorem provers.
Many of those systems have a teletype interface and the mathematical content
is often difficult to read and written in an unfamiliar syntax. Furthermore, each
system uses its own syntax, which makes it virtually impossible to switch from
one system to another. In Math∫pad, the user works with the familiar syntax,
while the generated output is less important. As it is possible to generate output
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in another markup language, it is not too difficult to generate the input that
is needed for a particular backend engine. For a normal user, Math∫pad should
hide all the knowledge that is needed to use the backend engine and translate
the input and output of the backend engine to the syntax familiar to the user.
For an expert user, the connection with the backend engine should be easy to
construct and maintain.

Since there are many possible backend engines with their own markup lan-
guages, the connection between Math∫pad and a backend engine should be as
generic as possible. A connection with one particular backend engine would not
be too difficult to construct and Math∫pad could be tuned for that backend en-
gine. However, if a connection with a different backend engine is needed, the same
work has to be done all over again. Therefore, the core Math∫pad system does
not contain specific knowledge about one particular backend, but it provides the
functionality to add that knowledge.

In the following sections, the connection we have made between Math∫pad
and the PVS system is described. The PVS system was chosen because the
Math∫pad documents with human readable proofs created by Vaccari and their
PVS versions were available to us, thus providing a substantial test-base for our
ideas. Furthermore, the PVS system is a non-trivial system and was likely to
expose problems of a general nature when connecting Math∫pad to other systems.

3 An Example

A simple example will serve to illustrate the difference between mathematical
calculation and PVS-style verification.

3.1 Mathematical Calculation

The example, in the popular Feijen style of proof presentation [11], in Fig. 2 is
taken from Vaccari’s thesis [21]. Figure 3 shows the example as the user sees it
in the Math∫pad editor.

In the example, a law is given about map and fold , together with a proof
that the law is correct. The proof, although very simple, illustrates well the
advantages of good, clear mathematical notation.

Consider the calculation introduced by the words “For n+1 we have”. Note,
first, the invisible use of the associativity of composition in the first two steps1.
In the first step foldn+1.R is replaced by R◦ι×foldn.R, and mapn+1.S is replaced
by S×mapn.S. The combined effect is to replace the top line in the calculation
by

(R◦ι×foldn.R)◦S×mapn.S

where the parentheses indicate the grouping resulting from the two replacements.
Note now that the second step groups the subterms differently. In the second

1 Here multiplication has precedence over composition, denoted by a small circle. The
meaning of the operators is not relevant to the current discussion.
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A law about map and fold is the following: given R and S such that

R ◦ S×S = S ◦ R

then
foldn.R ◦ mapn.S = S ◦ foldn.R

The proof is by induction on n; for n = 1 it is trivially true. For n + 1 we have

foldn+1.R ◦ mapn+1.S

= { definitions }
R ◦ ι×foldn.R ◦ S×mapn.S

= { fusion }
R ◦ S×(foldn.R ◦ mapn.S)

= { induction hypothesis }
R ◦ S×(S ◦ foldn.R)

= { proviso: R ◦ S×S = S ◦ R; fusion }
S ◦ R ◦ ι×foldn.R

= { definition }
S ◦ foldn+1.R

Fig. 2. The formatted example

step the subterms ι × foldn.R and S × mapn.S are “fused” together to form the
subterm S×(S ◦ foldn.R ◦ mapn.S). That is, the associativity of composition
has been applied implicitly between the first and second steps transforming the
expression displayed above to

R ◦ (ι×foldn.R ◦ S×mapn.S)

Such uses of associativity occur very frequently in calculations and, as here, a
practised scientist would not make its use explicit. (In fact, another invisible step
in the proof involves exploiting the fact that the symbol ι denotes the identity
of composition.)

A second point to note about this proof is that “fusion” appears twice in the
hints (the remarks between curly bracktes). Both hints refer to the same law,
but the law is used in different directions in the two instances (once from left to
right and once from right to left).

A final point about this little calculation is the non-explicit use of the tran-
sitivity of equality. What is proved is that the top line

foldn+1.R ◦ mapn+1.S
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Fig. 3. The example as it appears in Math∫pad (as screendump)

is equal to the bottom line
S ◦ foldn+1.R

but this is not stated explicitly since it is immediately clear from the structure
and layout of the proof.

3.2 PVS Verification

Although the law and the proof are given in an informal manner, the manual
translation to PVS is straightforward, as is shown in Fig. 4.

The translation may indeed be easy to carry out by hand, but the result is
complex, is far from being readable and does not come anywhere near to the way
that human beings wish to see proofs presented. The statement of the theorem
is readable but this is misleading: the o and ∗ operators are overloaded. Since
you can not define new binary operators in PVS and the number of operators
that can be overloaded is small, it is very likely that the PVS specification will
become unreadable, as binary operators have to be replaced by functions with
two arguments. Furthermore, the precedence of the overloaded operators can not
be changed, which leads to confusion if another precedence is assumed. In the
example, the precedence of the o and ∗ operators is different in the PVS version,
which decreases the readability.

Another factor that contributes to the unreadability is the requirement to be
explicit about the use of the identity of composition. The line with the comment
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The PVS definition:

fold_map: THEOREM R o (S*S) = S o R

IMPLIES fold(n,R) o map(n,S) = S o fold(n,R)

The PVS proof script:

(induct "n" 1) %induction

1 (grind) %basis: trivial

(rewrite "id0")

(rewrite "id1")

2 (skolem!) (ground) %step

(skolem!) (ground)

(expand "fold" :if-simplifies t) %definition

(expand "map" :if-simplifies t) %definition

(assoc-rewrite "fusion" :dir RL) %fusion lemma

(inst?) (ground) %induction hypothesis

(replace*)

(rewrite "id1") %remove unit of composition

(rewrite "id0" 1 ("R" "S!1") 1 RL) %add unit of composition

(assoc-rewrite "fusion") %fusion lemma

(rewrite "id0") %remove unit of composition

(replace*) %proviso

(rewrite "comp_assoc") %associativity of composition

Fig. 4. The PVS example

“add unit of composition”, for example, involves a complex “path expression”
indicating to which subterm the rule is applied, in a manner akin to the way
that paths through a directory structure had to be typed in before the existence
of pointing devices.

But most importantly, the proof script as shown in the example is but a very
small part of what the user sees while the proof is being built. After each step in
the proof script, PVS will display the intermediate results and the current goal,
which leads to several pages of formulae in the highly unreadable PVS-speak! A
straightforward proof has thus been turned into an intellectual feat!

4 Building the Interface

4.1 Communication with PVS

From a user interface point of view, PVS is an extension of Emacs, which con-
nects the proof engine to the Emacs interface and the Tcl toolkit. The user can
edit files containing theorems and use the proof engine to construct the proof
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interactively. Since the proof engine is basically a lisp interpreter with state in-
formation, the user interface of the engine is hidden from the user by a collection
of pull-down menus in Emacs. With these menus, the user can perform all the
actions that might be needed to manipulate files, theorems, lemmas and proofs.
However, to construct a PVS proof, the user has to enter plain lisp commands
to apply tactics to a goal. To allow some proof planning, an interface with a Tcl
program is available to keep track of the subgoals.

Since PVS is a closed system and cannot be modified, the available PVS in-
terface had to be used. The first problem was the existing Emacs interface, which
complicates the communication with PVS. Luckily, the PVS system consists of
a core system connected to Emacs with a collection of Emacs lisp files, as shown
in Fig. 5. Emacs contains a lisp interpreter which is used to load the lisp files
for the PVS communication. These configuration files extend Emacs with new
functions and menus to provide a PVS specific interface. With these additional
functions, Emacs is able to communicate with the PVS core system, using its
standard input and output.

PVS core
system

load

Emacs

Lisp interpreter

communication
lisp files for PVS

output

extend

input

Fig. 5. The PVS structure

By using the PVS core system directly, the communication is simplified and
easier to maintain. However, the protocol used between Emacs and the core
system is not documented, probably because the constructors of PVS didn’t
envisage a different interface to that core system. Therefore, the protocol had to
be extracted from the lisp configuration files used by Emacs and the messages
that are sent between Emacs and the core system. With some detective work
in the form of a wrapper script that monitors these messages, we were able to
reconstruct the most important parts of the protocol, which was sufficient to use
the core system without the Emacs interface.



Interfacing Program Construction and Verification 1137

The PVS core system is a lisp interpreter and receives lisp commands as
input, which can be used to update or inspect the state of the system or to
prove a theorem. The output of the core system consists of a combination of
commands to update the state of Emacs and the results of proving a theorem.
The core system might also construct temporary files and instruct Emacs to
open them, which is mainly used for help files and the Tcl interface. The Emacs
interface cleverly hides the lisp input with a collection of pull-down menus, while
the mixed output is parsed and separated into several buffers. For the average
user, only the buffer with the results of a proof are of interest.

The PVS core system operates in three modes: a mode for managing the
state, a mode for making the proofs and a debug mode. Since the active mode
affects the commands that Emacs has to send, the system uses synchronization
points when it switches to a different mode and notifies Emacs. The debug mode
is only used if the system receives incorrect input, and this mode is ended by
resetting PVS.

To construct a different user interface for the PVS core system, the user
interface had to simulate the actions performed by Emacs, such that the core
system could not notice the difference. As our plan was to hide PVS as much
as possible from the user, only a subset of the actions available in Emacs were
made available in the new interface.

4.2 The Math∫pad Infrastructure

The PVS interface has been constructed as a loadable module. For this purpose,
Math∫pad provides an interpreted language which can be used to extend the
interface and to load modules. It is also possible for a loadable module to extend
the language with new functions, variables and types. The infrastructure of the
entire system is shown in Fig. 6.

The interpreter can be used to customise Math∫pad to a particular need. With
the interpreted language, the user can define new functions to combine common
sequences into a single function. These functions can be used in pop-up menus
and keyboard definitions to customise the interface and the keyboard usage.

For each extension, Math∫pad will load an interface definition file to adjust the
menus and keyboard definitions. Depending on the complexity of the extension,
the interface definition file can include a dynamic library, which can extend the
interpreted language with new functions, types and variables. With these new
language items, the user can extend the menus and keyboard definitions and
further customise the extension.

The combination of the interface definition file and the dynamic library can
communicate with the external program through the standard input and output
of the program. In order to do that, input has to be generated in the correct
syntax for the particular program and the output of the program has to be
parsed. As the interpreted language is not yet suited to the complex task of
parsing the output, a dynamic library is usually needed if the output has to be
parsed. When the output does not need to be parsed, some preprocessing of the
output can be performed by adding a filter to the external program.



1138 Richard Verhoeven and Roland Backhouse

library
dynamic

definition
interface

program
external

Mathòpad

interpreter

extend

language

include

load

input output

Fig. 6. The Math∫pad infrastructure

The interpreted language (see Fig. 7 for an example) is an imperative lan-
guage, based on the guarded command language. It supports sequential compo-
sition, selection and repetition, but not recursion. Procedures are defined with a
prototype, which is used to pass the arguments correctly, that is, to dereference
variables where needed. Procedures can have local variables with the normal
scope rules. To support callback functions, one additional operator is added to
support lazy evaluation, that is, to pass an argument to a function such that
it will be evaluated by that function at the correct time, for example after a
filename is selected instead of before the file selector is opened.

The language supports a standard set of operators which can be overloaded by
defining functions for each combination of arguments. This enables an extension
to define new types with sensible operators, without the need to reconstruct the
parser for the interpreted language.

Since some extension might have special needs for the content of menus, the
strings in the interpreted language are in the Unicode encoding. This ensures
that almost any symbol that an extension might need will be available for the
pop-up menus and messages. For mathematical or foreign extensions, this will
increase the readability.

4.3 The PVS Interface Library

The PVS module consists of a dynamic library for communicating with the PVS
core system and an interpreted file to adjust the interface with Math∫pad. The
purpose of the dynamic library is threefold. First, it interprets the Math∫pad
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document to extract theorems and proofs. Second, it generates the input that is
sent to the PVS core system. Third, it parses the output that is generated by
the core system.

As a Math∫pad document is structured, the generation of theorems from a
proof given in the Feijen style is not so difficult. For the example in Fig. 2, each
of the five steps has to be correct, so we can generate a theorem for each step.
Since the syntactical differences between the PVS input and the Math∫pad version
are not very different, generating these theorems is straightforward, once the
definitions of the templates are correct. Extracting the proof for these theorems
is also possible, as the hint contains keywords that indicate which strategies
are applicable. In the example, the keyword “fusion” indicates that the fusion
lemma is used as a rewrite rule. The keyword “definition” indicates that some
definition has to be expanded and the keyword “induction” indicates that a
premise is used as a rewrite rule, where the premise can be constructed from
the proof itself by using the first and last expressions. However, the hints are
not always precise enough, as is indicated by the PVS version of the proof. The
additional details are automatically applied by a human reader of the formatted
proof, without complaining. The reader will apply the trivial laws, such as the
“identity of composition” and “associativity of composition”, when needed and
the direction in which an equality law is used is determined by trial and error. A
complex dialogue with the author could be used to get these additional details,
but we decided to define additional PVS strategies which simulate the behaviour
of a human reader:

– a strategy to apply a rewrite rule in both directions,
– a strategy to retry a given strategy after applying the trivial laws, if that

strategy fails the first time,
– a strategy to apply a rewrite rule modulo composition.

These strategies have their limitations, as it is likely that rewrite rules are applied
incorrectly. However, the theorems are usually small and their proofs are short,
so it is less likely that something will go wrong. In the event that a theorem can
not be proven, an indication that the given hint is not sufficient to prove that
step should be a reasonable reply from the system, as a reader might have the
same problems with it as PVS.

For the other part of the example, the extraction of the theorems would
require a combination of natural language processing and logical reasoning, for
which a general solution is difficult. Therefore, this part is still missing from the
current interface.

Once the theorems and proofs are known, they have to be converted to the
specification language used by PVS. Since the output generated by Math∫pad
depends on the templates that are used, it is possible to generate valid PVS input
from Math∫pad expressions without much additional programming. However, the
expressions appear in a certain context and the identifiers should have a certain
type, otherwise PVS will generate parse or type errors. Although the context
and type information can be stored in the document as hidden information,
we chose to use a default context, where certain definitions and identifiers are
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predefined. This approach is quite common in documents with many identifiers,
as it releases the author from the burden of mentioning the type of an identifier
over and over again.

In order to give feedback to the user, the PVS output should be parsed and
converted to familiar syntax. If a theorem is correct, all is well and a simple
message should be sufficient. Otherwise, a warning or error message should be
generated, indicating the problem and possibly a solution. If PVS does not need
the generated proof completely, it might be that the given hint is incorrect or
over-complete and Math∫pad will suggest to adjust the hint in order to avoid
confusing the reader. If PVS is unable to prove the theorem, the hint might
be incomplete or an error might have occurred. By inspecting the output and
comparing the expressions Math∫pad could suggest that an identifier is incorrect
or that a particular law might be applied. Since the user is not familiar with the
PVS language, the output of PVS should be parsed and shown in the language
as used in the document with a familiar syntax. However, the expressions in
Math∫pad are constructed with templates, which are used to generate the PVS
expression. Therefore, these templates should also be used to parse the PVS
output, which is complicated by the possible ambiguities in the definition of
these templates. At the moment, this part is still missing from the experimental
interface.

The PVS output also contains commands which are handled by Emacs. For
each command, the PVS module will either ignore it or translate it to the new
interface. For example, after the PVS core system has finished a proof, it will
tell Emacs to open a buffer with the PVS file that contains the proven theorem.
In Math∫pad, that PVS file is generated by a step in a proof and of no interest
to the user, so Math∫pad will highlight the step that generated the PVS file.

The library adds the functions pvs check hint (to check the selected hint),
pvs start (to start PVS) and pvs add keyword (to define a keyword like “induc-
tion” mentioned above and the related PVS strategies). These functions, together
with the already available functions, are used in the pop-up menus to extend the
interface of Math∫pad, for example to start PVS and to check a selected hint. The
library also adds the variables pvs initialized and pvs in checker, which can
be used to inspect the status of PVS, and pvs context dir, pvs hint file and
pvs lemma name, which are used to customise the generation of PVS files.

Since Math∫pad uses Unicode internally, the strings that are part of the li-
brary, such as error messages, have to be converted to Unicode before they are
used. This conversion uses a translation table to check whether the string has
been customised by the user. This leaves a library with an additional method
of customisation: by converting a string with the translation table, it can be
adjusted by the user. In the PVS module, the string “PVS HEADER” is used as
the header of the PVS file, which defines the context of the generated theorem.
By defining a translation for this string, the correct header is used.

In addition to the theory-specific keywords, there are four keywords with a
special meaning. Each of these keywords is used in a special case:
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– INITSTEP is used to initialise the PVS proof and to remove universal quan-
tifiers.

– FINISHSTEP is used to finalise the PVS proof by applying all the trivial
steps,

– EXPRESSIONSTEP is used when an expression occurs within a hint. Ex-
pressions in hints are regarded as assumptions and will result in a premise.

– STOPPVSPROOF is used when the proof fails and PVS has to leave the
proof mode.

Without these four keywords, a correct proof script can not be constructed.
Therefore, the interface definition file has to define these keywords with the
pvs add keyword function.

The dynamic library that is used to communicate with PVS is written in C
and consists of about 1000 lines of code. 35 percent is used to separate the PVS
output and to handle the lisp requests from PVS, 15 percent is used to parse
the PVS proof output and 20 percent is used to extract theorem and proof from
the selected hint.

4.4 The Definition File

The PVS dynamic library handles the communication with the PVS core system
and provides the interpreted language with a collection of high-level functions.
With these functions, the pop-up menus of Math∫pad have been extended with
PVS specific commands or submenus. The interpreted language is also used to
initialize and customize the PVS library, for example by filling the keyword list
and setting up the context. Some parts of the definition file for PVS are shown
in Fig. 7.

First, the dynamic library is included, meaning that the functions and vari-
ables from that library become available to the interpreter. It is also possible to
include other definition files, which can be used to divide the different aspects
of the interface over separate files.

After the dynamic library has been included, the function pvs reset is de-
fined, which is used to reset PVS if something goes wrong. This function could
also be part of the dynamic library, but defining it in the interface definition file
is more flexible, as it can be adjusted more easily.

Once all the functions are available, they can be linked to a pop-up menu
and the keyboard. The interface definition language has special constructions
to make this as easy as possible. A pop-up menu is defined by making a list of
menu items, each containing a description and either the function to be called
or the submenu to be opened. In the example, the menu called PVSMathSpad
gives the user access to four PVS-specific functions. The menu itself is added as
a submenu to the menu called Misc, which lists miscellaneous features.

Three functions are made available through keyboard shortcuts. After the
Meta-p prefix, the key s will start PVS, the key c will check the selected hint
and the key r will reset PVS.
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Include "libpvs.so"

Function pvs_reset()

{

if (pvs_initialized) {

send_signal(2, "PVS Session");

send_string(":reset\n", "PVS Session");

pvs_in_checker := 0;

}

}

Menu PVSMathSpad {

Options Pin;

Title "PVS Link";

"Start" : pvs_start("PVS Session");

"Check Hint" : pvs_check_hint(1);

"Reset" : pvs_reset();

"Exit" : send_string("(pvs::lisp (ILISP:ilisp-restore))

(pvs-errors (exit-pvs))\n", "PVS Session");

}

Menu Misc {

"PVS" : PVSMathSpad;

}

Keyboard Global {

‘M-p‘ ‘s‘ : pvs_start("PVS Session");

‘M-p‘ ‘c‘ : pvs_check_hint(1);

‘M-p‘ ‘r‘ : pvs_reset();

}

Translation English {

"PVS-shell" : "PVS Session";

"PVS_HEADER" : " [t: TYPE+] : THEORY

BEGIN

IMPORTING tuples[t]

n,m: VAR upfrom(1)

R,S,T,U: VAR rel

";

}

pvs_context_dir := "/home/river/pvs-test";

pvs_hint_file := "hint";

pvs_lemma_name := "hintlemma";

pvs_add_keyword("STOPPVSPROOF", "(quit)\nY\n\"nil\"\nno\n",0);

...

pvs_add_keyword("induction",

"(then* (inst?)(ground)

(try-triv-step (bidi-replace*)))\n", 1);

Fig. 7. The interface definition file
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To customise the PVS library, two translation strings are defined. As ex-
plained earlier, a translation for the string “PVS HEADER” is given to set the
context for the generated theorems. In general, this translation mechanism is
used to customise the messages from Math∫pad, as these are all in English and
perhaps not clear enough (as in ‘folder’ versus ‘directory’).

At the end, the variables are initialised and the database of keywords is filled.
At this point, the definition file is used as a script file to execute the functions
while the definition file is loaded, which is used to futher customise the library.

5 Related Work

There are already some projects to improve the interface of PVS. TAME [2] is a
layer on top of PVS for reasoning about timed automata and consists of a number
of strategies to reduce the number of steps made in a typical PVS proof to the
number of steps made in a hand-made proof. With these additional strategies,
the user of TAME will not be exposed to the low-level steps and commands
needed in PVS, thereby making the commands field specific. However, since the
PVS interface is used, there is still a gap between the notational conventions
used by PVS and those used in the documentation.

The system PAMELA [9] is designed to check partial correctness of VDM-
like specifications in the area of code generators. By providing a connection
with PVS, the system supports a larger class of specifications, using PVS to
discharge proof obligations. The connection between PAMELA and PVS is made
by extending PVS with additional commands and adding a Tcl/Tk interface
which communicates with the Emacs system. Although this approach works,
the modifications to PVS indicate that using a different theorem or a different
interface would also require such changes. Furthermore, as the existing Emacs
interfaces is still used, it does not remove the burden of using multiple interfaces
and multiple specification languages.

Merriam constructed the PVS proof command prompter [13], which extends
PVS with an additional input method for the proof commands to improve the
PVS interface and to decrease the cognitive overhead for the user. The prompter
uses a fill-in form to ask the user for the arguments that might be used for a
given command.

GrammaTech and Formal Systems Design & Development are working on
an environment for integrating formal methods tools to improve industrial ac-
ceptance of formal methods[1]. The environment will use active documents with
embedded objects, with CORBA to handle the object distribution. The use of
embedded object might cause some problems with the writability of the doc-
uments. That approach is also used by FrameMaker and Word, which are not
the best word processors for mathematically oriented documents, as they have
problems with context switches and treat mathematical expressions as images.

Simons has been working on a system to combine proofs in Isabelle [15] with
documentation [19]. The system uses the structured documentation technique
introduced by Knuth [12] to allow one file to contain both the proofs and the
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documentation and uses programs to separate those. This solves the problem
of combining several files into one document, at the expense of using different
languages in a single file, namely, LATEX for formatting the document, Isabelle
for specifying the proof and the meta language to instruct the programs. For a
user, this mix of languages might be confusing.

The ILF system [10] offers a uniform interface for several automated theo-
rem provers and it removes the burden of translating the specification files to
the languages used by these theorem provers. The ILF system does not require
any changes to the existing theorem provers and works like a server, which sends
proof obligations to the available theorem provers and handles the results. Al-
though ILF hides the specific languages and options of the theorem provers, it
does add its own specification language, based on PROLOG.

6 Conclusions

The goal we set ourselves in this project was to automatically translate mathe-
matical calculations to PVS proofs. An automatic translation is of course much
more difficult than one done by hand. Nevertheless the goal was feasible, given
that Vaccari had written his thesis with the Math∫pad system so that all the
documents needed to test the connection between PVS and Math∫pad were al-
ready available to us. The goal has been achieved except for the interpretation
of natural language linking together different calculations. There are also still
some problems hiding the PVS language from the user.

Math∫pad does not help the user to construct the PVS files which are needed to
get started. Therefore, the connection only works if there are already some PVS
files with the required definitions. These files must be constructed by someone
who is conversant with both Math∫pad and PVS. However, only a limited number
of such experts are needed; (ultimately) other users can exploit the benefits of
formal verification with the PVS system without a six-month training period.

The connection has been made without adjusting PVS in any way. That is,
the same version of PVS can be used with the Emacs interface and the Math∫pad
interface. Although the Emacs interface had to be separated from the PVS core
system, this process is not very difficult and can easily be repeated for the next
version of PVS, assuming that the internal interface does not change drastically.
The conversion from version 2.1 to version 2.2 of PVS was a matter of updating
the initialization file for the PVS core system, which can be constructed by
monitoring the communication between Emacs and the PVS core system.

In order to build a different user interface for an existing theorem prover,
the theorem prover should have a clearly separated user interface and core sys-
tem. For PVS, this structure is not directly visible, but after a closer look, the
separation is not very difficult, although the documentation is missing.

The use of loadable modules in the form of dynamic libraries is a powerful
technique and allows easy extension of a system, as is shown by applications
like Netscape, the Linux kernel, the GIMP and Photoshop. It allows modules
from different sources to combine their strength in order to improve the total
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system. If theorem provers were available as modules, the main system could
choose the best module for a given job. With some effort, it is possible to use
an existing theorem prover as a module. However, every theorem prover uses its
own input format, output format and user interface, which makes it very difficult
to combine the power of multiple theorem provers for a single project. Perhaps
the MathML or OpenMath languages will be useful in this respect.

PVS seems to be at the correct level of automation for our purpose. An au-
tomatic theorem prover could not verify whether the hints are meaningful and
would require additional testing. A low-level theorem prover would need addi-
tional information to finish the proof or high-level tactics have to be introduced.
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