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Abstract. The problem of recovering scene structure and camera mo-
tion from images has a number of inherent ambiguities. In this paper,
configurations of points and cameras are analyzed for which the image
points alone are insufficient to recover the scene geometry uniquely. Such
configurations are said to be critical. For two views, it is well-known that
a configuration is critical only if the two camera centres and all points
lie on a ruled quadric. However, this is only a necessary condition. We
give a complete characterization of the critical surfaces for two calibrated
cameras and any number of points. Both algebraic and geometric char-
acterizations of such surfaces are given. The existence of critical sets
for n-view projective reconstruction has recently been reported in the
literature. We show that there are critical sets for n-view Euclidean re-
construction as well. For example, it is shown that for any placement of
three calibrated cameras, there always exists a critical set consisting of
any number of points on a fourth-degree curve.

1 Introduction

Early in the twentieth century it was noticed that for two cameras and any
number of scene points all lying on a particular surface, the solution to the re-
construction problem is not unique. There are several ambiguous configurations
of cameras and scene points, which produce identical images. In the German
photogrammetry community, such surfaces were termed ‘gefährliche Örter’ [7],
which is translated as critical surfaces. In this paper, such critical configurations
are analyzed for two and more calibrated cameras.

For two views it is well-known that a configuration is critical only if all points
and the two camera centres lie on a ruled quadric, that is, a hyperboloid of one
sheet, or one of its degenerate versions [8]. In [9], it was proven that six points
and any number of cameras lying on a ruled quadric are critical. This was shown
to be the dual to the two-view case [5] in the Carlsson duality sense [2]. Recently,
the existence of critical configurations with more than two views and arbitrarily
many points has been reported. In [4], it was shown that for any three cameras,
there exists a critical fourth-degree curve containing the camera centres. The
extension to arbitrarily many views was done in [6] where it was shown that
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cameras centres and scene points lying on the intersection of two quadrics are
critical for projective reconstruction. However, critical configurations for more
than two calibrated views have previously not been investigated in the published
literature (except in the case of lines [1]).

In this paper, we focus on critical configurations for Euclidean reconstruction,
starting with the calibrated two-view case. The most complete investigation of
this is Maybank’s book [8], to which the present paper owes much. A basic result
of [8] is that a critical surface is necessarily a ruled, rectangular quadric, but the
question of sufficiency is not substantially considered there. In the present paper,
we obtain a necessary and sufficient condition for a configuration to be critical.
The key is a restriction on the possible positions of the camera centres on the
critical quadric. The condition is related to an algebraic constraint obtained by
Maybank, but formulated here in a simple geometric form. The two-view anal-
ysis is used as a basis for exploring Euclidean multiview critical configurations.
Previously unknown examples of critical configurations for more than two views
are exhibited.

2 Background

A camera is represented by a 3 × 4 matrix of rank 3, the camera matrix P.
Provided the camera centre (which is the generator of the right null-space of P)
is a finite point, the camera matrix may be decomposed as P = K[ R | t ], where R is
a rotation matrix and K is an upper-triangular matrix, the calibration matrix. If
K is known, then the camera is called calibrated. Matrix K represents a coordinate
transformation in the image, this transformation may be undone by multiplying
image coordinates by K−1. The camera matrix may therefore be assumed to be
of the form P = [ R | t ], which will be referred to as a calibrated camera.

Consider a configuration of n ≥ 2 cameras and a set of points. Denote the
camera matrices by Pi for i = 0, ..., n − 1 and the set of points with Pj . The
set {Pi,Pj} is said to be critical if there exists an inequivalent configuration of
cameras Qi and points Qj such that PiPj = QiQj for all i and j. Two configu-
rations are considered to be equivalent if the essential matrices for all pairs of
views are the same. 1 The alternative configuration {Qi,Qj} is called a conjugate
configuration. In a critical configuration it is not possible to recover the cameras
and the scene points unambiguously from the image points alone, as there are
two alternative solutions. Note that when considering critical configurations for
calibrated cameras all camera matrices Pi and Qi are required to be of the form
[R|t], which is quite a restrictive condition. Consequently critical configurations
for calibrated cameras may be expected to be a subset of uncalibrated critical
configurations.

For two calibrated cameras, the relative pose is encapsulated by the essential
matrix. We define an essential matrix to be a 3×3 matrix writable as a product of
1 This definition excludes the trivial ambiguity that arises from points lying on a
line containing all camera centres, as such points may vary along this base line. In
addition, it excludes the two-view “twisted-pair ambiguity” discussed later – such
an ambiguity being deemed in some sense trivial also.
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a rotation and a skew-symmetric matrix. Thus, E = R[t]×, where R is a rotation,
and [t]× denotes the matrix such that [t]×v = t× v for any 3-vector v.

3 Critical Sets for Euclidean Reconstruction

The basic equation for the shape of a critical set in the calibrated (Euclidean)
case is not very different from that for the uncalibrated (projective) case. Fol-
lowing the derivation in [4] one arrives at the following result.

Theorem 1. Let (P0, P1) and (Q0, Q1) be two pairs of calibrated cameras, and
let EP and EQ be the corresponding essential matrices for the two camera pairs.
The surfaces SP and SQ defined by

SP = P0�EQP1 + P1�EQ�P0 and SQ = Q0�EPQ1 + Q1�EP�Q0 (1)

are ruled quadric surfaces2, which are critical for reconstruction. In particular:

1. If P is a point on SP, then there exists a point Q on SQ such that PiP = QiQ
for i = 0, 1.

2. Conversely, if P and Q are points such that such that PiP = QiQ for i = 0, 1,
then P lies on SP and Q lies on SQ.

This leads us to the following definition.

Definition 1. A triple (S, P0, P1) where S is a symmetric 4×4 matrix represent-
ing a quadric, and P0 and P1 are calibrated camera matrices representing cameras
with centres lying on the quadric S is called critical for Euclidean reconstruction
if there exists an essential matrix E such that

S = P0�EP1 + P1�E�P0. (2)

The twisted-pair ambiguity. In Definition 1, matrix E is the essential matrix
for a conjugate camera pair (Q0, Q1). Note however that (unlike in the projective
case), the essential matrix E does not determine the two camera matrices (Q0, Q1)
uniquely even up to a similarity, because of the “twisted-pair ambiguity.” Thus,
(apart from sign and scale ambiguities) there are two essentially different ways of
decomposing E, namely E = R[t]× = R′[t]×, involving different rotation matrices
R and R′ (see [8,3] for more details). Note that the vector t is the same in both
cases, since it is the generator of the null-space of E.

Normalized camera matrices. As shown in [4], for a configuration of points
and cameras to be critical it is sufficient to consider only the positions of the
cameras, and not their orientation3. In particular, in investigating whether a
configuration is critical, we may assume that the two cameras have the form
[ I | −ti ], where ti is an inhomogeneous 3-vector representing the location of
2 A quadric S is defined by the set of points P ∈ P3 such that P�SP = 0.
3 Proved in [4] for the uncalibrated case, but easily extended to calibrated cameras.
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the camera centre. Camera matrices in this form will be referred to as normal-
ized. The form of a critical quadric is particularly simple for normalized camera
matrices:

S =
[

E01 + E10 −E10t0 − E01t1
−t0�E01 − t1�E10 2t0�E01t1

]
. (3)

4 Rectangular Quadrics

We now define rectangular quadric surfaces, which will turn out to be the critical
surfaces for calibrated cameras.

Definition 2. A quadric represented by a symmetric matrix S is called a rect-
angular quadric if the upper left hand 3×3 block M of S may be written as E+E�

for some essential matrix E.

In [8] rectangular quadrics are characterized by different algebraic conditions
on M, which are next seen to be equivalent to Definition 2.

Proposition 1. Let M be a 3 × 3 symmetric matrix. The following conditions
are equivalent.

1. M = E+ E� for some essential matrix E.
2. M = mn� + nm� − 2mn�I for two 3-vectors m and n called the principal

points on M.
3. The eigenvalues of M are of the form λ1, λ2 and λ1 + λ2, where λ1λ2 ≤ 0.

Proof. 1 → 2 Suppose M = E + E�. Let E = R[t]×. Without substantially
altering the problem, E may be replaced by an essential matrix UEU�, where U
is a rotation. Using this observation, one may without loss of generality assume
that the rotation axis of R is the vector n = (0, 0, 1)�. Thus, R is a rotation
about the z-axis. Let t = (x, y, z)�. Then

E = R[t]× =


 c −s
s c

1





 0 −z y

z 0 −x
−y x 0


 =


−sz − cz cy + sx

cz − sz sy − cx
−y x 0




where c = cos(θ) and s = sin θ and θ is the angle of rotation. So

E+ E� =


 −2sz 0 sx+ (c− 1)y

0 − 2sz sy − (c− 1)x
sx+ (c− 1)y sy − (c− 1)x 0


 . (4)

Now, setting m = (sx + (c − 1)y, sy − (c − 1)x, sz)� and n = (0, 0, 1)�, it is
easily verified that mn� + nm� − 2m�nI = E + E� as required. In addition,
apart from scaling, or swapping m and n, the choice of m and n is unique.

2 → 1 Suppose M = mn� + nm� − 2m�nI. Once again, one may rotate
coordinates to ensure that n = (0, 0, 1)�, and that furthermore m lies in the
xz-plane, and so m is of the form m = (2p, 0, q)�. Then
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M = mn� + nm� − 2m�nI = 2


−q p

−q 0
p 0 0


 . (5)

Now, it is easily verified that if

E = R[t]× =


0 −1 0
1 0 0
0 0 1





0 −q −p
q 0 −p
p p 0


 =


−q 0 p

0 −q −p
p p 0


 (6)

then E+ E� equals (5) as required.
2←→ 3 . See [8] for a proof.

Note that matrix M, the upper-left 3 × 3 block of S represents the conic in
which the quadric S meets the plane at infinity. The principal points m and n
lie on this conic, since m�Mm = n�Mn = 0. Points on M may also be thought of
as representing asymptotic directions of the quadric. When S is a ruled quadric,
points on M are the direction vectors of the generators (straight lines) on S.
Restriction. Henceforth in this paper, we will avoid having to deal with special
cases by assuming that the matrix M is non-singular, i.e., S meets the plane
at infinity in a non-degenerate conic. In terms of the representation of M by
principal points, this corresponds to an assumption that m and n represent
neither collinear, nor orthogonal directions. Equivalently, in (5) neither p nor q
is zero. It is shown in [8] that a rectangular quadric with two equal principal
points is a circular cylinder, which can not be a critical surface.

Proposition 1 gives algebraic conditions for a quadric to be rectangular. Var-
ious equivalent geometric conditions for a quadric to be rectangular are given in
the appendix. These help to provide geometric intuition.

5 Standard Position for a Rectangular Quadric

The definition of a rectangular quadric given in Definition 2 specifies only the
form of the top-left block of the matrix S. In other words whether a quadric
is rectangular or not depends only on its intersection with the plane at infinity.
However, if M is non-singular (which we are now assuming), then by a translation
of coordinates, S may be transformed to a block-diagonal matrix of the form

S =
[
M 0
0� d

]
. (7)

Note that this quadric is symmetric about the origin, in that if (X�, k)� lies
on the quadric S, then so does (−X�, k)�. We may also assume, as before that
the two principal points of the quadric are n = (0, 0, 1)� and m = (2p, 0, q)�.
In this case, the matrix representing the quadric is of the form (7), where M has
the form given by (5). Such a quadric is said to be in standard position.
Symmetry of a rectangular quadric. A quadric in standard position has
a rotational symmetry about the the y-axis. Namely, if X = (x,y, z)� lies on
the quadric, then so does (−x,y,−z)�. There is a further symmetry mapping
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X to (x,−y, z)�, as well as a symmetry swapping the two principal points, but
we will not be so concerned with these. Let Rsym represent this rotation of the
quadric about the y-axis. As a matrix, Rsym has the form diag(−1, 1,−1). For a
quadric not in standard position, we still use Rsym to represent this rotational
symmetry of the quadric, though it will be an arbitrary rotation matrix.

Different choices of E. Let S be a rectangular quadric and M the upper left-
hand block. By definition, M can be written as M = E + E� for some essential
matrix. The decomposition (6) involved a choice of E = R[t]× for which R was
a rotation through 90 degrees about the axis n = (0, 0, 1)�. It will next be
shown that this decomposition of the quadric is not unique. The following result
enumerates all possible ways of expressing M as E+ E�.
Terminology: By left and right epipoles of an essential matrix E01 are meant
the vectors e0 and e1 such that E01�e0 = E01e1 = 0.

Theorem 2. Let M be a non-singular matrix mn� + nm� − 2m�nI, where m
and n are two principal points. Let E be an essential matrix such that M = E+E�.

1. The left and right epipoles e0 and e1 of E as well as the two principal points
m and n lie on the conic M.

2. If E = R[t]× = R′[t]× are the two distinct ways of decomposing E into a
rotation and skew-symmetric matrix, then the rotation axes of R and R′ are
the two principal points of M.

3. For every point x lying on the conic M, with the exception of the two principal
points, there exists a unique E such that M = E+ E� and Ex = 0.

4. If e0 is one of the epipoles of E, then the other one, e1 is the point Rsyme0
obtained by rotating e0 about the symmetry axis of the quadric.

5. For any E satisfying M = E+ E�, the relation RsymERsym = E� holds.

Proof. Part 1. A point x lies on the conic M if and only if x�Mx = 0. The fact
that the two principal points m and n lie on M is easily verified. Similarly, if
Ee = 0, then e�(E+ E�)e = 0, so e lies on M.
Part 2. We may without loss of generalization assume that R is a rotation
about the z-axis. If for some m and n one has E+ E� = mn� +nm�− 2m�nI,
then E+E�− tr(E+E�)/2 = mn� +nm�. However, the form of E+E� is given
by (4), from which it follows that E+ E� − tr(E+ E�)/2 has an upper left-hand
2 × 2 block of zeros. From this it easily follows that either m or n is (0, 0, 1)�

and hence equal to the the rotation axis of R. The axis of the other rotation
matrix R′ is distinct from that of R, and by the same argument must therefore
be the other of the two principal points.
Part 3. Let M be in standard position, with principal points given by (0, 0, 1)�

and (2p, 0, 1)�. In this case, M has the form given by (5) with q = 1. In any
decomposition of M, the rotation axis is one of these two principal points, and
so we may assume E = R[t]× where R is a rotation about the z axis. Let the
rotation angle be θ and t = (x, y, z)�, then E is given by (4). Equating (5) with
(4) the unique solution is t = (p(c+ 1),−ps, 1)�, provided that s 
= 0.

Thus, with M given, E is uniquely determined by its rotation angle,
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E = R[t]× =


−s − c ps

c − s − p(c+ 1)
ps p(c+ 1) 0


 . (8)

Now, as a conic (5), with q = 1, M may be written as x2 + y2 − 2pxz =
0. Dehomogenizing by setting z = 1 and completing the square, this becomes
(x− p)2 + y2 = p2, which is a circle centred at (p, 0) of radius p. As c = cos(θ)
and s = sin(θ) vary with θ, the epipole t = (p(c + 1),−ps, 1)� traces out this
circle. Thus, the points x on M are in one-to-one correspondence with the rotation
angle, and so E is uniquely determined by x.
Part 4. Simply observe that the left epipole of E in (8) is (−p(c+1), −ps, −1)�
which is the rotation of the right epipole about the y-axis.
Part 5. The identity RsymERsym = E� is verified by direct computation using (8)
and Rsym = diag(−1, 1,−1) for the symmetry of a quadric in standard position.

6 Characterization of Critical Surfaces

We are now ready to determine the critical surfaces for calibrated reconstruction.

Theorem 3. If (S, P0, P1) is a critical configuration, then S is a ruled rectan-
gular quadric. Further, the camera centres t0 and t1 of P0 and P1 satisfy the
condition that Rsymt0 and t1 lie on a common generator of the quadric.

Conversely, if Rsymt0 and t1 lie on a common generator, then the configu-
ration is critical, provided that the generator does not pass through a principal
point of the quadric.

That the quadric is rectangular follows directly from (3) and the definition of
a rectangular quadric in the case where the two cameras are normalized. For
general cameras of the form R0[I|t0] and R1[I|t1], the upper left-hand block of
(2) is of the form M = R0�ER1 + R1�E�R0. However, if E is an essential matrix,
then so is R0�ER1, and so S is a rectangular quadric.

The necessary condition on the camera centres is completed by the following
lemma, which specifies the relationship between the camera centres and the
essential matrix more precisely.

Lemma 1. If S is a critical quadric for normalized camera matrices with centres
at t0 and t1, and E01 is the essential matrix satisfying (3), then Rsymt0 and t1
lie on a generator of S with direction vector given by e1, the right epipole of E01.

Proof. We may assume that S is in standard position. From this and (3) it
follows that E10t0+ E01t1 = 0. Multiplying on the left by e1 gives e1�E01t1 = 0.

Two things need to be proved: (i) For all α, point t1 + αe1 lies on S, and
(ii) Rsymt0 = t1 + αe1. Since the quadric has the diagonal block form S =
diag(E01 + E10, d), the first point is proved by showing that

t1�Mt1 + 2αe1�Mt1 + α2e1�Me1 + d = 0.
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However, e1�Me1 = 0, because e1 is on M and t1�Mt1 + d = 0, because t1 is on
S. The remaining term reduces to 2αe1E01t1, which is zero, as was just shown.

Now to the second point. Showing that Rsymt0 = t1 + αe1 is equivalent to
showing that E01(Rsymt0 − t1) = 0. However,

E01(Rsymt0 − t1) = E01Rsymt0 + E10t0 since E10t0 + E01t1 = 0
= (Rsym + I)E10t0 since E10Rsym = RsymE01.

It has been shown that e1�E01t1 = 0, and trivially e0�E01t1 = 0. Thus E01t1 is
perpendicular to both e0 and e1. Consequently E01t1 = k(e0 × e1). In turn,

Rsym(e0 × e1) = (Rsyme0)× (Rsyme1) = e1 × e0 = −(e0 × e1).

So (Rsym + I)E01t1 = k(Rsym + I)(e0 × e1) = 0, as required.

Converse. Suppose that S is in standard position, and that t1 and Rsymt0 lie
on a common generator, whose direction vector we denote by e1. According to
hypothesis, e1 is not coincident with one of the principal points of the quadric.
In this case, according to Theorem 2, there exists an essential matrix E10 such
that E01e1 = 0 and M = E01 + E10. According to Theorem 2 again, e0 = Rsyme1
is the other epipole of E10, satisfying e0�E01 = 0.

Our goal is to demonstrate that (3) holds for this choice of E10. Since S is
assumed to be in standard position, S = diag(M, d), it suffices to prove that
E10t0 + E01t1 = 0 and 2t0�E01t1 = d. Let w = E10t0 + E01t1. Then

Rsymw = RsymE10t0+ RsymE01t1 = E01Rsymt0+ E10Rsymt1 = E01t1+ E10t0 = w.

On the other hand, by assumption t1 lies on a generator with direction vector e1.
Mimicking part of the proof of Lemma 1 leads to the conclusion that e1�E01t1 =
0, and hence e1�w = 0. Similarly e0�w = 0. Consequently, up to scale, w =
e1 × e0. As in the proof of Lemma 1, it follows that Rsymw = −w, and so
w = E10t0 + E01t1 = 0 as required.

Finally, since t0 lies on S, it follows that d = −t0�(E01 + E10)t0. Using
E10t0 + E01t1 = 0, it follows that d = 2t0�E01t1, and the proof is complete.

Number of conjugate configurations. This theorem gives us insight into
how many conjugate configurations (that is, different essential matrices EQ) exist
for a given critical configuration. It was shown that the essential matrix E = EQ is
uniquely determined by the quadric S and the vanishing point of the generator
containing t1 and Rsymt0. The only possibility for there to exist two distinct
essential matrices EQ is if t1 = Rsymt0, in which case each of the generators
through t1 leads to a different essential matrix EQ.

7 A Condition for Ambiguity in 3 Views and More
Since Euclidean ambiguities are special cases of projective ambiguities, it is use-
ful to have a (nearly) necessary and sufficient condition for ambiguity. Such a
condition is given by the following theorem, which is a restatement of Theorem 1
and Corollary 1 of [4], in slightly simpler form.
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Theorem 4. Let (P0, P1, P2) and (Q0, Q1, Q2) be two triplets of camera matrices.
For each of the pairs (i,j)=(0,1),(0,2) and (1,2), let Sij

P and Sij
Q be the ruled

quadric critical surfaces defined in (1) for camera pairs (Pi, Pj) and (Qi, Qj),
respectively.

(i) If there exist points P and Q such that PiP = QiQ for all i = 0, 1, 2 then P
must lie on the intersection S01

P ∩S02
P ∩S12

P and Q must lie on S01
Q ∩S02

Q ∩S12
Q .

(ii) Conversely, if P is a point lying on the intersection of quadrics S01
P ∩S02

P ∩S12
P ,

but not satisfying the condition

 (e10Q × e20Q )�P0

(e21Q × e01Q )�P1

(e02Q × e12Q )�P2


P = 0, (9)

where each eij
Q is an epipole (the image of the camera centre of Qi in the

image formed by Qj), then there exists a point Q lying on S01
Q ∩ S02

Q ∩ S12
Q

such that PiP = QiQ for all i = 0, 1, 2.

If a point P happens to satisfy the condition (9) then there may or may not be
a conjugate point Q. In a reasonable sense, most points lying on the intersection
S01
P ∩ S02

P ∩ S12
P are critical. Notice, however that if the three cameras Qi are

collinear, then each of the vector products (eij
Q × ekj

Q ) vanishes, and so condi-
tion (9) is satisfied for all P. In this case we can make no conclusion regarding
the existence of a conjugate point Q. However, if the three cameras Q are not
collinear then we may say more.

Proposition 2. Given the assumptions of Theorem 4, suppose further that the
three cameras Qi are distinct and non-collinear. Then any point satisfying the
condition (9) must lie on the intersection of quadrics S01

P ∩ S02
P ∩ S12

P .

Proof. Let i, j and k represent the three indices 0, 1 and 2 in some permuted
order, i.e. i 
= j 
= k. If the three cameras are non-collinear, then for each j the
cross product eij

Q × ekj
Q is non-vanishing. Let P be a point satisfying (9). Then

(eij
Q × ekj

Q )�(PjP) = 0, which implies that PjP lies in the span of eij
Q and ekj

Q ,
and so we write PjP = αije

ij
Q + αkje

kj
Q for some constants αij and αkj . Now, P

lies on Sij
P if and only if P�(Pi�Fij

Q P
j)P = 0. Substituting for PiP and PjP gives

P�(Pi�Fij
Q P

j)P = (αjie
ji
Q +αkie

ki
Q )�Fij

Q (αije
ij
Q +αkje

kj
Q ) = (αkie

ki
Q )�Fij

Q (αkje
kj
Q ).

The last equality holds, because eji
Q

�Fij
Q = Fij

Q e
ij
Q = 0. Finally, eki

Q
�Fij

Q e
kj
Q = 0,

since eki
Q and ekj

Q are a matching point pair in images i and j, corresponding to
the camera centre of Qk. Thus, P�(Pi�Fij

Q P
j)P = 0 and so P lies on Sij

P .

The points P that satisfy (9) must be either a single point, a line or a plane
lying in the intersection of the three quadrics Sij

P . If this quadric intersection
does not contain a complete line or a plane, then the latter two cases are not
possible. In addition, it may be shown by continuity that if (9) defines a single
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point, then this point must be critical (a conjugate Q exists) unless it is an
isolated single point in the intersection of the Sij

P . We may therefore state a
general ambiguity result:

Theorem 5. Let (P0, P1, P2) and (Q0, Q1, Q2) be two triplets of camera matrices,
with cameras Qi non-collinear. Then for any point P in the intersection S01

P ∩
S02
P ∩ S12

P there exists a conjugate point Q satisfying PiP = QiQ for all i, with
the possible exception of

1. A single isolated point P in S01
P ∩ S02

P ∩ S12
P , or

2. Points P on a single line or plane contained in the intersection S01
P ∩S02

P ∩S12
P .

This theorem simplifies the search for critical configurations, since it is not
necessary to worry about the points. It is sufficient to find sets of cameras that
define quadric intersections of interest. If we are searching for critical calibrated
configurations, then the two sets of cameras must of course be calibrated.

The question arises as to whether the exceptional conditions of Theorem 5
really occur (the points that are non-critical). It was shown in [9] that if the three
quadrics intersect in 8 points then indeed one of these points (the exceptional
point identified in Theorem 5) does not have a conjugate. For the case where the
three quadrics intersect in a line, an example is given later in which the points
on the line in fact do not have conjugates.

8 Euclidean Ambiguities in 3 Views or More

As seen in the previous section, calibrated critical configurations involving three
views and seven points abound. It is natural to ask if calibrated critical con-
figurations exist involving more than two views and infinite numbers of points.
In the projective case, it has been shown that elliptic quartics (a fourth-degree
curve given as the intersection of two quadrics) are critical for projective recon-
struction [6]. The calibration information restricts the class of critical sets to a
class which is strictly smaller than in the projective case. Still, we will show that
for any three cameras, there exists an elliptic quartic through the three camera
centres such that the points on the quartic and the three cameras form a critical
configuration. First some properties of pencils of rectangular quadrics are given.

Lemma 2. Let S1 and S2 be two rectangular quadrics with principal points
(m1,n1) and (m2,n2), respectively.

(i) There exists in general a third rectangular quadric in the pencil αS1 + βS2 .
(ii) All the quadrics in the pencil αS1 + βS2 are rectangular if and only if (a)

one of the principal points (m1,n1) coincides with one of (m2,n2), or (b)
all four principal points are collinear.

Proof. From Proposition 1 it follows that tr(M)/2 is an eigenvalue ofM . Thus, a
necessary constraint for a rectangular quadric is that det[M− tr(M)

2 I] = 0, which
is also sufficient (provided the product of the two other eigenvalues is positive
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- otherwise the principal points will be complex). Applying the constraint to
αS1 + βS2 yields

α2β det
[
n1 n2 m1

]
det

[
m1 m2 n1

]
+ αβ2 det

[
n1 n2 m2

]
det

[
m1 m2 n2

]
= 0.

This is a homogeneous polynomial constraint in (α, β) where two solutions are
(1, 0) and (0, 1). Since it is a cubic constraint, there is always a third solution
which proves (i). All quadrics in the pencil are rectangular if and only if the
two coefficients of the polynomial vanish. It follows that (1) either (n1,n2,m1)
or (m1,m2,n1) are collinear and (2) either (n1,n2,m2) or (m1,m2,n2) are
collinear, which occurs exactly in the two cases given by (ii) above.

Based on the observations in Theorem 3 and Lemma 2 we are now ready to
prove the following result on critical configurations for calibrated cameras.

Theorem 6. Given three calibrated cameras (P0, P1, P2), then there exists an
elliptic quartic curve (given as the intersection of two quadrics) which contains
the three camera centres and such that the points lying on the quartic curve and
the three cameras constitute a critical configuration.

Proof. According to Theorem 4, we need to find a triplet of conjugate cameras
(Q0, Q1, Q2) which are calibrated and where the corresponding three quadrics
S01
P ,S02

P and S12
P are linearly dependent. Without loss of generality we can assume

normalized cameras and that the two camera centres of P0 and P1 are given by
t0 = (0, 0, 0)� and t1 = (0, 1, 0)�, respectively.

An explicit solution to the problem will given, but first we will describe how
the solution was discovered. Start with three general camera matrices (Q0, Q1, Q2)
with Q0 =

[
I | 0 ]

and Qi = Ri
Q

[
I | −tQ,i

]
for i = 1, 2. According to Theorem 2, the

rotation axes of R1Q, R
2
Q and R1Q

�R2Q coincide with one of the two principal points in
the quadrics S01

P ,S02
P and S12

P , respectively. At the same time, the pencil should
be rectangular. By choosing a fix rotation axis, denoted by m, for R1Q and R2Q,
implies that the rotation axis of R1Q

�R2Q will also be m. Furthermore, one of the
principal points for S01

P ,S02
P and S12

P will be m and hence the pencil spanned by
S01
P and S02

P is rectangular according to Lemma 2. So ensuring these constraints
is sufficient in order to generate a pencil of rectangular quadrics.

Now let m = (1, 0, 0)�. Denote the camera centre coordinates of P2 with
t2 = (x, y, z)� and let µ =

√
2(y − 1/2)2 + 2(z + 1/2)2 and ν = y2 − y + z2.

Straightforward calculations show that

Q1 =


1 0 0 x(−2y + 1)
0 0 1 −ν
0 −1 0 ν


 , Q2 =


µ 0 0 µx(z − y − µ+ 1)
0 z − y + 1 y + z −(y + z)ν
0 −z − y z − y + 1 ν(y − z + µ− 1)




(10)
generates a pencil spanned by

S01
P =




0 −2ν 0 ν
−2ν 2x(2y − 1) 0 x(−2y + 1)
0 0 2x(2y − 1) 0
ν x(−2y + 1) 0 0


 and
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S02
P =




0 −2νξ 0 ν(ν + yµ)
−2νξ 2x(y + z)ξ 0 −x(y + z)ξ
0 0 2x(y + z)ξ xν(−2y − µ+ 1)

ν(ν + yµ) −x(y + z)ξ xν(−2y − µ+ 1) 0


 ,

where ξ = y−z+µ−1 and S12
P = αS01

P +βS02
P for some (α, β) ∈ P1. The pencil

contains the three cameras centres t0, t1 and t2 and the whole intersection curve
of the pencil (which is an elliptic quartic) is critical as the exception condition
(9) contains in general only a single point, cf. Proposition 2 and Theorem 5. The
above solution breaks down, when for example µ = 0. By interchanging the roles
of two cameras, say P0 and P1, will then generally produce a valid solution.

As the proof is constructive, it is easy to generate examples.

Example 1. Let (P0, P1, P2) be three normalized cameras with centres t0 =
(0, 0, 0)�, t1 = (0, 1, 0)� and t2 = (1, 1, 3)� lying on a pencil spanned by

S1 =




0 18 0 −9
18 −2 0 1
0 0 −2 0
−9 1 0 0


 and S2 =




0 0 0 18
0 2 0 −1
0 0 2 −9
18 −1 −9 0


 . (11)

Let g(t) be the solution to the quadratic equation (2t+ 1)X2 + (−18t+ 9)X −
t − t2 + 2t3 = 0, then the intersection curve can be written in homogeneous
form P(t) = (g(t), t(2t+1), g(t)(2t+1), 2t+1)�. Further, according to (10), the
conjugate cameras are

Q0 =


1 0 0 0
0 1 0 0
0 0 1 0


 , Q1 =


1 0 0 −1
0 0 1 −9
0 −1 0 9


 and Q2 =


5 0 0 −10
0 3 4 −36
0 −4 3 18


 .

The corresponding quadrics S01
P , S02

P and S12
P lie in the pencil αS1 + βS2. The

elliptic quartic given by quadrics S01
Q and S02

Q can be parametrized by Q(t) =
(2(t+5)(t− 1), 2(t+5)(18t− 9− (2t+1)g(t)), 2(t+5)(t− 1)(2t− 1), 2t2+17t−
10 − (2t + 1)g(t))�. Finally, one verifies that PiP(t) = QiQ(t) (up to scale) for
i = 0, 1, 2 and all t. Thus, the configuration is indeed critical.

Next, we wish to study critical configurations of n > 3 calibrated views.

Theorem 7. A configuration of n ≥ 3 calibrated cameras Pi, i = 0, ..., n−1 and
points Pj is critical if the set of cameras (P0, P1, Pk) and points Pj is critical
with respect to some conjugate cameras (Q0, Q1, Qk) for k = 2, ..., n− 1.

Proof. We prove the result for 4 views. The general result for n views follows by
induction. The three cameras P0,P1 and P2 along with the points form a critical
set, and hence a conjugate configuration exists. Similarly a second conjugate
configuration exists for the cameras P0,P1 and P3 and the points. The goal is to
show that these two conjugate configurations are consistent.
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By assumption, the conjugate pair (Q0, Q1) is the same for both triplets
(P0, P1, P2) and (P0, P1, P3). Denote the conjugate points by Qj and Q′

j in the
first and second triplet, respectively. Consider the way the conjugate points Qj

are obtained in the first triplet. From the image points in the first two views,
one can determine the position of the conjugate points by triangulation using
Q0 and Q1. However, and this is the main point, the third camera is not used in
this construction. It follows that Qj = Q′

j and the theorem is proved.

Example 2. Consider again the pencil spanned by S1 and S2 in (11). Are there
any additional camera positions in Example 1 for which the configuration re-
mains critical? Yes, the following camera pair does not break the ambiguity:

P3 =


1 0 0 6
0 1 0 9/5
0 0 1 −78/5


 and Q3 =


5 0 0 −45
0 −4 −3 27
0 3 −4 81


 ,

How were these cameras discovered? Well, if a camera P3 is to be critical, The-
orem 7 says that we only need to show that (P0, P1, P3) and the points on the
quartic curve are critical. The way to do that is by means of Theorem 4. Thus,
the constraints that have to be satisfied are (i) the camera centre of P3 lies on
both S1 and S2 and (ii) the quadrics Sij

P in (1) for pairs (P0, P3) and (P1, P3),
respectively, lie in the pencil αS1 + βS2. Again, without loss of generality, one
can assume that P3 is normalized. The only valid solution to this system of
polynomial equations is the one given above.

In the uncalibrated case, n cameras with centres and points lying on an
elliptic quartic are critical [6]. The previous example shows that this is not true in
the calibrated case. One might suspect that there are only critical configurations
with a finite number of cameras.

Example 3. Consider the pencil αS1 + βS2 where

S1 =



0 0 1 0
0 2 0 −1
1 0 2 0
0 −1 0 0


 and S2 =



0 1 1 0
1 0 0 −2
1 0 0 0
0 −2 0 0


 .

The intersection curve splits up into a line and a twisted cubic, where the line is
the X-axis and the points on the twisted cubic can be parametrized by P(θ) =
(2θ(2θ2 − 2θ + 1), θ2(2θ − 1), (2θ − 1)(−θ + 1), 2θ2 − 2θ + 1)�. Let

P0 =


1 0 0 0
0 1 0 0
0 0 1 0


 , P1 =


1 0 0 −1
0 1 0 0
0 0 1 0


 and P2 =


1 0 0 −2
0 1 0 −1
0 0 1 0


 .

A conjugate configuration is given by

Q0 =


1 0 0 0
0 1 0 0
0 0 1 0


 , Q1 =


2
√
2 0 0 2(

√
2− 1)

0 2 2 −1
0 −2 2 −1


 and Q2 =


1 0 0 0
0 0 1 −1
0 −1 0 0


 ,
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m

S ∩ π∞

π∞

l∞

Ω∞

Fig. 1. Intersection of a rectangular quadric S with the plane at infinity π∞ with
principal point m.

as the corresponding quadrics S01
P , S02

P and S12
P lie in the pencil αS1 + βS2.

However, the whole intersection curve is not critical. The exception condition
in (9) consists of the X-axis and by inspection, one finds that there are no
conjugate points for the X-axis. Thus, the points on the twisted cubic and the
cameras (P0, P1, P2) form a critical configuration. This can also be verified by
direct computations: The conjugate points to the twisted cubic is a conic curve,
which can be parametrized by Q(θ) = (−4θ2 + 4θ − 2, θ(−2θ + 1), (2θ − 1)(θ −
1), 4θ2 − 4θ + 2)� and PiP(θ) = QiQ(θ) for i = 0, 1, 2 and all θ.

Are there any additional camera positions for which the configuration remains
critical? Yes, for any camera P lying on the twisted cubic there is a conjugate
calibrated camera Q,

P(η) =



1 0 0 −2η
0 1 0 η2(−2η+1)

2η2−2η+1

0 0 1 η(2η−1)(η−1)
2η2−2η+1


 and Q(η) =


 ξ 0 0 ξ(−ξ + 1)
0 −η + 1 η −η2
0 −η −η + 1 η(η − 1)


 ,

where ξ =
√
2(η − 1/2)2 + 1/2. Notice that the camera centres in the conju-

gate configuration lie on a conic. In order to verify that the configuration is
indeed critical, it is enough to check that the corresponding critical quadrics for
pairs (P0, P(η)) and (P1, P(η)) lie in the pencil αS1 + βS2 or, alternatively, that
P(η)P(θ) = Q(η)Q(θ) for all η, θ.

9 Conclusions

In this paper we have given a complete characterization of critical surfaces for two
calibrated cameras. We have shown several new results on critical configurations
for multiple views. For example, for any placement of three calibrated cameras
there exists a critical elliptic quartic curve. Further, the existence of critical
configurations containing arbitrarily many points and cameras have been shown,
even though they are less frequent than in the uncalibrated case.

Appendix

Geometric interpretation. The definition of a rectangular quadric and its prop-
erties as stated in Proposition 1 are purely based on algebraic concepts. We will
now give a more geometrically oriented characterization.
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Proposition 3. A principal point m of a rectangular quadric is contained in the
intersection of the quadric with the plane at infinity with the following property:
The tangents from m to the absolute conic meet the absolute conic at points lying
on the quadric.

In [8], this was used for defining a principal point. See Figure 1 for an illustration.
This is still quite abstract. Before we give another interpretation, we need two
simple facts about the absolute conic. For justification, refer to [10].

Proposition 4. A planar conic is a circle if and only if it meets the plane at
infinity at two (imaginary) points lying on the absolute conic.

Now consider any line in space meeting the plane at infinity at a point m. The
polar of m with respect to the absolute conic is the line l∞ joining the two
points of tangency from m to the absolute conic (see Figure 1). This line is the
vanishing line of a plane perpendicular to the line first mentioned.

Proposition 5. A plane and a line are perpendicular if and only if they meet
the plane at infinity in a polar line-point pair with respect to the absolute conic.

Now, refer to Figure 1. Let π be a plane that vanishes at the line l∞ on π∞.
This plane meets the quadric S in a conic curve. At the plane at infinity π∞,
the quadric S, the absolute conic Ω∞ and the plane π all meet. According to
Proposition 4, this means that π and the quadric S meet in a circle.

The point m is the polar of the line l∞ with respect to the absolute conic,
and hence represents the vanishing direction perpendicular to the plane π. If m
is a principal point of the quadric S, then it lies on S.

Proposition 6. A quadric S is rectangular if there exists a plane that meets
the quadric in a circle and such that the perpendicular direction to the plane is
asymptotic to the quadric.
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