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Abstract. In the last few years, several new algorithms based on graph
cuts have been developed to solve energy minimization problems in com-
puter vision. Each of these techniques constructs a graph such that the
minimum cut on the graph also minimizes the energy. Yet because these
graph constructions are complex and highly specific to a particular en-
ergy function, graph cuts have seen limited application to date. In this
paper we characterize the energy functions that can be minimized by
graph cuts. Our results are restricted to energy functions with binary
variables. However, our work generalizes many previous constructions,
and is easily applicable to vision problems that involve large numbers of
labels, such as stereo, motion, image restoration and scene reconstruc-
tion. We present three main results: a necessary condition for any energy
function that can be minimized by graph cuts; a sufficient condition for
energy functions that can be written as a sum of functions of up to three
variables at a time; and a general-purpose construction to minimize such
an energy function. Researchers who are considering the use of graph
cuts to optimize a particular energy function can use our results to de-
termine if this is possible, and then follow our construction to create the
appropriate graph.

1 Introduction and Summary of Results

Many of the problems that arise in early vision can be naturally expressed in
terms of energy minimization. The computational task of minimizing the energy
is usually quite difficult, as it generally requires minimizing a non-convex func-
tion in a space with thousands of dimensions. If the functions have a restricted
form they can be solved efficiently using dynamic programming [2]. However,
researchers typically have needed to rely on general purpose optimization tech-
niques such as simulated annealing [3,10], which is extremely slow in practice.
In the last few years, however, a new approach has been developed based

on graph cuts. The basic technique is to construct a specialized graph for the
energy function to be minimized, such that the minimum cut on the graph also
minimizes the energy (either globally or locally). The minimum cut in turn can
be computed very efficiently by max flow algorithms. These methods have been
successfully used for a wide variety of vision problems including image restoration
[7,8,12,14], stereo and motion [4,7,8,13,16,20,21], voxel occupancy [23], multi-
camera scene reconstruction [18] and medical imaging [5,6,15]. The output of
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these algorithms is generally a solution with some interesting theoretical quality
guarantee. In some cases [7,12,13,14,20] it is the global minimum, in other cases
a local minimum in a strong sense [8] that is within a known factor of the global
minimum. The experimental results produced by these algorithms are also quite
good, as documented in two recent evaluations of stereo algorithms using real
imagery with dense ground truth [22,24].
Minimizing an energy function via graph cuts, however, remains a techni-

cally difficult problem. Each paper constructs its own graph specifically for its
individual energy function, and in some of these cases (especially [8,16,18]) the
construction is fairly complex. The goal of this paper is to precisely characterize
the class of energy functions that can be minimized via graph cuts, and to give
a general-purpose graph construction that minimizes any energy function in this
class. Our results play a key role in [18], provide a significant generalization of
the energy minimization methods used in [4,5,6,8,12,15,23], and show how to
minimize an interesting new class of energy functions.
In this paper we only consider energy functions involving binary-valued vari-

ables. At first glance this restriction seems severe, since most work with graph
cuts considers energy functions that involve variables with more than two pos-
sible values. For example, the algorithms presented in [8] for stereo, motion and
image restoration use graph cuts to address the standard pixel labeling problem
that arises in early vision. In a pixel labeling problem the variables represent in-
dividual pixels, and the possible values for an individual variable represent, e.g.,
its possible displacements or intensities. However, many of the graph cut meth-
ods that handle multiple possible values actually consider a pair of labels at a
time. Even though we only address binary-valued variables, our results therefore
generalize the algorithms given in [4,5,6,8,12,15,23]. As an example, we will show
in section 4.1 how to use our results to solve the pixel-labeling problem, even
though the pixels have many possible labels. An additional argument in favor
of binary-valued variables is that any cut effectively assigns one of two possible
values to each node of the graph. So in a certain sense any energy minimization
construction based on graph cuts relies on intermediate binary variables.

1.1 Summary of Our Results

In this paper we consider two classes of energy functions. Let {x1, . . . , xn}, xi ∈
{0, 1} be a set of binary-valued variables. We define the class F2 to be functions
that can be written as a sum of functions of up to 2 variables at a time,

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj). (1)

We define the class F3 to be functions that can be written as a sum of functions
of up to 3 variables at a time,

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj) +
∑

i<j<k

Ei,j,k(xi, xj , xk). (2)
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Obviously, the class F2 is a strict subset of the class F3.
The main result in this paper is a precise characterization of the functions in

F3 that can be minimized using graph cuts, together with a graph construction
for minimizing such functions. Moreover, we give a necessary condition for all
other classes which must be met for a function to be minimized via graph cuts.
Our results also identify an interesting class of class of energy functions that

have not yet been minimized using graph cuts. All of the previous work with
graph cuts involves a neighborhood system that is defined on pairs of pixels.
In the language of Markov Random Fields [10,19], these methods consider first-
order MRF’s. The associated energy functions lie in F2. Our results allow for
the minimization of energy functions in the larger class F3, and thus for neigh-
borhood systems involve triples of pixels.

1.2 Organization

The rest of the paper is organized as follows. In section 2 we give an overview of
graph cuts. In section 3 we formalize the problem that we want to solve. Section 4
contains our main theorem for the class of functions F2 and shows how it can
be used. Section 5 contains our main theorems for other classes. Proofs of our
theorems, together with the graph constructions, are deferred to section 6, with
some additional details deferred to a technical report [17]. A summary of the
actual graph constructions os given in the appendix.

2 Overview of Graph Cuts

Suppose G = (V, E) is a directed graph with two special vertices (terminals),
namely the source s and the sink t. An s-t-cut (or just a cut as we will refer to
it later) C = S, T is a partition of vertices in V into two disjoint sets S and T ,
such that s ∈ S and t ∈ T . The cost of the cut is the cut is the sum of costs of
all edges that go from S to T :

c(S, T ) =
∑

u∈S,v∈T,(u,v)∈E
c(u, v).

The minimum s-t-cut problem is to find a cut C with the smallest cost. Due
to the theorem of Ford and Fulkerson [9] this is equivalent to computing the
maximum flow from the source to sink. There are many algorithms which solve
this problem in polynomial time with small constants [1,11].
It is convenient to denote a cut C = S, T by a labeling f mapping from the

set of the nodes V − {s, t} to {0, 1} where f(v) = 0 means that v ∈ S, and
f(v) = 1 means that v ∈ T . We will use this notation later.

3 Defining Graph Representability

Let us consider a graph G = (V, E) with terminals s and t, thus V =
{v1, . . . , vn, s, t}. Each cut on G has some cost; therefore, G represents the energy
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function mapping from all cuts on G to the set of nonnegative real numbers. Any
cut can be described by n binary variables x1, . . . , xn corresponding to nodes in
G (excluding the source and the sink): xi = 0 when vi ∈ S, and xi = 1 when
vi ∈ T . Therefore, the energy E that G represents can be viewed as a func-
tion of n binary variables: E(x1, . . . , xn) is equal to the cost of the cut defined
by the configuration x1, . . . , xn (xi ∈ {0, 1}). Note that the configuration that
minimizes E will not change if we add a constant to E.
We can efficiently minimize E by computing the minimum s-t-cut on G. This

naturally leads to the question: what is the class of energy functions E for which
we can construct a graph that represents E?
We can also generalize our construction. Above we used each node (except the

source and the sink) for encoding one binary variable. Instead we can specify a
subset V0 = {v1, . . . , vk} ⊂ V − {s, t} and introduce variables only for the nodes
in this set. Then there may be several cuts corresponding to a configuration
x1, . . . , xk. If we define the energy E(x1, . . . , xk) as the minimum among the costs
of all such cuts, then the minimum s-t-cut on G will again yield the configuration
which minimizes E.
We will summarize graph constructions that we allow in the following defi-

nition.

Definition 1. A function E of n binary variables is called graph-representable
if there exists a graph G = (V, E) with terminals s and t and a subset of nodes
V0 = {v1, . . . , vn} ⊂ V−{s, t} such that for any configuration x1, . . . , xn the value
of the energy E(x1, . . . , xn) is equal to a constant plus the cost of the minimum
s-t-cut among all cuts C = S, T in which vi ∈ S, if xi = 0, and vi ∈ T , if xi = 1
(1 ≤ i ≤ n). We say that E is exactly represented by G, V0 if this constant is
zero.

The following lemma is an obvious consequence of this definition.

Lemma 2. Suppose the energy function E is graph-representable by a graph G
and a subset V0. Then it is possible to find the exact minimum of E in polynomial
time by computing the minimum s-t-cut on G.

In this paper we will give a complete characterization of the classes F2 and
F3 in terms of graph representability, and show how to construct graphs for
minimizing graph-representable energies within these classes. Moreover, we will
give a necessary condition for all other classes which must be met for a function
to be graph-representable. Note that it would be suffice to consider only the class
F3 since F2 ⊂ F3. However, the condition for F2 is simpler so we will consider
it separately.

4 The Class F2

Our main result for the class F2 is the following theorem.
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Theorem 3. Let E be a function of n binary variables from the class F2, i.e.
it can be written as the sum

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj).

Then E is graph-representable if and only if each term Ei,j satisfies the inequality

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0).

4.1 Example: Pixel-Labeling via Expansion Moves

In this section we show how to apply this theorem to solve the pixel-labeling
problem. In this problem, are given the set of pixels P and the set of labels L.
The goal is to find a labeling l (i.e. a mapping from the set of pixels to the set
of labels) which minimizes the energy

E(l) =
∑
p∈P

Dp(lp) +
∑

p,q∈N
Vp,q(lp, lq)

where N ⊂ P ×P is a neighborhood system on pixels. Without loss of generality
we can assume that N contains only ordered pairs p, q for which p < q (since
we can combine two terms Vp,q and Vq,p into one term). We will show how our
method can be used to derive the expansion move algorithm developed in [8].
This problem is shown in [8] to be NP-hard if |L| > 2. [8] gives an approxima-

tion algorithm for minimizing this energy. A single step of this algorithm is an
operation called an α-expansion. Suppose that we have some current configura-
tion l0, and we are considering a label α ∈ L. During the α-expansion operation
a pixel p is allowed either to keep its old label l0p or to switch to a new label α:
lp = l0p or lp = α. The key step in the approximation algorithm presented in [8]
is to find the optimal expansion operation, i.e. the one that leads to the largest
reduction in the energy E. This step is repeated until there is no choice of α
where the optimal expansion operation reduces the energy.
[8] constructs a graph which contains nodes corresponding to pixels in P.

The following encoding is used: if f(p) = 0 (i.e., the node p is in the source set)
then lp = l0p; if f(p) = 1 (i.e., the node p is in the sink set) then lp = α.
Note that the key technical step in this algorithm can be naturally expressed

as minimizing an energy function involving binary variables. The binary variables
correspond to pixels, and the energy we wish to minimize can be written formally
as

E(xp1 , . . . , xpn) =
∑
p∈P

Dp(lp(xp)) +
∑

p,q∈N
Vp,q(lp(xp), lq(xq)), (3)

where

∀p ∈ P lp(xp) =
{
l0p, xp = 0
α, xp = 1.
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We can demonstrate the power of our results by deriving an important re-
striction on this algorithm. In order for the graph cut construction of [8] to
work, the function Vp,q is required to be a metric. In their paper, it is not clear
whether this is an accidental property of the construction (i.e., they leave open
the possibility that a more clever graph cut construction may overcome this
restriction).
Using our results, we can easily show this is not the case. Specifically, by

theorem 1, the energy function given in equation 3 is graph-representable if and
only if each term Vp,q satisfies the inequality

Vp,q(lp(0), lq(0)) + Vp,q(lp(1), lq(1)) ≤ Vp,q(lp(0), lq(1)) + Vp,q(lp(1), lq(0))

or
Vp,q(β, γ) + Vp,q(α, α) ≤ Vp,q(β, α) + Vp,q(α, γ)

where β = l0p, γ = l
0
q . If Vp,q(α, α) = 0, then this is the triangle inequality:

Vp,q(β, γ) ≤ Vp,q(β, α) + Vp,q(α, γ)

This is exactly the constraint on Vp,q that was given in [8].

5 More General Classes of Energy Functions

We begin with several definitions. Suppose we have a function E of n binary
variables. If we fix m of these variables then we get a new function E′ of n−m
binary variables; we will call this function a projection of E. The notation for
projections is as follows.

Definition 4. Let E(x1, . . . , xn) be a function of n binary variables, and let I, J
be a disjoint partition of the set of indices {1, . . . , n}: I = {i(1), . . . , i(m)}, J =
{j(1), . . . , j(n−m)}. Let αi(1), . . . , αi(m) be some binary constants. A projection
E′ = E[xi(1) = αi(1), . . . , xi(m) = αi(m)] is a function of n−m variables defined
by

E′(xj(1), . . . , xj(n−m)) = E(x1, . . . , xn),

where xi = αi for i ∈ I. We say that we fix variables xi(1), . . ., xi(m).

Now we give a definition of regular functions.

Definition 5.

• All functions of one variable are regular.
• A function E of two variables is called regular if E(0, 0)+E(1, 1) ≤ E(0, 1)+
E(1, 0).

• A function E of more than two variables is called regular if all projections
of E of two variables are regular.

Now we are ready to formulate our main theorem for F3.
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Theorem 6. Let E be a function of n binary variables from F3, i.e. it can be
written as the sum

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj) +
∑

i<j<k

Ei,j,k(xi, xj , xk).

Then E is graph-representable if and only if E is regular.

Finally, we give a necessary condition for all other classes.

Theorem 7. Let E be a function of binary variables. If E is not regular then
E is not graph-representable.

6 Proofs

6.1 Basic Lemmas

Definition 8. The functional π will be a mapping from the set of all functions
(of binary variables) to the set of real numbers which is defined as follows. For
a function E(x1, . . . , xn)

π(E) =
∑

x1∈{0,1},...,xn∈{0,1}
(Πn

i=1(−1)xi)E(x1, . . . , xn).

For example, for a function E of two variables π(E) = E(0, 0) − E(0, 1) −
E(1, 0) + E(1, 1). Note that a function E of two variables is regular if and only
if π(E) ≤ 0.
It is trivial to check the following properties of π.

Lemma 9.

• π is linear, i.e. for a scalar c and two functions E′, E′′ of n variables π(E′+
E′′) = π(E′) + π(E′′) and π(c · E′) = c · π(E′).

• If E is a function of n variables that does not depend on at least one of the
variables then π(E) = 0.

The next two lemmas provide “building blocks” for constructing graphs for
complex functions.

Lemma 10. Let I = {1, . . . , n}, I ′ = {i′(1), . . . , i′(n′)} ⊂ I,
I ′′ = {i′′(1), . . . , i′′(n′′)} ⊂ I be sets of indices. If the functions
E′(xi′(1), . . . , xi′(n′)) and E′′(xi′′(1), . . . , xi′′(n′′)) are graph-representable, then so
is the function

E(x1, . . . , xn) = E′(xi′(1), . . . , xi′(n′)) + E′′(xi′′(1), . . . , xi′′(n′′)).
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Proof. Let us assume for simplicity of notation that E′ and E′′ are functions
of all n variables: E′ = E′(x1, . . . , xn), E′′ = E′′(α1, . . . , αn). By the definition
of graph respresentability, there exist constants K ′, K ′′, graphs G′ = (V ′, E ′),
G′′ = (V ′′, E ′′) and the set V0 = {v1, . . . , vn}, V0 ⊂ V ′ − {s, t}, V0 ⊂ V ′′ − {s, t}
such that E′ + K ′ is exactly represented by G′, V0 and E′′ + K ′′ is exactly
represented by G′′, V0. We can assume that the only common nodes of G′ and
G′′ are V0 ∪ {s, t}. Let us construct the graph G = (V, E) as the combined graph
of G′ and G′′: V = V ′ ∪ V ′′, E = E ′ ∪ E ′′.
It is rather straightforward to show that G, V0 exactly represent E+(K ′+K ′′)

(and, therefore, E is graph-representable). Due to space limitations, the proof is
omitted but is contained in a technical report [17].

��

Lemma 11. Suppose E and E′ are two functions of n variables such that

∀x1, . . . , xn E′(x1, . . . , xn) =
{
E(x1, . . . , xn), xk = 0
E(x1, . . . , xn) + C, xk = 1,

for some constants k and C (1 ≤ k ≤ n). Then

• E′ if graph-representable if and only if E is graph-representable;
• E′ is regular if and only if E is regular.

Proof. Let us introduce the following function EC :

∀x1, . . . , xn EC(x1, . . . , xn) =
{
0, xk = 0
C, xk = 1.

We need to show that EC is graph-representable for any C then the first part
of the lemma will follow from the lemma 3 since E′ ≡ E+EC and E ≡ E′+E−C .
It is easy to construct a graph which represents EC . The set of nodes in this

graph will be {v1, . . . , vn, s, t} and the set of edges will include the only edge
(s, vk) with the capacity C (if C ≥ 0) or the edge (vk, t) with the capacity −C
(if C < 0). It is trivial to check that this graph exactly represents EC (in the
former case) or EC + C (in the latter case).
Now let us assume that one of the functions E and E′ is regular, for example,

E. Consider a projection of E′ of two variables:

E′[xi(1) = αi(1), . . . , xi(m) = αi(m)],

where m = n − 2 and {i(1), . . . , i(m)} ⊂ {1, . . . , n}. We need to show that this
function is regular, i.e. that the functional π of this function is nonpositive. Due
to the linearity of π we can write

π(E′[xi(1) = αi(1), . . . , xi(m) = αi(m)]) =

= π(E[xi(1) = αi(1), . . . , xi(m) = αi(m)]) +

+ π(EC [xi(1) = αi(1), . . . , xi(m) = αi(m)]).

The first term is nonpositive by assumption, and the second term is 0 by lemma 2.
��
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6.2 Proof of Theorems 1 and 2: The Constructive Part

In this section we will give the constructive part of the proof: given a regular
energy function from class F3 we will show how to construct a graph which
represents it. We will do it in three steps. First we will consider regular functions
of two variables, then regular functions of three variables and finally regular
functions of the form as in the theorem 2.
This will also prove the constructive part of the theorem 1. Indeed, suppose

a function is from the class F2 and each term in the sum satisfies the condition
given in the theorem 1 (i.e. regular). Then each term is graph-representable (as
we will show in this section) and, hence, the function is graph-representable as
well according to the lemma 3.
The other direction of theorems 1 and 2 as well as the theorem 3 will be

proven in the section 6.3.

Functions of two variables. Let E(x1, x2) be a function of two variables
represented by a table

E =
E(0, 0) E(0, 1)
E(1, 0) E(1, 1)

Lemma 4 tells us that we can add a constant to any column or row with-
out affecting theorem 2. Thus, without loss of generality we can consider only
functions E of the form

E =
0 A
0 0

(we subtracted a constant from the first row to make the upper left element
zero, then we subtracted a constant from the second row to make the bottom
left element zero, and finally we subtracted a constant from the second column
to make the bottom right element zero).
π(E) = −A ≤ 0 since we assumed that E is regular; hence, A is non-negative.

Now we can easily construct a graph G which represents this function. It will
have four vertices V = {v1, v2, s, t} and one edge E = {(v1, v2)} with the cost
c(v1, v2) = A. It is easy to see that G, V0 = {v1, v2} represent E since the only
case when the edge (v1, v2) is cut (yielding a cost A) is when v1 ∈ S, v2 ∈ T , i.e.
when x1 = 0, x2 = 1.
Note that we did not introduce any additional nodes for representing bi-

nary interactions of binary variables. This is in contrast to the construction in
[8] which added auxiliary nodes for representing energies that we just consid-
ered. Our construction yields a smaller graph and, thus, the minimum cut can
potentially be computed faster.

Functions of three variables. Now let us consider a regular function E of
three variables. Let us represent it as a table
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E =

E(0, 0, 0) E(0, 0, 1)
E(0, 1, 0) E(0, 1, 1)
E(1, 0, 0) E(1, 0, 1)
E(1, 1, 0) E(1, 1, 1)

Two cases are possible:
Case 1. π(E) ≥ 0. We can apply transformations described in lemma 4 and

get the following function:

E =

0 0
0 A1

0 A2

A3 A0

It is easy to check that these transformations preserve the functional π.
Hence, A = A0 − (A1 + A2 + A3) = −π(E) ≤ 0. By applying the regular-
ity constraint to the projections E[x1 = 0], E[x2 = 0], E[x3 = 0] we also get
A1 ≤ 0, A2 ≤ 0, A3 ≤ 0.
We can represent E as the sum of functions

E =

0 0
0 A1

0 0
0 A1

+

0 0
0 0
0 A2

0 A2

+

0 0
0 0
0 0
A3 A3

+

0 0
0 0
0 0
0 A

We need to show that all terms here are graph-representable, then lemma 3
will imply that E is graph-representable as well.
The first three terms are regular functions depending only on two variables

and thus are graph-representable as was shown in the previous section. Let us
consider the last term.
The graph G that represents this term can be constructed as follows. The set

of nodes will contain one auxilary node u: V = {v1, v2, v3, u, s, t}. The set of edges
will consist of directed edges E = {(v1, u), (v2, u), (v3, u), (u, t)} with capacities
A′ = −A. It is easy to check that G, V0 = {v1, v2, v3} exactly represent the
function E′(x1, x2, x3) = E(x1, x2, x3) +A′; the proof is contained in [17].
Case 2. π(E) < 0. This case is similar to the case 1. We can transform the

energy to

E =

A0 A3

A2 0
A1 0
0 0

=

A1 0
0 0
A1 0
0 0

+

A2 0
A2 0
0 0
0 0

+

A3 A3

0 0
0 0
0 0

+

A 0
0 0
0 0
0 0

where A = A0 −(A1+A2+A3) = π(E) < 0 and A1 ≤ 0, A2 ≤ 0, A3 ≤ 0 since E
is regular. The first three terms are regular functions of two variables and the last
term can be represented by the graph G = (V, E) where V = {v1, v2, v3, u, s, t}
and E = {(u, v1), (u, v2), (u, v3), (s, u)}; capacities of all edges are −A.
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Functions of many variables. Finally let us consider a regular function E
which can be written as

E(x1, . . . , xn) =
∑

i<j<k

Ei,j,k(xi, xj , xk),

where i, j, k are indices from the set {1, . . . , n} (we omitted terms involving
functions of one and two variables since they can be viewed as functions of three
variables).
Although E is regular, each term in the sum need not necessarily be regular.

However we can “regroup” terms in the sum so that each term will be regular
(and, thus, graph-representable). This can be done using the following lemma
and a trivial induction argument.

Definition 12. Let Ei,j,k be a function of three variables. The functional
N(Ei,j,k) is defined as the number of projections of two variables of Ei,j,k with
the positive value of the functional π.

Note that N(Ei,j,k) = 0 exactly when Ei,j,k is regular.

Lemma 13. Suppose the function E of n variables can be written as

E(x1, . . . , xn) =
∑

i<j<k

Ei,j,k(xi, xj , xk),

where some of the terms are not regular. Then it can be written as

E(x1, . . . , xn) =
∑

i<j<k

Ẽi,j,k(xi, xj , xk),

where ∑
i<j<k

N(Ẽi,j,k) <
∑

i<j<k

N(Ei,j,k).

Proof. For the simplicity of notation let us assume that the term E1,2,3 is not
regular and π(E1,2,3[x3 = 0]) > 0 or π(E1,2,3[x3 = 1]) > 0 (we can ensure this
by renaming indices). Let

Ck = max
αk∈{0,1}

π(E1,2,k[xk = αk]) k ∈ {4, . . . , n}

C3 = −
n∑

k=4

Ck

Now we will modify the terms E1,2,3, . . ., E1,2,n as follows:

Ẽ1,2,k ≡ E1,2,k −R[Ck] k ∈ {3, . . . , n}
where R[C] is the function of two variables x1 and x2 defined by the table

R[C] =
0 0
0 C
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(other terms are unchanged: Ẽi,j,k ≡ Ei,j,k, (i, j) �= (1, 2)). We have
E(x1, . . . , xn) =

∑
i<j<k

Ẽi,j,k(xi, xj , xk)

since
∑n

k=3 Ck = 0 and
∑n

k=3R[Ck] ≡ 0.
If we consider R[C] as a function of n variables and take a projection of

two variables where the two variables that are not fixed are xi and xj (i < j),
then the functional π will be C, if (i, j) = (1, 2), and 0 otherwise since in the
latter case a projection actually depends on at most one variable. Hence, the
only projections of two variables that could have changed their value of the
functional π are Ẽ1,2,k[x3 = α3, . . . , xn = αn], k ∈ {3, . . . , n}, if we treat Ẽ1,2,k

as functions of n variables, or Ẽ1,2,k[xk = αk], if we treat Ẽ1,2,k as functions of
three variables.
First let us consider terms with k ∈ {4, . . . , n}. We have π(E1,2,k[xk = αk]) ≤

Ck, thus

π(Ẽ1,2,k[xk = αk]) = π(E1,2,k[xk = αk])− π(R[Ck][xk = αk]) ≤ Ck − Ck = 0

Therefore we did not introduce any nonregular projections for these terms.
Now let us consider the term π(Ẽ1,2,3[x3 = α3]). We can write

π(Ẽ1,2,3[x3 = α3]) = π(E1,2,3[x3 = α3])− π(R[C3][x3 = α3]) =

= π(E1,2,3[x3 = α3])− (−
n∑

k=4

Ck) =
n∑

k=3

π(E1,2,k[xk = αk])

where αk = argmaxα∈{0,1} π(E1,2,k[xk = α]), k ∈ {4, . . . , n}. The last expression
is just π(E[x3 = α3, . . . , xn = αn]) and is nonpositive since E is regular by
assumption. Hence, values π(Ẽ1,2,3[x3 = 0]) and π(Ẽ1,2,3[x3 = 1]) are both
nonpositive and, therefore, the number of nonregular projections has decreased.

��

6.3 Proof of Theorem 3

In this section we will prove a necessary condition for graph representability: if a
function of binary variables is graph-representable then it is regular. It will also
imply the corresponding directions of the theorems 1 and 2. Note that theorem 1
needs a little bit of reasoning, as follows. Let us consider a graph-representable
function E from the class F2:

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj)

E is regular as we will prove in this section. It means that the functional π of
any projection of E of two variables is nonpositive. Let us consider a projection
where the two variables that are not fixed are xi and xj . By lemma 2 the value
of the functional π of this projection is equal to π(Ei,j) (all other terms yield
zero). Hence, all terms Ei,j are regular, i.e. they satisfy the condition in the
theorem 1.
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Definition 14. Let G = (V, E) be a graph, v1, . . . , vk be a subset of nodes V and
α1, . . . , αk be binary constants whose values are from {0, 1}. We will define the
graph G[x1 = α1, . . . , xk = αk] as follows. Its nodes will be the same as in G
and its edges will be all edges of G plus additional edges corresponding to nodes
v1, . . . , vk: for a node vi, we add the edge (s, vi), if αi = 0, or (vi, t), if αi = 1,
with an infinite capacity.

It should be obvious that these edges enforce constraints f(v1) = α1, . . .,
f(vk) = αk in the minimum cut on G[x1 = α1, . . . , xk = αk], i.e. if αi = 0 then
vi ∈ S, and if αi = 1 then vi ∈ T . (If, for example, αi = 0 and vi ∈ T then the
edge (s, vi) must be cut yielding an infinite cost, so it would not the minimum
cut.)
Now we can give a definition of graph representability which is equivalent to

the definition 1. This new definition will be more convenient for the proof.

Definition 15. We say that the function E of n binary variables is exactly
represented by the graph G = (V, E) and the set V0 ⊂ V if for any configura-
tion α1, . . . , αn the cost of the minimum cut on G[x1 = α1, . . . , xk = αk] is
E(α1, . . . , αn).

Lemma 16. Any projection of a graph-representable function is graph-
representable.

Proof. Let E be a graph-representable function of n variables, and the graph G =
(V, E) and the set V0 represents E. Suppose that we fix variables xi(1), . . . , xi(m).
It is straightforward to check that the graph G[xi(1) = αi(1), . . . , xi(m) = αi(m)]
and the set V ′

0 = V0 − {vi(1), . . . , vi(m)} represent the function E′ = E[xi(1) =
αi(1), . . . , xi(m) = αi(m)]. ��
This lemma implies that it suffices to prove theorem 3 only for energies of

two variables.
Let E(x1, x2) be a graph-representable function of two variables. Let us rep-

resent this function as a table:

E =
E(0, 0) E(0, 1)
E(1, 0) E(1, 1)

Lemma 4 tells us that we can add a constant to any column or row with-
out affecting theorem 3. Thus, without loss of generality we can consider only
functions E of the form

E =
0 0
0 A

(we subtracted a constant from the first row to make the upper left element
zero, then we subtracted a constant from the second row to make the bottom
left element zero, and finally we subtracted a constant from the second column
to make the upper right element zero).
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We need to show that E is regular, i.e. that π(E) = A ≤ 0. Suppose this is
not true: A > 0.
Suppose the graph G and the set V0 = {v1, v2} represent E. It means that

there is a constant K such that G, V0 exactly represent E′(x1, x2) = E(x1, x2)+
K:

E′ =
K K
K K +A

The cost of the minimum s-t-cut on G is K (since this cost is just the mini-
mum entry in the table for E′); hence, K ≥ 0. Thus the value of the maximum
flow from s to t in G is K. Let G0 be the residual graph obtained from G after
pushing the flowK. Let E0(x1, x2) be the function exactly represented by G0,V0.
By the definition of graph representability, E′(α1, α2) is equal to the value

of the minimum cut (or maximum flow) on the graph G[x1 = α1, x2 = α2]. The
following sequence of operations shows one possible way to push the maximum
flow through this graph.

• First we take the original graph G and push the flow K; then we get the
residual graph G0. (It is equivalent to pushing flow through G[x1 = α1, x2 =
α2] where we do not use edges corresponding to constraints x1 = α1 and
x2 = α2).

• Then we add edges corresponding to these constraints; then we get the graph
G0[x1 = α1, x2 = α2].

• Finally we push the maximum flow possible through the graph G0[x1 =
α1, x2 = α2]; the amount of this flow is E0(α1, α2) according to the definition
of graph representability.

The total amount of flow pushed during all steps is K + E0(α1, α2); thus,

E′(α1, α2) = K + E0(α1, α2)

or
E(α1, α2) = E0(α1, α2)

We proved that E is exactly represented by G0, V0.
The value of the minimum cut/maximum flow on G0 is 0 (it is the minimum

entry in the table for E); thus, there is no augmenting path from s to t in G0.
However, if we add edges (v1, t) and (v2, t) then there will be an augmenting
path from s to t in G0[x1 = α1, x2 = α2] since E(1, 1) = A > 0. Hence, this
augmenting path will contain at least one of these edges and, therefore, either
v1 or v2 will be in the path. Let P be the part of this path going from the source
until v1 or v2 is first encountered. Without loss of generality we can assume that
it will be v1. Thus, P is an augmenting path from s to v1 which does not contain
edges that we added, namely (v1, t) and (v2, t).
Finally let us consider the graph G0[x1 = 1, x2 = 0] which is obtained from

G0 by adding edges (v1, t) and (s, v2) with infinite capacities. There is an aug-
menting path {P, (v1, t)} from the source to the sink in this graph; hence, the
minimum cut/maximum flow on it greater than zero, or E(1, 0) > 0. We get a
contradiction.
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Appendix: Summary of Graph Constructions

We now summarize the graph constructions used for regular functions. The no-
tation D(v, c) means that we add an edge (s, v) with the weight c if c > 0, or an
edge (v, t) with the weight −c if c < 0.

Regular Functions of One Binary Variable

Recall that all functions of one variable are regular. For a function E(x1), we
construct a graph G with three vertices V = {v1, s, t}. There is a single edge
D(v1, E(1)− E(0)).

Regular Functions of Two Binary Variables

We now show how to construct a graph G for a regular function E(x1, x2) of two
variables. It will contain four vertices: V = {v1, v2, s, t}. The edges E are given
below.

• D(v1, E(1, 0)− E(0, 0));
• D(v2, E(1, 1)− E(1, 0));
• (v1, v2) with the weight −π(E).

Regular Functions of Three Binary Variables

We next show how to construct a graph G for a regular function E(x1, x2, x3) of
three variables. It will contain five vertices: V = {v1, v2, v3, u, s, t}. If π(E) ≥ 0
then the edges are

• D(v1, E(1, 0, 1)− E(0, 0, 1));
• D(v2, E(1, 1, 0)− E(1, 0, 0));
• D(v3, E(0, 1, 1)− E(0, 1, 0));
• (v2, v3) with the weight −π(E[x1 = 0]);
• (v3, v1) with the weight −π(E[x2 = 0]);
• (v1, v2) with the weight −π(E[x3 = 0]);
• (v1, u), (v2, u), (v3, u), (u, t) with the weight π(E).
If π(E) < 0 then the edges are

• D(v1, E(1, 1, 0)− E(0, 1, 0));
• D(v2, E(0, 1, 1)− E(0, 0, 1));
• D(v3, E(1, 0, 1)− E(1, 0, 0));
• (v3, v2) with the weight −π(E[x1 = 1]);
• (v1, v3) with the weight −π(E[x2 = 1]);
• (v2, v1) with the weight −π(E[x3 = 1]);
• (u, v1), (u, v2), (u, v3), (s, u) with the weight −π(E).
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