
How to Break a “Secure”
Oblivious Transfer Protocol

Donald Beaver

313 Whitmore Lab, Penn State Universit,y, State College, PA 16802, USA,
(814) 863-0147, beaveracs .psu . edu.

Abstract.

We show how to break a protocol for Oblivious Transfer presented at Euro-
crypt 90 [ll]. Armed with a new set of definitions for proving the security of
interactive computations, we found difficulties in proving the protocol secure.
These difficulties led us to a simple attack that breaks the OT protocol in
a subtle but fundamental way. The t n o r that we found may be present in a
wide variety of secure protocols. It reveals a fundament a1 flaw in the traditional
definition of Oblivious Transfer itself.

1 Introduction

Solid proofs are a lacking but essential requirement for cryptography. Whereas
a failed claim in complexity theory might mean an algorithm gives errors some-
times, a failed claim to security might provide a huge potential for malicious
destruction of data, resources, and dependability.

Proofs are often lacking because clear and simple definitions are hard to
come by. The vaIue of good definitions goes beyond the confidence they inspire
in proven results. When good definitions are present, a coiicise proof can usually
be found; the lack of one, or the difficulty of finding one, often indicates that a
theorem is incorrect. In fact, truly clear definit,ions and proof techniques often
turn up counterexamples when applied to an incorrect conjecture.

In [I, 31, Beaver proposed a concise set of definit,ions that provide not only a
clear, intuitive understanding of security in interactive protocols but that sup-
port direct and modular proofs, In this paper, we show how these definitions
revealed a subtle flaw in a protocol cla.imed t.0 be “provably” secure.

We consider the problem of Oblivious Transfer (OT), a fundamental crypto-
graphic problem introduced by Rabin [IT]. OT is a t.wo-party protocol in which
Alice transmits a bit b t o Bob, and Bob receivcs the hit with probability $. Al-
ice must not learn whether Bob received t,he bit,. OT forms the basis for a wide
variety of cryptographic protocols [IS, 15, 6, HI.

Based on assuming that determining quadratic residuosity is hard, Rabin
suggested an elegant but inefficient protocol for OT, requiring the generation of
a large integer n = p q (with p, q prime) for each bit to be sent [17].

Den Boer suggested an efficient protocol for OT in Eurocrypt ’91 [ll], relying
on the same assumption but allowing the re-use of 11, and elisuring unconditional
security of b . We show that this protocol is insecure.
R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT ’92, LNCS 658, pp. 285-296, 1993
@ Springer-Verlag Berlin Heidelberg 1993

286

The flaw is that Alice can send a bit b without knowing what b is - poten-
tially giving her information about, the quadratic residuosity of numbers of her
choice, without her knowing t,he fact,ors of 7 1 . In fact, after a single transfer she
may be able to break all subsequent transfers.

Interestingly, the protocol 2s provably secure according to the tradit,ional list
of required security properties, if one confirms “Alice does not learn whether
Bob received b” using the approach of of zero-knowledge [14]. As we shall see,
zero-knowledge is insufficient a.s as a measure of t,he security of O T (and of other
protocols). Rabin’s protocol (apparently sercndipitously) does not suffer from
the same problem, but our analysis shows how to break Rabin’s protocol in a
network of three or more players.

Instead of proposing a new requireinelit for OT, we define the security of
OT according to a unifying propert,y called resilience. Resilience captures all
known security properties and, we submit, it implies all security properties a
priori. Unforeseen properties such as transparency (the inability to bluff) arise
as newly-observed implications of our unified definition, as this paper exemplifies.

Using resilience, we were a.ble to expose the subtle flaw in the OT protocol
within minutes. We fix the flaw and sketch a proof of security, thus salvaging
den Boer’s brilliant idea and providiiig an efficient protocol for Oblivious Trans-
fer.

2

Traditionally, the goal of Oblivious Transfer is to find a protocol satisfying certain
properties:

Oblivious Transfer: the Tradit ioiial Approach

1. Alice sends bit b but dkes not know whether Bob receives i t ;
2. Bob receives (1 , b) or (0,O) [resp. “received h” or “got nothing”] with equal

3. Both players can abort t,he protocol by deviating from it in a syntactic sense

The usual formalization of “no additional information” or “does not know” uses
a zero-knowledge approach: a simulator must demonstrate that Alice (or Bob)
could generate an accurate view of the interaction based only on given, limited
information. But zero-knowledge is not enough to guarantee that Alice learns
nothing.

We show that a previously-overlooked property is essential, namely that Alice
not be able to bluff her way through the protocol:

4. Alice must know the effective bit b slit: sends.

probability, but receives no a.dditionx1 information;

(e g . Alice does not send 0/1 or Bob sends “quit”).

Rather than adding to a potentially iiicomplcte list of properties, we examine
a single property, resilience, which implies (1)-(4) above and, by virtue of its
clarity and wide applicability, seems to capture properties as yet unobserved.

A simple and direct fix for protocols lackiiig property (4) is t o require Alice
to give a zero-knowledge proof t,hat she knows her effective input b. This turns

287

out to be sufficient to construct a protocol secure under our unified definition.
First, however, let us examine why the ability to bluff should be restricted and
how it can be used to break den Boer's protocol.

3 Oblivious Transfer in an Ideal World

In the ideal case, Alice would give b to a trusted host (noisy channel) that would
then send (1, b) or (0,O) to Bob with equal probability. without informing Alice
which one it sent. In a very real sense, the goal of Oblivious Transfer is to
implement this ideal protocol without having a trusted host available.

Imagine for the moment that a trusted host, is available - perhaps in the
form of a quantum channel [9]. Consider the following scenario: Alice sends bl

to Bob, and later says, "I think I got sotne static on the line; can we test it?"
Bob agrees, and Alice sends a second bit b p , and Bob reports his second result

Certainly, in the ideal case, Alice would not learn anything about the results
of the first execution, eg. whether Bob received b l or not. Any implementation
of OT should not allow later executions to compromise earlier ones, even when
Bob reveals the later results.

((0,O) or (1: b ?)) .

4 Oblivious Transfer: Background

4.1 Notes on Cryptography

A Blum integer is a product n = p q of two equally-sized primes of the form
p = 4 k $ 3 , q = 41+3; let B L U M ~ be the set of such numbers of size k. A number
3: is a quadratic residue (mod n) iff it has a square root (mod n) . The integers
modulo Blum integer n having Jacobi symbol $1 form a multiplicative group,
Z:, of which half are residues. Define Qn(z) = 0 iff r E Z,+ is a residue, or 1 if
not; note Qn(ab) = Qn(.) 8 Q n (b) . For Blum integers. Qn(-1) = 1.

The notation z + X indicates r is sampled uniformly at random from set
X . An ensemble is a function mapping a pair (2 % k). with z E C* and k E N,
to a distribution on strings of size at most (I ~ l k) ~ for sonic c. If P and Q are
ensembles, and if M is a T M or function, define the distinguishing power of
M to be

SM(Z, k) sf IPr [M (P (z , I;)) = 11 - Pr [A\ i (Q(z l Ic) = 1)]1.

Ensembles P and Q are statistically indistinguishable, written P x Q, if
for all functions M , and for all I and c , 6 ~ (z , k) = O(k-')) . Ensembles P and Q
are computationally indistinguishable, written PSQ, if for all probabilistic
poly-time TM's M , and for all z and c, S,W(Z, k) = O(k-')).

The Quadratic Residuosity Assumption (QRA) states that random
residues in B L U M ~ are computationally indistinguishable from random non-
residues. A more general version states the same for all products of two primes.

288

1. Alice chooses n = pq .- D ~ u h i l ; , rciiieiiibers (J I , ~) , selects 1 + ZA, and sends

2. Bob cliooscs r c Z:, arid scrids z E r2(riiod 1 1) to Alice.
3. Alice chooses s randoiiily from llic four square roots of x arid sends s to Bob.
4. If s fr lhen Bob conclndes (0,O); otlicrwisc Dob factors n using gcd(r i- 5 , fa) ,

(u, (-1)V) to Bob.

computcs Ir = Q,, ((- I)V) , alld corlclutlcs (I , 6).

Fig. 1. Rnbiii’s Oblivious Transfcr prol.oco1: Alicc scnds 6 to Bob; k is a seccirity pa-
rameter.

4.2 An Early Iinpleineiitatioii

Figure 1 describes Rabin’s protocol for 01‘. for security parsmeter k . A flaw
noted long ago is that Bob might choose s in a different manner, obtaining
illegal information from the protocol: for esample, a square root of a number
whose roots he does not know. The simple correction is to require Bob to prove
in zero-knowledge that he already knows a square root of x. A second flaw is
tha t Alice may cheat by using a n 72 that is not a product of two primes; thus,
she too should prove in zero-knowledge that 7) is the product of two primes. The
corrected version satisfies a definition of OT using the property list given above,
assuming on the QRA; in fac t , i t satisfies 0111’ definitions given below, if Alice
must also prove she knows the two factors of 1 2 .

Unfortunately, Rabin’s protocol is inefficient: it requires Alice to generate a
new, large Blum integer for every bit to be transferred Furthermore, the secrecy
of b is not unconditional: it depends on Hob’s inability to determine quadratic
residuosity.

5 Breaking an Oblivious Transfer Protocol

At Eurocrypt ’91, den Boer Ell] presented a protocol (see Fig. 2) tha t requires
only one generation of a large product of two primes and that ensures the secrecy
of bit 1, unconditionally. In contrast to Rabin’s protocol, den Boer’s protocol
assumes that Bob knows the factors of 71 while Alice does not. Together, Alice
and Bob generate a number J “ a (where J is a nonrcsidue) whose residuosity is
random and unknown to Alice. Alice “encocles” b a5 z = Jb?; she sends t and
y = JCuz-l to Bob. If Q , (J c a) = 0. iinplyiiig that Qn(z> = Q,(y) = b , then
Bob can compute b , else he cannot.

The fundamental flaw in this protocol is that Alice can cheat by selecting
2 without knowing its residuosity, effectively transmitting some bit b without
knowing its value. This apparently innocuous flaw (“Who cares if Alice knows
less?”) is far more significant than it seems One main advantage to den Boer’s
protocol is that it does not require repeated generation of large Blum integers

289

BOER-OT(b, k)

1. Bob d~ooses n +- pq, rerneiiibers (p,y), selects a ionr residue J , selects a t Z;,
and sends (n, J, a) to Alice. Bob proves ill zero-kriowletlge that n is the product of
two primes and J is a noitresidue.

2. Alicc selects c +- {0,1] and 1’ +- 2: aiid sets P = J c u . Alice computes z =
r (mod n) and sets y = z ~ - ~ (i i i o d it). Alice sc ls (u, D) = (z,y) if 2 < y, else

(u , ,u) = (y, x). (This is eqiii\~aleitt 1.0 lakirig (; x , p) i n random order). She sends
(u, u) to Bob.

u or uv f Ju. Bob coiitliiit.cs Q,,(uu); i l 0, lie outputs
(1, Qn(u)) (“Ieceived Q , , (u) ”) , c l x IIC oiit,pii!,s (0,O) (“rcceivecl notliiiig”).

J & 2

3. Bob checks that uv

Fig. 2. Den Boer’s Oblivious Transfer protocol.

for every bit t o be sent; i t can also be used directly for st,ring-transfer (by using
the same a for many bits). But Alice can break thc protocol exactly in those sit-
uations where more than one bit must be transferred. Even though the protocol
may seem secure when used only onc,e, subtle flaws such as these preclude its use
as a black-box subroutine -- an essential propetty for cryptographic protocols.

To be concrete, let us consider the simple scenario described in $ 3 . Alice sends
bl and later sends b 2 . (We use subscripts 1 and 2 tmo denote the two executions.)
By directly asking Bob as described in $ 3 (or perhaps more realistically, by
observing Bob’s later behavior) Alice learns whether Bob received b2 or not -
without bcing told anything directly about, the result,s of sending b l . Because the
sending of b2 and bl should be independent, t>his should not really be a problem.

But a clever Alice misbehaves during the second execution, setting 2 2 +- a&
(where a1 was the value used for b l) . If Bob reports he received b z , then Alice
now knows that Q n (a l) = b z , so she can calculate prcciscly whether Bob received
bit b l !

Knowing that Alice can send bits without knowiiig tlieir value, the interested
reader is invited to consider other more and less suht,le ways to break the protocol
or a t least t o gain unfair advantage. Alice’s abilit,y t,o bluff her way through is
essential t o her attack.

2

The devil’s advocate may complain that Bob sliould never go along with Al-
ice’s later requests, t o prevent Alice from deducing anything. In this case, Bob’s
actions must always be completely independent of the results he obtains - this
includes cases where he detects cheating, since Alice can derive subtle and com-
promising information even from an accusation of cheating. This is an extremely
stringent handicap to put on a protocol, hardly applica.ble to any realistic situ-
ation. Protocols should be secure enough t,o be treated as black-boxes, called at
will and independently, without intcrdepeiidencies taha.t, compromise security.

290

6 Why OT Has Always Been Defined Incorrectly

Until now, the requirement that Alice know the bit b that she sends has not been
made explicit (to the best of our knowledge). Protocol BOER-OT fails exactly
for this reason. Rabin’s OT protocol survives because Alice knows the factors of
n and hence could calculate the effective bit b that she sent, even if she generated
numbers illegally. (Let us point out that even this assurance is subject to the
assumption that Alice’s proof of n E B L U ~ I ~ demonstrates knowledge of p and

Intuitively, bluffing allows Alice to observe effects that she could not predict
by herself. If we design a protocol that requires Alice’s attack to be transparen1
(namely, Alice’s effective bit b should be predictable from her view), then Alice
cannot play subtle games without knowing in advance what their effects will
be. Thus she does not gain inforniation to which she is not entitled. This is a
situation quite different from zero-knowledge

We could add “Alice knows b” to the list of pr3perties required by OT, but
we would have no guarantee that our human powers of observation have still not
overlooked some essential property. Instead, we turn to a single property, relatzwe
resilience, that defines exactly what i t mean5 for a real protocol to implement
an ideal specification, without having to list separate properties.

n).

7 Defining and Proving Security

We define a general security reduction among protocols that states precisely how
one protocol implements another securely and fault-tolerantly. We sketch results
developed in [3] for the information-theoretic setting and in [2] for resource-
bounded computation.

Information-Theoretic Security. Intuitively, protocol LY is as secure as pro-
tocol p if the attack of any allowed adversary A against a wreaks as much havoc
on p as on CY. Essentially, A gains the same information and wields the same
influence over correct outputs in ,8 as in a. Of course, A might not understand P
(e g . , p might have a different communication format), so we give it an interface
Z. The interface provides a convincing a-environment to A, attempting to bring
d to a final state as though A had really attacked a. At. the same time, Z attacks
p, getting the information it needs and attempting to induce the same results
in honest processors as when A attacks a. (These two goals are inseparable; Z
must achieve them simultaneously.) Thus the view of A (its information) and
the outputs of nonfaulty players (reflecting A’s influence on correctness) are the
same in both protocols. If ADV, is the set of allowable adversaries against CY and
ADVp that against ,O, Z(d) should of course be in ADVp.

An execution of a protocol CY with n players on inputs zl, . . . , zn (and aux-
iliary inputs al, . . . ,an for the players, a~ for A) induces some distribution on
outputs yi). . . , yn and views v1, . . . , vn of good players and the output/view YA

of A. We let [A, a] (x o a o a ~ , k) denote the distribution on (VA , y1,yz, . . . , yn),
namely on adversary-view and honest-outputs. Ranging over all possible inputs

291

and security parameters, this collection of distributions is an ensemble, [A, a].
When A is allowed to attack another protocol p through an interface Z, the
corresponding ensemble is denoted [Z(d), PI. The restriction to player outputs
(resp., adversary view) is denoted by subscript I’ (resp., YA).

[Aside: for technical reasons, we consider a slight modification allowing the
adversary to perform “post-protocol corruption,” namely to elect to compute and
corrupt even after the protocol is finished. In this case (and only in this case))
A receives dl p l a y e r outputs (but not views) and Z must continue to provide A
with accurate a-views whcn A corrupts new players. This tests the ability of Z
to create accurate a-views - which, technically, it is otherwise not required to
do after the protocol is finished. Without further explanation (but see [3]), such
strong interfaces permit us to prove that sequential protocol concatenation is
secure. The ensembles [A, a] and [Z(A) , /3] are defined to include the cases when
A elects post-protocol corruption.]

An interface is called parsimonious if it corrupts the same pattern of players
as that listed in the adversary-view TIA i t induces.

The following definition is a preliminary formalization of the notion that, if
effects of attacks on a match those of interface-assisted attacks on 0, then CY is
as secure as p.

Defini t ionl . Let ADV, denote a class of adversaries allowed to attack a. Pro-
tocol a is (info-theoretically) as resilient as p if there exists a parsimonious
interface Z such that, for all A E ADV,, we have Z (d) E ADVp and

Ideal Protocols. An ideal protocol contaliis one or inore trusted hosts that
are incorruptible. All desirable security properties are, by definition, observations
about an ideal situation. The ideal protocol I D (F) for function F consists
of a trusted host that accepts inputs, computes F , and returns the outputs.
The ideal OT protocol contains a trusted host that accepts b from Alice and
sends (1 , b) or (0,O) to Bob with equal probability; either player can send a
q u i t message to the host to abort the protocol. We shall declare a protocol
secure if it achieves what an ideal protocol achieves; but first, we consider some
computational issues.

Computational Issues. In the computational setting, we are worried about
obtaining information that is not efficiently computable, so we require that Z be
poly-time regardless of how it accesses A (e g . as a black-box, resettable black-
box, e t c .) . This restricts A’s information to be a feasible function of the infor-
mation Z gains in p. A subtle but crucial point to note is that in p , Z knows
explicitly the messages it sends; it cannot learn its effective inputs, because it
must send them itself. (We define “effective input” as the collection of messages
sent and received by Z, generalizing the intuitive but restricted notion.) To make
our mapping from cr to p accurate, we must require that A cannot discover its
effective inputs; it must know them.

292

To this end, we require a iranslator tha t maps progressive stages of A’s view
to the messages sent and received by Z in p. This approach to specifying effective
inputs from views generalizes the input-committal function introduced in 1989
by Beaver [2]. We consider sta.ges beca.use we must ensure that A knows its input
before receiving a response, ie. t,liat t,he execution of a corresponds temporally
to the execution of 4. To avoid notational inconvenience and save space, we
now restrict our attention to OT: wherc in the ideal protocol p = ID(OT),
Alice merely sends one message, and Bob merely receives one message. Thus
the issues of timing are simplified, and we require merely that a translator map
faulty Alice’s view (in a, the implementation) t’o the bit b tha t Z sends on her
behalf (likewise, the translator maps faulty Bob’s cv-view to the pair (0,O) or
(1, b) , a much simpler task).

Let 7 be a translator, namely a machine that (synchronously) maps VA

to the messages sent and received by 1. The ensemble [A, C U , ~ is induced by
running a attacked by A, a n d iiicluding tjhe outputs of 7 run on the views of
the participants (d and honest players). The enseinhle [A, /3] is now taken to
include the conversations (transcripts of messages sent and received) by A and
t h e honest players. The output b y ‘T should match t.he conversations.

Def in i t ion2 . A transparent in te r face is a n intwface-translator pair (T , 7).
Protocol Q is computa t iona l ly as resilient as I?, written a $ 8, if there exists
a transparent interface (2 , 7) such that:

z(A) E ADVp;
Z (d) is probabilistic polg-tiin?;
Z is parsimonious;
7 is probabilistic poly-time;
The effects of attacks on c1 match thost, for $:’

[d , a , 7] & [Z(A) .P] and [i l s a I I] ~ ~ x [Z (A) ,P]y ,

We remark specifically that, the eiitrrc r’rew of A is considered for trans-
parency. An alternate definition based on just the messages that d sends and
receives but not its internal hit,s (cf. “traffic” i n [16]) would imply that, there ex-
ists absolutely no protocol for O T - nor could there he any secure encryption,
for that matter.

Def in i t ion3 . We say a implcments j3 if Q p and 0 a.

Defin i t ion4 . Protocol LY is a resilient protocol for F if i t implements the
ideal protocol for F . Protocol N is a resilient OT protocol if i t implements
the ideal protocol for OT.

’ The requirement that [A, a, I]). =: [Z(A), ,!3]1* (i e . statist ical indistinguishability of
nonfaulty outputs) addresses an ongoing philosophical debate: should an answer be
mathematically correct or just indistinguishable from a correct answer? There are
pros and cons, but the important point, is t h a t this decision is independent of the
rest of the definition. Compare Beaver, hficali. and Kogaway in [a].

293

We remark for the interested reader that these definitions support proofs that
resilience is transitive and that sequent,ial (black-box) coinpositions preserve
resilience (see [l , 31).

Let us also remark that the inclusion of a translator provides a notion of
security more stringent than ot,herwise necessary: the theory stands on its own if
the translator is omitted, as long as we continue to require that Z be poly-time.
Even if we do not require the translator, the arguments of $8 show that a proof
of security - ze. a satisfactory interface cannot be found. But the translator
helps make it explicit that the adversary must know the effect,ive inputs it uses,
and it provides a useful tool to detect vulnerabilit,y to bluffing attacks.

8 Finding and Fixing Security Holes

In an at tempt to find a transparent int.rrface that maps attacks on protocol
BOER-OT to attacks on the ideal OT protocol, two problems arose. We consider
primarily the harder situation, when A chooses to corrupt Alice.

The first is fixable: how would Z come up wit11 bit b to send to the trust8ed
host? Interface Z could create an “environment“ for an adversary A that ma-
nipulates Alice, by playing the role of Bob. The problem is t,hat Z would then
obtain bit b from A only half the t,ime, so it might have to “reset” A until Z gets
the bit b that A sends. Then Z can send this bit to the trusted host, and in the
ideal protocol, Bob receives it with probability 4. Clearly, Z is poly-time.

The second problem is inescapable. Even though Z can send bits t o the
trusted host with the same probability as A (heuce inducing a correct distribu-
tion on final outputs in the ideal scenario), it, does not make A’s attack trans-
parent: A might not be able to compute the bit b it effectively sent. Provably,
no polynomial-time machine M can determine whether Z sends 0 or 1 t o the
trusted host, based on A’s view. Assume otherwise; consider an adversary A
that makes Alice generate 2 at random. Then the output of M must be Qn(z.),
which is what the interface passes on to the trusted host. Intuitively, the output
of M is the effective bit that corrupt Alice sends. But this would mean that
Quadratic Residuosity is not hard. Thus:

- Either the QRA is untrue and protocol BOER-OT is therefore invalid, or
- the QRA is true and the protocol is insecure because Alice’s view is not

translatable, ie . because i t fails to have a t,ransparent, interface, ie. because
i t permits a “bluffing” attack in which Alice does iiot know 6 .

8.1 How to Fix den Boer’s Protocol

Clearly, we must require Alice to prove that she k n o w Q n (e c) or Q n (v) . I t is a
fairly straightforward exercise to come up with a direct number-theoretic method
for Alice to demonstrate such knowledge without revealing whether u is 1: or y
(we may adapt [13] to these purposes, which is especially suitable because the
verifier has already generated a suitable 77). Note, horvrver, that this significantly

294

increases the round complexity and message complexity of the protocol. Fortu-
nately, many such demonstrations can he done in parallel. Fortunately as well,
it seems that the added computations seem less expensive than the alternative:
generating many large Bliirn integers. Our main theorem becomes:

BB-OT(b, k)

1. Bob chooses n = p q +- BLUMI-, rc~~~crr~hers (j l , q) , selects a c ZR, and sends (n,a)
to Alice. Bob provcs i n zero-knowlcdge that n E B L U M ~ .

2. Alicc selects c c { 0 , 1) a id .r +- Z:, slid setk z = (-l)Ca. Alice computes z =
(-l)*r2(inod n) and sets y = z ~ - ’ (i r ~ o d) a) . Alicc scts (u , ~) = (z ,y) if z < y,
elsc (zI,u) = (y, I). she scnds (f i , ~ ~) lo 13011 altd provcs ill zero-knowledge that she
knows the residuosily of one of t t or ‘u.

fn(lnocl . I $) . Uoh cornputcs Qn(uu); it 0, he outputs
(1 , Ql,(u)) (“reccived Q , , (i t) ”) , else hc oulpuLs (O,O) (‘received nothing“).

3. Bob checks that uu

I Fig. 3. Our corrections t o den Uocr’s protocol, along with somc modifications. (“BB”
reprcseiits ‘Bcaver/Boer“ or “Boer/ Bpaver .”)

Theorem5. There exists n n c f i c i e n t protocol for O T that is cornputationally
resilient .

Proof Sketch. Figure 3 out,lines t,hr rorrectlPtl protocol. We can now find a
transparent interface and prove the modified version secure. If A corrupts Alice,
Z simulates Bob internally and corrupts ideal-Alice. Whenever Alice fails to prove
that she knows how (u , u) was constructed (ze. that she knows b) , Z sends quit
to the trusted host, causing idea,l-Bob t80 out,put ABORT, just as the “real” Bob
does. If the proof succeeds, then the int,erface can in fact derive the bit b from
Alice’s view (briefly: by resetting a copy of A and making different challenges,
thereby extracting b) , and i t sends b to the trusted host. Because the proof of
knowledge is such that a successful proof indicates b can be efficiently extracted
from A’s view, not only Z but 7 as well can extract Z’s message b in poly-time.

If A corrupts Bob, Z corrupt,s ideal-Bob in ID(0T) and obtains (0,O) or (1, b)
from the trusted host. Z plays the part of Alice in BB-OT. If Z got (O , O) , i t plays
using b = 0 and resets A until i t fails t o receive the bit. If T got (1, b) , it plays
using b and resets A until it does rfxeive a bit. Ignoring detectable cheating,
these require one expected reset. If A tries to cheat, then with equal probability,
Z resets A or accepts the cheating and sends quit t o the trusted host, so that
honest-ideal-Alice outputs abort with t,he same probability as honest-real-Alice.
0

295

Some Remarks. One must be ext,remely careful i n formalizing the notion of
“proof of knowledge.” It is quite easy to come up wi th a notion that seems fine
in isolation but which fails when protocols are executed i n pa.ralle1, unless some
identification scheme is available.

An interesting flaw in R.abin’s protocol comes to light when one applies our
definitions to parallel executions. Alt,liough provably secure individually or in se-
quential composition, Rabin’s protocol (even wi th corrections) is insecure when
used in parallel, unless some identification scheme is available. One serious prob-
lem is that a proof that n is the product, of two primes is not, exactly a proof
that Alice knows those two primes. A full description of the attack and of neces-
sary conditions to ensure the resilience of parclllrl composition exceeds our space
bounds here but is forthcoming [4].

It should be clear that deriving b from Alice’s ilieui is possible when she
gives a satisfying proof of knowledge. \,Ve enipha.size that, deriving 6 from Alice’s
conversation should never be easy, or else Rob could do it himself. In this case,
one must define input-comniittal/trai~spa~ency with respect to views.

8.2 Yet Another Protocol

We mention an O T protocol developed by the author with Nicol So, which led the
author to den Boer’s protocol and inspired tliic, paper Like den Boer’s protocol,
this O T protocol does not require repeated gentmtion of large Blurn integers.2

1. Bob chooses n = pp c- B L U M ~ , remember5 (p , q) $ selccts u - Z i , and sends
(R, u) to Alice. Bob proves in zero-knowledge that 77 E B L U M ~ .

2. Alice chooses T + ZS, and randoin bit d , coinputes : = [(-l)du]br2(rnod n),
and sends (d , z) to Bob. She proves that ; na.; conlputed properly and that
she knows (b , T) .

3 . Bob concludes (d @ Qn(a), (d @ Qn(u)] Q,,(x))? meaning. if d = Qn(a>, Bob
received nothing; else he received Q , ? (z) = 6

Like the corrected BOER-OT protocol, this protocol requii’es that Alice demon-
strate that she behaved and that she knows b

9 Conclusion

We have found and fixed a flaw in a recently publislied protocol for Oblivious
Transfer [ll]. The flaw was found by a.pplying a new, robust definition for security
and fault-tolerance, which we ca.11 resiliei>ce. Resilience expresses the idea that
one protocol is as secure as another if the result4s of at.tacks on t,he first are the
same as those on the second. Using our dehiit,ions. we were able to identify the
flaw quickly and even to give a direct fis for i t .

A correction for the flawed sbep int,rocluces a significaiit amount of commu-
nication, but in practical and computat.iona1 t,erms it seeins less costly than

References to any other appearances of t.liis or simi1a.r protocols would be greatly
appreciated.

296

repeatedly generating large products of two primes. N’e have recently developed
a non-generic proof of knowledge optimized specifically for this OT protocol [5],
performing much better than using a generic proof of knowledge to correct the
protocol. Thus, we believe that the computational advantages of den Boer’s el-
egant OT protocol can be salvaged, and we can provide provably-secure OT at
low cost.
Acknowledgements. Thanks to Nicol So for many discussions of OT. Thanks
to Claude Crkpeau for pointing out den Boer’s paper.

References

1. D. Beaver. Security, Fault T o l e i ~ m c e , a n d Communication Complera’ty in
Distributed Systems . Pli D Thesis, H arvard University, Cambridge, 1990.

2. D. Beaver. “Formal Definitions for Secure Distributed Protocols.” Proceed-
ings of the DIMA CS Workshop or1 Distributed Computing and Cryptography,
Princeton, NJ, October! 1989, J . Feigenbaum, M. Merritt (eds.).

3 . D. Beaver. “Foundations of Secure Int,eractive Computing.” Proceedings of
Crypto 1991, 377-391.

4. D. Beaver. “The Security of Protocols Executed in Parallel.” In preparation.
5 . D. Beaver. “Efficient and Provably Securt- Oblivious Transfer.” Manuscript,

1992.
6. D. Beaver, S. Goldwasser. “Multiparty Computat,ion with Faulty Majority.”

Proceedings of the 3 0 f h FOCS, IEEE, 1989, 468-473.
7. D. Beaver, S. Haber. “Cryptographic Protocols Provably Secure Against

Dynamic Adversaries.” Eurocrypt 1992.
8. D. Beaver, S. Micali, P. Rogaway. ”The Round Complexity of Secure Pro-

t~cols.” Proceedings of the 22”‘ STOC, ACM, 1990, 503-513.
9. C. Bennett, G. Brassard, C. Crepeau, hl. Skubiszewska. “Practical Quantum

Oblivious Transfer.” Proceccliriys of Cryptto 1991, 351-366.
10. M. Blum. “HOW to Exchange (Secret,) Iieys.” ACM Trans. Cornput. SYS.

1:2, May, 1983, 175-193.
11. B. den Boer. “Oblivious Transfer Protccting Secrecy.” Proc. of Eurocrypt

12. G. Brassard, D. Chaum, C. Crhpeau. “Minimum Disclosure Proofs of Knowl-
edge.” J . Cornput. System Sci. 37 (1988), 1.56-189.

13. G . Brassard, C. Crgpeau. “Non-Transitive Transfer of Confidence: A Perfect
Zero-Knowledge Interactive Protocol for SAT and Beyond.” Proceedings of
the 27th FOCS, IEEE, 1986, 188-795.

14. S. Goldwasser, S. Micali, C. Kackoff. “The Knowledge Complexity of Inter-
active Proof Systems.” S1.4hf J . Cornput. 18:l (1989), 186-208.

15. J. Kilian. “Founding Cryptography 011 Oblivious Transfer.” Proceedings of
the 20th STOC, ACM, 1988, 20-29.

16. S. Micali, P. Rogaway. “Secure Computation.” Proc. of Crypto 1991, page
9.8 [sic], and incomplete preliminary version distributed at conference.

17. M. Rabin. “How to Exchange Secrets by Oblivious Transfer.” TR-81, Har-
vard, 1981.

18. A. Yao. “Protocols for Secure Computations.” Proceedings of the 23‘d
FOCS, IEEE, 1982, 160-164.

1991, 31-45.

	Introduction
	Oblivious Transfer: the Tradit ioiial Approach
	Oblivious Transfer in an Ideal World
	Oblivious Transfer: Background
	Notes on Cryptography
	An Early Iinpleineiitatioii

	Breaking an Oblivious Transfer Protocol
	Why OT Has Always Been Defined Incorrectly
	Defining and Proving Security
	Finding and Fixing Security Holes
	How to Fix den Boer’s Protocol
	Yet Another Protocol

	Conclusion
	References

