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Abstract. We report here on the problem of estimating a smooth pla-
nar curvea γ : [0, T ] → IR2 and its derivatives from an ordered sample of
interpolation points {γ(t0), γ(t1), . . . , γ(ti−1), γ(ti), . . . , γ(tm−1), γ(tm)},
where 0 = t0 < t1 < . . . < ti−1 < ti < . . . < tm−1 < tm = T, and
the ti are not known precisely for 0 < i < m. Such situtation may ap-
pear while searching for the boundaries of planar objects or tracking the
mass center of a rigid body with no times available. In this paper we
assume that the distribution of ti coincides with more-or-less uniform
sampling. A fast algorithm, yielding quartic convergence rate based on
4-point piecewise-quadratic interpolation is analysed and tested. Our al-
gorithm forms a substantial improvement (with respect to the speed of
convergence) of piecewise 3-point quadratic Lagrange intepolation [19]
and [20]. Some related work can be found in [7]. Our results may be of
interest in computer vision and digital image processing [5], [8], [13], [14],
[17] or [24], computer graphics [1], [4], [9], [10], [21] or [23], approxima-
tion and complexity theory [3], [6], [16], [22], [26] or [27], and digital and
computational geometry [2] and [15].
Keywords: shape, image analysis and features, curve interpolation

1 Introduction

Let γ : [0, T ] → IRn be a smooth regular curve, namely γ is Ck for some k ≥ 1
and γ̇(t) �= 0 for all t ∈ [0, T ] (with 0 < T < ∞). Consider the problem of
estimating γ from an ordered m+ 1-tuple

Q = (q0, q1, . . . , qm)
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of points in IRn, where qi = γ(ti), and 0 = t0 < t1 < . . . < ti−1 < ti < . . . <
tm−1 < tm = T . If the ti are given then γ can be approximated in a variety of
ways.

Example 1. Let γ be Cr+2 where r > 0, and take m to be a multiple of r. Then
Q gives m

r subsets of r + 1-tuples of the form

(q0, q1, . . . , qr) , (qr, qr+1, . . . , q2r) , . . . , (qm−r, qm−r+1, . . . , qm) .

The jth r+ 1-tuple can be interpolated by a polynomial γ̂j : [t(j−1)r, tjr] → IRn

of degree r, and the track-sum γ̂ of the γ̂j is everywhere-continuous, and C∞

except at tr, t2r, . . . , tm−r. Suppose that sampling is uniform i.e. ti = iT
m for

0 ≤ i ≤ m. Then γ̂(t) = γ(t) +O( 1
mr+1 ) for t ∈ [0, T ], and ˙̂γ(t) = γ̇(t) +O( 1

mr )
for t �= tr, t2r, . . . , tm−r. The error in length can be shown to be O( 1

mr+1 ) or
O( 1

mr+2 ), accordingly as r is odd or even (see Theorem 1 in [19]).

In practice the ti might not be given for 0 < i < m.

Example 2. Let γ be C4 curve in IRn. For 0 ≤ ε ≤ 1 the ti are said to be
ε-uniformly sampled when there is an order-preserving Ck reparameterization
φ : [0, T ] → [0, T ] such that

ti = φ(
iT

m
) +O(

1
m1+ε

) .

Although the set Q does not arise from perfectly uniform sampling, we can
pretend that they do, and apply the method of Example 1. This is done in [19]
and [20] with a view to estimating the length d(γ) of γ. So far as γ and its
derivatives are concerned the proof of Theorem 2 in [19] gives estimates of γ and
γ̇ with uniform O( 1

m1+2ε ) and O( 1
m2ε ) errors, respectively. The latter implies

that d(γ̂) − d(γ) = O( 1
m4ε ) (see Theorem 2 in [19]). So when the distribution of

the ti is most nearly uniform (ε = 1) piecewise-quadratic Lagrange interpolation
gives good estimates for γ, γ̇, and d(γ), namely cubic, quadratic and quartic,
respectively. At the other extreme, where ε = 0, the methods of Example 1 have
very little value. The extension of ε-uniform sampling for ε > 1 could also be
considered. This case represents, however, a very small perturbation of uniform
sampling (up to φ-order-preserving shift) which seems to be of less interest in
applications. Nevertheless, by repeating the argument used in Theorem 2 (see
[19]) it can be shown, that the case ε > 1 renders for γ, γ̇, and d(γ) estimation
with piecewise-quadratic Lagrange interpolation the same results as for ε = 1.

A typical instance is shown in Figure 1, where ordinary Lagrange interpola-
tion by piecewise-quadratics does not work well.

In general a less restrictive hypothesis than ε-uniformity is that the ti should be
sampled more-or-less uniformly in the following sense.

Definition 1. Sampling is more-or-less uniform when there are constants 0 <
Kl < Ku such that, for any sufficiently large integer m, and any 1 ≤ i ≤ m,

Kl

m
≤ ti − ti−1 ≤ Ku

m
.
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Fig. 1. 7 data points (m = 6), with 3 successive triples interpolated by piecewise-
quadratics, giving length estimate π + 0.0601035 for the semicircle (shown dashed).

With more-or-less uniform sampling, increments between successive parameters
are neither large nor small in proportion to T

m .

Example 3. For 0 < i < m set ti = (3i+(−1)i)T
3m . Then sampling is more-or-less

uniform, with Kl = T
3 ,Ku = 5T

3 . Let γ : [0, π] → IR2 be the parameterization
γ(t) = (cos t, sin t) of the unit semicircle in the upper half-plane. When m is
small the image of γ̂ does not much resemble a semicircle, as in Figure 1, where
m = 6.

Example 4. For 0 < i < m let ti be random (according to some distribution)
in the interval [ (3i−1)T

3m , (3i+1)T
3m ]. Then sampling is more-or-less uniform, with

Ku,Kl as in Example 3.

Example 5. Choose θ > 0 and 0 < Ll < Lu. Set s0 = 0. For 1 ≤ i ≤ m
choose δi ∈ [Ll

m , Lu

m ] independently from (say) the uniform distribution. Define
si = si−1 + δi for i = 1, 2, . . . ,m. The expectation of sm is Lu+Ll

2 and the
standard deviation Lu−Ll

2
√

3m
. So if m is large sm ≈ Lu+Ll

2 with high probability.

For 0 ≤ i ≤ m, define ti = siT
sm

. Set

Kl =
2LlT

Lu + Ll
− θ , Ku =

2LuT

Lu + Ll
+ θ .

Then with high probability for m large, the sampling (t0, t1, t2, . . . , tm) from
[0, T ] is more-or-less uniform with constants Kl,Ku.
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More-or-less uniform sampling is invariant with respect to reparameterizations,
namely if φ : [0, T ] → [0, T ] is an order-preserving C1 diffeomorphism, and if
(t0, t1, . . . , tm) are sampled more-or-less uniformly, then so are (φ(t0), φ(t1), . . . ,
φ(tm)). So reparameterizations lead to further examples from the ones already
given. From now on take n = 2 and suppose that γ is C4 and (without loss)
paramerized by arc-length, namely ‖γ̇‖ is identically 1. The curvature of γ is
defined as

k(t) = det(M(t)) , (1)

where M(t) is the 2 × 2 matrix with columns γ̇(t), γ̈(t). Suppose that k(t) �= 0
for all t ∈ [0, T ], namely γ is strictly convex. Let the ti be sampled more-or-less
uniformly. Then in section 2 we show how to carry out piecewise 4-point quadratic
interpolations based on Q. This approximation scheme is rather specialised, and
much more elaborate than Lagrange interpolation. On the other hand it works
well in cases such as in Figure 1. More precisely, from the proof of [18] Theorem
1, we obtain

Theorem 1. Let γ be strictly convex and suppose that sampling is more-or-less
uniform. Then we can estimate γ and γ̇ from Q with O( 1

m4 ) and O( 1
m3 ) errors

respectively.

As a consequence of the last theorem we obtain d(γ̂) − d(γ) = O( 1
m4 ) (see

[18]). Applying piecewise 4-point quadratic interpolation to the data of Figure
1, gives a much more satisfactory estimate of the semicircle than Lagrange in-
terpolation. This can be seen in Figure 2.

Fig. 2. Piecewise 4-point quadratic using 7 data points (m = 6) from a semicircle
(shown dashed). Length estimate: π − 0.00723637.

The improvement is the result of a serious effort to estimate the parameters
ti from Q. Although in practice it is difficult to discern a problem, our piecewise
4-point quadratic estimates γ̃ are usually not C1. In theory, at least, this is a
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serious defect since γ is C4. In section 3 we show how to refine the construction in
section 2, replacing γ̃ by a C1 curve with the same properties of approximation
to γ.

2 Piecewise 4-Point Quadratics

Let Q be sampled more-or-less uniformly from γ, and suppose (without loss)
that m is a positive integer multiple of 3. For each quadruple (qi, qi+1, qi+2, qi+3),
where 0 ≤ i ≤ m − 3, define a0, a1, a2 ∈ IR2 and Qi(s) = a0 + a1s+ a2s

2, by

Qi(0) = qi , Qi(1) = qi+1 , Qi(α) = qi+2 and Qi(β) = qi+3 .

Then a0 = qi, a2 = qi+1 − a0 − a1, and we obtain two vector equations

αa1 + α2(p1 − a1) = pα , βa1 + β2(p1 − a1) = pβ , (2)

where (p1, pα, pβ) ≡ (qi+1 − qi, qi+2 − qi, qi+3 − qi). Then (2) amounts to four
quadratic scalar equations in four scalar unknowns a1 = (a11, a12), α, β. Set

c = −det(pα, pβ) , d = −det(pβ , p1)/c , e = −det(pα, p1)/c , (3)

where c, d, e �= 0 by strict convexity, and define

ρ1 =
√

e(1 + d − e)/d , ρ2 =
√

d(1 + d − e)/e . (4)

Then (2) has two solutions (see Appendix 1)

(α+, β+) =
(1 + ρ1, 1 + ρ2)

e − d
, (α−, β−) =

(1 − ρ1, 1 − ρ2)
e − d

(5)

provided ρ1, ρ2 are real and e− d �= 0. In Appendix 1 it is also shown that these
conditions hold, and in Appendix 2 it is proved that precisely one of (5) satisfies
the additional constraint

1 < α < β . (6)

From now on, supposeb that k(t) < 0, for all t ∈ [0, T ]. Define now

l(t) =
det(dγ

dt ,
d3γ
dt3 )

k(t)

and let l = l(ti). Then it is proved in [18] that

(α+, β+) =
((ti+2 − ti)(1 +

l(ti+2−ti+1)
6 ), (ti+3 − ti)(1 +

l(ti+3−ti+1)
6 ))

ti+1 − ti
+O(

1
m2 ) .

(7)
b The other case, where k(t) is everywhere positive, is dealt with by considering the
reversed curve γr(t) = (γ1(T − t), γ2(T − t)).
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Note that here a third-order Taylor’s expansion of γ is needed to justify the
asymptotic behaviour of approximation results claimed in Theorem 1. Hence
the assumption of γ ∈ C4 is imposed. On the other hand, the justification
of Appendices 1 and 2 requires only a second-order Taylor’s expansion of γ
and therefore a weaker restriction on smoothness of curve γ, namely γ ∈ C3 is
required. Set now (α, β) = (α+, β+). Then, for 0 ≤ s ≤ β, Qi(s) = qi+a1s+a2s

2,
where

a1 =
pα − α2p1

α − α2 =
pβ − β2p1

β − β2 , a2 =
αp1 − pα

α − α2 =
βp1 − pβ

β − β2 . (8)

The quadratics Qi, determined by Q and i, need to be reparameterized for
comparison with the original curve γ. In doing so, let ψ : [ti, ti+3] → [0, β] be
the cubic given by

ψ(ti) = 0 , ψ(ti+1) = 1 , ψ(ti+2) = α , ψ(ti+3) = β .

For m large ψ is an order-preserving diffeomorphism, and we define γ̃i = Qi ◦ψ :
[ti, ti+3] → IR2. Then γ̃i is polynomial of degree at most 6. It turns out (as part
of a difficult proof, given in [18]) that

γ̃i(t) = γ(t) +O(
1
m4 ) and ˙̃γi(t) = γ̇(t) +O(

1
m3 ) , for t ∈ [ti, ti+3] .

Then the track-sum γ̃ of the arcs swept out by the Q3j gives a O( 1
m4 ) uni-

formly accurate approximation of the image of γ. Although γ̃ is not C1 at
t3, t6, . . . , tm−3, the differences in left and right derivatives are O( 1

m3 ), and hardly
discernible whenm is large. In section 3 we show how to correct this minor defect.

The experiments verifying the rate of length estimation are discussed in [18].

3 C1 Approximations

Instead of using 4-point quadratics as estimates of segments of γ, we can use
them to estimate slopes of γ at t0, t1, . . . , tm. Except for i = 0,m there is more
than one choice of 4-point quadratic whose domain contains ti. The choice does
not appear to be critical, but for 0 < i < m we used estimates calculated from
quadratics whose domain contained ti in the interior.

It is then straightforward to produce a C1 piecewise quadratic γ̂ interpo-
lating the given data points with the estimated slopes (for instance using the
deCastlejau construction [3]). In practice γ̂ seems slightly preferable to the al-
ready excellent estimate γ̃.

Example 6. Compared with the large discontinuities in derivatives at data points
3, 5 (from the right) in Figure 1, the tiny corner at the middle data point 4 in
Figure 2 is only just discernible. The modification to a C1 piecewise quadratic
removes this blemish. Although there are only 7 sample points, and the ti are
unknown for 0 < i < 6, the estimate γ̂ shown in Figure 4 is difficult to distinguish
from the underlying semicircle.
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Fig. 3. A piecewise 4-point quadratic approximation to a spiral (singular point ex-
cluded), using the more-or-less uniform sampling of Example 3 and 61 data points
(m = 60). True length: 173.608, estimate: 173.539, piecewise 3-point quadratic esti-
mate: 181.311.
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Fig. 4. C1 piecewise-quadratic using 7 data points (m = 6) from a semicircle (shown
dashed).
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4 Concluding Remarks

Lagrange interpolation is reasonably effective for sporadic data when the ti are
distributed in an ε-uniform fashion and ε ∈ (0, 1]. Better results are achieved
with larger values of ε (see [19] and [20]). In general, the less restrictive condition,
that the ti be distributed more-or-less uniformly, is less straightforward, but (for
strictly convex planar curves) the piecewise 4-point quadratic estimate of section
2 works well. The estimate γ̃ of section 2 is piecewise-polynomial, but not C1.
In section 3 we showed how to replace γ̃ by a piecewise-quadratic C1 curve γ̂.

There is also some analogous work for estimating lengths of digitized curves;
indeed the analysis of digitized curves in IR2 is one of the most intensively studied
subjects in image data analysis. A digitized curve is the result of a process (such
as contour tracing, 2D skeleton extraction, or 2D thinning) which maps a curve-
like object (such as the boundary of a region) onto a computer-representable
curve. As before, γ : [0, T ] → IR2 is a strictly convex curve parameterized by arc-
length. An analytical description of γ is not given, and numerical measurements
of points on γ are corrupted by a process of digitization: γ is digitized within an
orthogonal grid of points ( i

m , j
m ), where i, j are permitted to range over integer

values, and m is a fixed positive integer called the grid resolution. Depending on
the digitization model [11], γ is mapped onto a digital curve and approximated
by a polygon whose length is an estimator for that of γ (see [2], [5], [8], [12], [13],
[14] or [24]). We expect to revisit these issues in future.

Related work on interpolation, length estimation, noisy signal reconstruction
and complexity involved can be found in [1], [4], [6], [7], [9], [10], [16], [17], [21],
[22], [23], [25], [26] or [27].
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ley. J., Shirai, Y. (eds): Proceedings of 15th International Conference on Pattern
Recognition. Barcelona, Spain. IEEE, Vol. III. (2000) 551-555

6. Davis, P.J.: Interpolation and Approximation. Dover Pub. Inc., New York (1975)
7. Da̧browska, D., Kowalski, M.A.: Approximating Band- and Energy-Limited Signals
in the Presence of Noise. J. Complexity 14 (1998) 557–570

8. Dorst, L., Smeulders, A.W.M.: Discrete Straight Line Segments: Parameters, Prim-
itives and Properties. In: Melter, R., Bhattacharya, P., Rosenfeld, A. (eds): Ser.
Contemp. Maths, Vol. 119. Amer. Math. Soc. (1991) 45–62



Interpolating Sporadic Data 621

9. Epstein, M.P.: On the Influence of Parametrization in Parametric Interpolation.
SIAM. J. Numer. Anal. 13:2 (1976) 261–268

10. Hoschek, J.: Intrinsic Parametrization for Approximation. Comput. Aid. Geom.
Des. 5 (1988) 27–31

11. Klette, R.: Approximation and Representation of 3D Objects. In: Klette, R., Rosen-
feld, A., Sloboda, F. (eds): Advances in Digital and Computational Geometry.
Springer, Singapore (1998) 161–194
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5 Appendix 1

In this Appendix we solve (2). Note that α (and β) cannot vanish as otherwise,
by (2), the vector pα = q2 − q0 = 0 (pβ = q3 − q0 = 0) - a contradiction as
interpolation points Q are assumed to be different. Similarly, as q2 �= q1 and
q3 �= q1 we have α �= 1 and β �= 1. Thus elimination of a1 from (2) and further
simplification yields

αβ(α − β)p1 = (β − β2)pα − (α − α2)pβ . (9)

Consider now two vectors p⊥
β = (−pβ2, pβ1) and p⊥

α = (−pα2, pα1), which are
perpendicular to pβ and pα, respectively. Taking the dot product of (9) first
with p⊥

β and then with p⊥
α results in

αβ(α − β) < p1|p⊥
β > = (β − β2) < pα|p⊥

β > ,

αβ(α − β) < p1|p⊥
α > = −(α − α2) < pβ |p⊥

α > .

Since α and β cannot vanish and < pα|p⊥
β >�= 0 and < pβ |p⊥

α >�= 0 hold
asymptotically (as γ is strictly convex) we obtain

α(α − β) < p1|p⊥
β >

< pα|p⊥
β >

= (1 − β) ,
β(α − β) < p1|p⊥

α >

< pβ |p⊥
α >

= α − 1 . (10)

Note that by (3) and convexity of γ, c �= 0 asymptotically. A simple verification
shows:

c = − < pβ |p⊥
α >=< pα|p⊥

β > . (11)

Similarly

d =
− < p1|p⊥

β >

c
, e =

− < p1|p⊥
α >

c
.

The latter coupled with (11) yields

d =
− < p1|p⊥

β >

< pα|p⊥
β >

, e =
< p1|p⊥

α >

< pβ |p⊥
α >

which combined with (10) renders

α(α − β)d = β − 1 , β(α − β)e = α − 1 . (12)

The first equation of (12) yields

α2d+ 1 = β(1 + dα) . (13)

Note that (1 + dα) �= 0 as otherwise since α �= 0 we would have d = −α−1 and
by (13) α2d + 1 would vanish which combined with d = −α−1 would lead to
α = 1, a contradiction. Thus by (13)

β =
α2d+ 1
1 + dα

. (14)
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Substituting (14) into the second equation of (12) yields

α2d+ 1
1 + dα

(1 − α)e = α − 1

and taking into account that α �= 1 results in

(d2 − de)α2 + 2dα+ 1 − e = 0 . (15)

Assuming temporarily
∆ = 4de(1 + d − e) > 0 (16)

we arrive at (5). Having found (α±, β±) the corresponding formulae (8) follow
immediately. To show (16) recall that

d =
det(pβ , p1)
det(pα, pβ)

and e =
det(pα, p1)
det(pα, pβ)

. (17)

As det(v, w) = ‖v‖‖w‖sin(σ) (where σ is the oriented angle between v and w)
for convex γ both e < 0 and d < 0 hold. Thus to justify (16) it is enough to
show 1 + d − e > 0. In fact, as γ is strictly convex all of above inequalities are
separated from zero. The second-order Taylor’s expansion of γ at t = ti yields

γ(t) = γ(ti) + γ̇(ti)(t − ti) + (1/2)γ̈(ti)(t − ti)2 +O(
1
m3 )

as 0 < T < ∞ and γ ∈ C4 (in fact we need here only C3). Thus taking into
account that γ(ti) = qi, γ(ti+1) = qi+1, γ(ti+2) = qi+2, and γ(ti+3) = qi+3 we
have

p1 = γ̇(ti)(ti+1 − ti) + (1/2)γ̈(ti)(ti+1 − ti)2 +O(
1
m3 ) ,

pα = γ̇(ti)(ti+2 − ti) + (1/2)γ̈(ti)(ti+2 − ti)2 +O(
1
m3 ) , (18)

pβ = γ̇(ti)(ti+3 − ti) + (1/2)γ̈(ti)(ti+3 − ti)2 +O(
1
m3 ) .

Introducing γ2(t) = γ̇(ti)(t − ti) + (1/2)γ̈(ti)(t − ti)2 and coupling it with (18)
and more-or-less uniformity results in:

det(pβ , pα) = det(γ2(ti+3), γ2(ti+2)) +O(
1
m4 ) ,

det(p1, pβ) = det(γ2(ti+1), γ2(ti+3)) +O(
1
m4 ) , (19)

det(pα, p1) = det(γ2(ti+2), γ2(ti+1)) +O(
1
m4 ) .

Set now P(c, d, e) = c(1 + d − e). Thus by (3) and (17) we have

P(c, d, e) = det(pβ , pα) + det(p1, pβ) + det(pα, p1) .
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The latter combined with (1) and (19) yields

P(c, d, e) = (1/2)k(ti)(ti+1 − ti+2)(ti+1 − ti+3)(ti+2 − ti+3) +O(
1
m4 ) . (20)

Similarly, by repeating the previous analysis we obtain

c = (1/2)k(ti)(ti+3 − ti)(ti+2 − ti)(ti+2 − ti+3) +O(
1
m4 ) . (21)

Upon coupling (20) and (21) some factorization renders (note that curvature
k(t) is here bounded and separated from zero):

1 + d − e =
(ti+2 − ti+1)(ti+3 − ti+1)

(ti+3 − ti)(ti+2 − ti)
+O(

1
m
) . (22)

As sampling is more-or-less uniform (see Definition 1) the latter amounts to

0 <
K2

l

3K2
u

≤ (ti+2 − ti+1)(ti+3 − ti+1)
(ti+3 − ti)(ti+2 − ti)

+O(
1
m
) .

Hence (16) follows.

6 Appendix 2

In this Appendix we show that one of the pairs (α±, β±) satisfies (6). More
precisely, if curvature of curve γ satisfies k(t) < 0 then the pair (α+, β+) fulfills

1 < α+ < β+ . (23)

The opposite case involves the pair (α−, β−). It is sufficient (due to the analogous
argument) to justify the first case only. To prove (23) we combine more-or-less
uniformity, convexity of γ, with (3) and (18) to obtain for R(c, d) = cd which
coincides with

R(c, d) = det(γ2(ti+1), γ2(ti+3)) +O(
1
m4 )

= (1/2)k(ti)(ti+1 − ti)(ti+3 − ti)(ti+3 − ti+1) +O(
1
m4 ) .

Hence

d =
−(ti+1 − ti)(ti+3 − ti+1)
(ti+2 − ti)(ti+3 − ti+2)

+O(
1
m
) . (24)

Similarly (taking also into account (24)) we arrive at

e =
−(ti+1 − ti)(ti+2 − ti+1)
(ti+3 − ti)(ti+3 − ti+2)

+O(
1
m
) ,

e

d
=

(ti+2 − ti+1)(ti+2 − ti)
(ti+3 − ti+1)(ti+3 − ti)

+O(
1
m
) .
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Thus the latter combined with (22) yields

e

d
(1 + d − e) =

(ti+2 − ti+1)2

(ti+3 − ti)2
+O(

1
m
) ,

e − d = 1 − (ti+2 − ti+1)(ti+3 − ti+1)
(ti+3 − ti)(ti+2 − ti)

+O(
1
m
) .

(25)

Hence Taylor’s Theorem coupled with (4) and first equation from (25) renders

ρ1 =
(ti+2 − ti+1)
(ti+3 − ti)2

+O(
1
m
) .

Finally, the second equation from (25) and further factorization in (5) results in

α+ = 1 +
ti+2 − ti+1

ti+1 − ti
+O(

1
m
) . (26)

A similar analysis used to prove (26) shows that

β+ = 1 +
ti+3 − ti+1

ti+1 − ti
+O(

1
m
) . (27)

Because sampling is more-or-less uniform the formulae (26) and (27) guarantee
that 1 < α+ < β+.
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