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Abstract. 

We show how to break a protocol for Oblivious Transfer presented at Euro- 
crypt 90 [ll]. Armed with a new set of definitions for proving the security of 
interactive computations, we found difficulties in proving the  protocol secure. 
These difficulties led us to a simple attack that breaks the OT protocol in 
a subtle but  fundamental way. The t n o r  that we found may be present in a 
wide variety of secure protocols. It reveals a fundament a1 flaw in the traditional 
definition of Oblivious Transfer itself. 

1 Introduction 

Solid proofs are a lacking but essential requirement for cryptography. Whereas 
a failed claim in complexity theory might mean an algorithm gives errors some- 
times, a failed claim to  security might provide a huge potential for malicious 
destruction of data,  resources, and dependability. 

Proofs are often lacking because clear and simple definitions are hard to 
come by. The  vaIue of good definitions goes beyond the confidence they inspire 
in proven results. When good definitions are present, a coiicise proof can usually 
be found; the lack of one, or the difficulty of finding one, often indicates that  a 
theorem is incorrect. In fact, truly clear definit,ions and proof techniques often 
turn up counterexamples when applied to an incorrect conjecture. 

In [I, 31, Beaver proposed a concise set of definit,ions that  provide not only a 
clear, intuitive understanding of security in interactive protocols but  that sup- 
port direct and modular proofs, In this paper, we show how these definitions 
revealed a subtle flaw in a protocol cla.imed t.0 be “provably” secure. 

We consider the problem of Oblivious Transfer (OT),  a fundamental crypto- 
graphic problem introduced by Rabin [IT]. OT is a t.wo-party protocol in which 
Alice transmits a bit b t o  Bob, and Bob receivcs the hit with probability $. Al- 
ice must not learn whether Bob received t,he bit,. OT forms the basis for a wide 
variety of cryptographic protocols [IS, 15, 6, HI. 

Based on assuming that  determining quadratic residuosity is hard,  Rabin 
suggested an elegant but  inefficient protocol for OT, requiring the generation of 
a large integer n = p q  (with p, q prime) for each bit to  be sent [17]. 

Den Boer suggested an efficient protocol for OT in Eurocrypt ’91 [ll], relying 
on the same assumption but allowing the re-use of 11, and elisuring unconditional 
security of b .  We show that  this protocol is insecure. 
R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT ’92, LNCS 658, pp. 285-296, 1993 
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The flaw is that  Alice can send a bit b without knowing what b is - poten- 
tially giving her information about, the quadratic residuosity of numbers of her 
choice, without her knowing t,he fact,ors of 7 1 .  In fact, after a single transfer she 
may be able to break all subsequent transfers. 

Interestingly, the protocol 2s provably secure according to the tradit,ional list 
of required security properties, if one confirms “Alice does not learn whether 
Bob received b” using the approach of of zero-knowledge [14]. As we shall see, 
zero-knowledge is insufficient a.s as a measure of t,he security of O T  (and of other 
protocols). Rabin’s protocol (apparently sercndipitously) does not suffer from 
the same problem, but our analysis shows how to break Rabin’s protocol in a 
network of three or more players. 

Instead of proposing a new requireinelit for OT, we define the security of 
OT according to  a unifying propert,y called resilience. Resilience captures all 
known security properties and, we submit, it implies all security properties a 
priori. Unforeseen properties such as transparency (the inability to  bluff) arise 
as newly-observed implications of our unified definition, as this paper exemplifies. 

Using resilience, we were a.ble to expose the subtle flaw in the OT protocol 
within minutes. We fix the flaw and sketch a proof of security, thus salvaging 
den Boer’s brilliant idea and providiiig an efficient protocol for Oblivious Trans- 
fer. 

2 

Traditionally, the goal of Oblivious Transfer is to find a protocol satisfying certain 
properties: 

Oblivious Transfer: the Tradit ioiial Approach 

1. Alice sends bit b but dkes not know whether Bob receives i t ;  
2. Bob receives ( 1 , b )  or (0,O) [resp. “received h” or “got nothing”] with equal 

3. Both players can abort t,he protocol by deviating from it  in a syntactic sense 

The  usual formalization of “no additional information” or “does not know” uses 
a zero-knowledge approach: a simulator must demonstrate that  Alice (or Bob) 
could generate an  accurate view of the interaction based only on given, limited 
information. But zero-knowledge is not enough to  guarantee that  Alice learns 
nothing. 

We show that  a previously-overlooked property is essential, namely that  Alice 
not be able to  bluff her way through the protocol: 

4.  Alice must know the effective bit b slit: sends. 

probability, but receives no a.dditionx1 information; 

( e g .  Alice does not send 0/1 or Bob sends “quit”).  

Rather than adding to  a potentially iiicomplcte list of properties, we examine 
a single property, resilience, which implies (1)-(4) above and, by virtue of its 
clarity and wide applicability, seems to capture properties as yet unobserved. 

A simple and direct fix for protocols lackiiig property (4) is t o  require Alice 
to  give a zero-knowledge proof t,hat she knows her effective input b. This turns 
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out to be sufficient to construct a protocol secure under our unified definition. 
First, however, let us examine why the ability to bluff should be restricted and 
how it can be used to break den Boer's protocol. 

3 Oblivious Transfer in an Ideal World 

In the ideal case, Alice would give b to a trusted host (noisy channel) that  would 
then send (1, b )  or (0,O) to Bob with equal probability. without informing Alice 
which one it sent. In a very real sense, the goal of Oblivious Transfer is to 
implement this ideal protocol without having a trusted host available. 

Imagine for the moment that a trusted host, is available - perhaps in the 
form of a quantum channel [9]. Consider the following scenario: Alice sends bl 

to Bob, and later says, "I think I got sotne static on the line; can we test it?" 
Bob agrees, and Alice sends a second bit b p ,  and Bob reports his second result 

Certainly, in the ideal case, Alice would not learn anything about the results 
of the first execution, eg. whether Bob received b l  or not. Any implementation 
of OT should not allow later executions to compromise earlier ones, even when 
Bob reveals the later results. 

((0,O) or (1: b ? ) ) .  

4 Oblivious Transfer: Background 

4.1 Notes on Cryptography 

A Blum integer is a product n = p q  of two equally-sized primes of the form 
p = 4 k  $ 3 ,  q = 41+3; let B L U M ~  be the set of such numbers of size k. A number 
3: is a quadratic residue (mod n)  iff it has a square root (mod n) .  The integers 
modulo Blum integer n having Jacobi symbol $1 form a multiplicative group, 
Z:, of which half are residues. Define Qn(z) = 0 iff r E Z,+ is a residue, or 1 if 
not; note Qn(ab) = Qn(.) 8 Q n ( b ) .  For Blum integers. Qn(-1) = 1. 

The notation z + X indicates r is sampled uniformly at  random from set 
X .  An ensemble is a function mapping a pair ( 2 %  k). with z E C* and k E N,  
to a distribution on strings of size at most ( I ~ l k ) ~  for sonic c. If P and Q are 
ensembles, and if M is a T M  or function, define the distinguishing power of 
M to be 

SM(Z, k) sf IPr [ M ( P ( z ,  I;)) = 11 - Pr [A\ i (Q(z l  Ic) = 1)]1. 

Ensembles P and Q are statistically indistinguishable, written P x Q, if 
for all functions M ,  and for all I and c ,  6 ~ ( z ,  k) = O(k-')) .  Ensembles P and Q 
are computationally indistinguishable, written PSQ, if for all probabilistic 
poly-time TM's M ,  and for all z and c, S,W(Z, k) = O(k-')). 

The Quadratic Residuosity Assumption (QRA) states that random 
residues in B L U M ~  are computationally indistinguishable from random non- 
residues. A more general version states the same for all products of two primes. 
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1. Alice chooses n = pq .- D ~ u h i l ; ,  rciiieiiibers ( J I , ~ ) ,  selects 1 + ZA, and sends 

2. Bob cliooscs r c Z:, arid scrids z E r2(riiod 1 1 )  to Alice. 
3. Alice chooses s randoiiily from llic four square roots of x arid sends s to Bob. 
4.  If s fr lhen Bob conclndes (0,O); otlicrwisc Dob factors n using gcd(r i- 5 ,  fa) ,  

(u, ( -1 )V )  to Bob. 

computcs Ir = Q,, ( ( - I )V) ,  alld corlclutlcs ( I ,  6). 

Fig. 1. Rnbiii’s Oblivious Transfcr prol.oco1: Alicc scnds 6 to Bob; k is a seccirity pa- 
rameter. 

4.2 An Early Iinpleineiitatioii 

Figure 1 describes Rabin’s protocol for 01‘. for security parsmeter k .  A flaw 
noted long ago is that  Bob might choose s in a different manner, obtaining 
illegal information from the protocol: for esample, a square root of a number 
whose roots he does not know. The simple correction is to require Bob to prove 
in zero-knowledge that  he already knows a square root of x. A second flaw is 
tha t  Alice may cheat by using a n  72 that is not a product of two primes; thus, 
she too should prove in zero-knowledge that 7) is the product of two primes. The  
corrected version satisfies a definition of OT using the property list given above, 
assuming on the  QRA; in fac t ,  i t  satisfies 0111’ definitions given below, if Alice 
must also prove she knows the two factors of 1 2 .  

Unfortunately, Rabin’s protocol is inefficient: it requires Alice to  generate a 
new, large Blum integer for every bit to be transferred Furthermore, the secrecy 
of b is not unconditional: it depends on Hob’s inability to  determine quadratic 
residuosity. 

5 Breaking an Oblivious Transfer Protocol 

At Eurocrypt ’91, den Boer Ell] presented a protocol (see Fig. 2) tha t  requires 
only one generation of a large product of two primes and that  ensures the secrecy 
of bit 1, unconditionally. In contrast to Rabin’s protocol, den Boer’s protocol 
assumes that  Bob knows the factors of 71 while Alice does not. Together, Alice 
and Bob generate a number J “ a  (where J is a nonrcsidue) whose residuosity is 
random and unknown to Alice. Alice “encocles” b a5 z = Jb?; she sends t and 
y = JCuz-l  to Bob. If Q , ( J c a )  = 0. iinplyiiig that Qn(z> = Q,(y) = b ,  then 
Bob can compute b ,  else he cannot. 

The fundamental flaw in this protocol is that Alice can cheat by selecting 
2 without knowing its residuosity, effectively transmitting some bit b without 
knowing its value. This apparently innocuous flaw (“Who cares if Alice knows 
less?”) is far more significant than it seems One main advantage to  den Boer’s 
protocol is that  it does not require repeated generation of large Blum integers 
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BOER-OT(b, k) 

1. Bob d~ooses n +- pq, rerneiiibers (p,y), selects a  ionr residue J ,  selects a t Z;, 
and sends (n, J, a) to Alice. Bob proves ill  zero-kriowletlge that n is the product of 
two  primes and J is a noitresidue. 

2. Alicc selects c +- {0,1]  and 1’ +- 2: aiid sets P = J c u .  Alice computes z = 
r (mod n) and sets y = z ~ - ~ ( i i i o d  it). Alice sc ls  (u, D) = (z,y) if  2 < y, else 

( u ,  ,u) = (y, x). (This is eqiii\~aleitt 1.0 lakirig ( ; x ,  p) i n  random order). She sends 
(u, u )  to Bob. 

u or  uv f Ju. Bob coiitliiit.cs Q,,(uu);  i l  0, lie outputs 
(1, Qn(u)) (“Ieceived Q , , ( u ) ” ) ,  c l x  IIC oiit,pii!,s (0,O) (“rcceivecl notliiiig”). 

J &  2 

3. Bob checks that uv 

Fig. 2. Den Boer’s Oblivious Transfer protocol. 

for every bit t o  be sent; i t  can also be used directly for st,ring-transfer (by using 
the same a for many bits). But Alice can break thc protocol exactly in those sit- 
uations where more than one bit must be transferred. Even though the protocol 
may seem secure when used only onc,e, subtle flaws such as these preclude its use 
as a black-box subroutine -- an essential propetty for cryptographic protocols. 

To be concrete, let us consider the simple scenario described in $ 3 .  Alice sends 
bl and later sends b 2 .  (We use subscripts 1 and 2 tmo denote the two executions.) 
By directly asking Bob as described in $ 3  (or perhaps more realistically, by 
observing Bob’s later behavior) Alice learns whether Bob received b2 or not - 
without bcing told anything directly about, the result,s of sending b l .  Because the 
sending of b2 and bl  should be independent, t>his should not really be a problem. 

But a clever Alice misbehaves during the second execution, setting 2 2  +- a& 
(where a1 was the value used for b l ) .  If Bob reports he received b z ,  then Alice 
now knows that  Q n ( a l )  = b z ,  so she can calculate prcciscly whether Bob received 
bit b l !  

Knowing that Alice can send bits without knowiiig tlieir value, the interested 
reader is invited to  consider other more and less suht,le ways to  break the protocol 
or a t  least t o  gain unfair advantage. Alice’s abilit,y t,o bluff her way through is 
essential t o  her attack. 

2 

The devil’s advocate may complain that Bob sliould never go along with Al- 
ice’s later requests, t o  prevent Alice from deducing anything. In this case, Bob’s 
actions must always be completely independent of the results he obtains - this 
includes cases where he detects cheating, since Alice can derive subtle and com- 
promising information even from an accusation of cheating. This is an  extremely 
stringent handicap to  put on a protocol, hardly applica.ble to  any realistic situ- 
ation. Protocols should be secure enough t,o be treated as black-boxes, called at 
will and independently, without intcrdepeiidencies taha.t, compromise security. 
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6 Why OT Has Always Been Defined Incorrectly 

Until now, the requirement that Alice know the bit b that she sends has not been 
made explicit (to the best of our knowledge). Protocol BOER-OT fails exactly 
for this reason. Rabin’s OT protocol survives because Alice knows the factors of 
n and hence could calculate the effective bit b that she sent, even if she generated 
numbers illegally. (Let us point out that even this assurance is subject to the 
assumption that Alice’s proof of n E B L U ~ I ~  demonstrates knowledge of p and 

Intuitively, bluffing allows Alice to observe effects that she could not predict 
by herself. If we design a protocol that requires Alice’s attack to  be transparen1 
(namely, Alice’s effective bit b should be predictable from her view), then Alice 
cannot play subtle games without knowing in advance what their effects will 
be. Thus she does not gain inforniation to which she is not entitled. This is a 
situation quite different from zero-knowledge 

We could add “Alice knows b” to the list of pr3perties required by OT, but 
we would have no guarantee that our human powers of observation have still not 
overlooked some essential property. Instead, we turn to a single property, relatzwe 
resilience, that defines exactly what i t  mean5 for a real protocol to implement 
an ideal specification, without having to list separate properties. 

n). 

7 Defining and Proving Security 

We define a general security reduction among protocols that states precisely how 
one protocol implements another securely and fault-tolerantly. We sketch results 
developed in [3] for the information-theoretic setting and in [2] for resource- 
bounded computation. 

Information-Theoretic Security. Intuitively, protocol LY is as secure as pro- 
tocol p if the attack of any allowed adversary A against a wreaks as much havoc 
on p as on CY. Essentially, A gains the same information and wields the same 
influence over correct outputs in ,8 as in a.  Of course, A might not understand P 
( e g . ,  p might have a different communication format), so we give it an interface 
Z. The interface provides a convincing a-environment to A, attempting to bring 
d to a final state as though A had really attacked a. At. the same time, Z attacks 
p, getting the information it needs and attempting to induce the same results 
in honest processors as when A attacks a.  (These two goals are inseparable; Z 
must achieve them simultaneously.) Thus the view of A (its information) and 
the outputs of nonfaulty players (reflecting A’s influence on correctness) are the 
same in both protocols. If ADV, is the set of allowable adversaries against CY and 
ADVp that against ,O, Z(d)  should of course be in ADVp. 

An execution of a protocol CY with n players on inputs zl, . . . , zn (and aux- 
iliary inputs al, . . . ,an for the players, a~ for A) induces some distribution on 
outputs yi). . . , yn and views v1, . . . , vn of good players and the output/view YA 

of A. We let [A, a ] ( x  o a o a ~ ,  k) denote the distribution on (VA , y1,yz, . . . , yn),  
namely on adversary-view and honest-outputs. Ranging over all possible inputs 
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and security parameters, this collection of distributions is an ensemble, [A, a]. 
When A is allowed to attack another protocol p through an interface Z, the 
corresponding ensemble is denoted [Z(d), PI. The restriction to player outputs 
(resp., adversary view) is denoted by subscript I’ (resp., YA). 

[Aside: for technical reasons, we consider a slight modification allowing the 
adversary to perform “post-protocol corruption,” namely to elect to compute and 
corrupt even after the protocol is finished. In this case (and only in this case)) 
A receives dl p l a y e r  outputs (but not views) and Z must continue to provide A 
with accurate a-views whcn A corrupts new players. This tests the ability of Z 
to create accurate a-views - which, technically, it is otherwise not required to 
do after the protocol is finished. Without further explanation (but see [3]), such 
strong interfaces permit us to prove that sequential protocol concatenation is 
secure. The ensembles [A, a] and [Z(A) ,  /3] are defined to  include the cases when 
A elects post-protocol corruption.] 

An interface is called parsimonious if it corrupts the same pattern of players 
as that listed in the adversary-view TIA i t  induces. 

The following definition is a preliminary formalization of the notion that, if 
effects of attacks on a match those of interface-assisted attacks on 0, then CY is 
as secure as p. 

Defini t ionl .  Let ADV, denote a class of adversaries allowed to attack a. Pro- 
tocol a is (info-theoretically) as resilient as p if there exists a parsimonious 
interface Z such that, for all A E ADV,, we have Z ( d )  E ADVp and 

Ideal Protocols. An ideal protocol contaliis one or inore trusted hosts that 
are incorruptible. All desirable security properties are, by definition, observations 
about an ideal situation. The ideal protocol I D ( F )  for function F consists 
of a trusted host that accepts inputs, computes F ,  and returns the outputs. 
The ideal OT protocol contains a trusted host that accepts b from Alice and 
sends ( 1 , b )  or (0,O) to Bob with equal probability; either player can send a 
q u i t  message to the host to abort the protocol. We shall declare a protocol 
secure if it achieves what an ideal protocol achieves; but first, we consider some 
computational issues. 

Computational Issues. In the computational setting, we are worried about 
obtaining information that is not efficiently computable, so we require that Z be 
poly-time regardless of how it accesses A ( e g .  as a black-box, resettable black- 
box, e t c . ) .  This restricts A’s information to be a feasible function of the infor- 
mation Z gains in p. A subtle but crucial point to note is that in p ,  Z knows 
explicitly the messages it sends; it cannot learn its effective inputs, because it 
must send them itself. (We define “effective input” as the collection of messages 
sent and received by Z, generalizing the intuitive but restricted notion.) To make 
our mapping from cr to p accurate, we must require that A cannot discover its 
effective inputs; it must know them. 
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To this end, we require a iranslator tha t  maps progressive stages of A’s view 
to the messages sent and received by Z in p. This approach to  specifying effective 
inputs from views generalizes the input-committal function introduced in 1989 
by Beaver [2]. We consider sta.ges beca.use we must ensure that  A knows its input 
before receiving a response, ie. t,liat t,he execution of a corresponds temporally 
to the execution of 4. To avoid notational inconvenience and save space, we 
now restrict our attention to  OT: wherc in  the ideal protocol p = ID(OT), 
Alice merely sends one message, and Bob merely receives one message. Thus 
the issues of timing are simplified, and we require merely that  a translator map 
faulty Alice’s view (in a, the implementation) t’o the bit b tha t  Z sends on her 
behalf (likewise, the translator maps faulty Bob’s cv-view to  the pair (0,O) or 
(1, b ) ,  a much simpler task). 

Let 7 be a translator, namely a machine that  (synchronously) maps VA 

to  the messages sent and received by 1. The ensemble [A, C U , ~  is induced by 
running a attacked by A, a n d  iiicluding tjhe outputs of 7 run on the views of 
the participants (d and honest players). The enseinhle [A, /3] is now taken to  
include the conversations (transcripts of messages sent and received) by A and 
t h e  honest players. The output b y  ‘T should match t.he conversations. 

Def in i t ion2 .  A transparent in te r face  is a n  intwface-translator pair (T ,  7). 
Protocol Q is computa t iona l ly  as resilient as I?,  written a $ 8, if there exists 
a transparent interface ( 2 , 7 )  such that:  

z(A)  E ADVp; 
Z ( d )  is probabilistic polg-tiin?; 
Z is parsimonious; 
7 is probabilistic poly-time; 
The  effects of attacks on c1 match thost, for $:’ 

[ d , a , 7 ]  & [Z(A) .P]  and [ i l s a I I ] ~ ~  x [Z (A ) ,P ]y ,  

We remark specifically that, the eiitrrc r’rew of A is considered for trans- 
parency. An alternate definition based on just the messages that  d sends and 
receives but not its internal hit,s (cf. “traffic” i n  [16]) would imply that, there ex- 
ists absolutely no protocol for O T  - nor could there he any secure encryption, 
for that  matter. 

Def in i t ion3 .  We say a implcments j3 if Q p and 0 a.  

Defin i t ion4 .  Protocol LY is a resilient protocol for F if i t  implements the 
ideal protocol for F .  Protocol N is a resilient OT protocol if i t  implements 
the ideal protocol for OT. 

’ The requirement that  [A, a, I]). =: [Z(A),  ,!3]1* ( i e .  statist ical  indistinguishability of 
nonfaulty outputs) addresses an ongoing philosophical debate: should an answer be 
mathematically correct or just indistinguishable from a correct answer? There are 
pros and cons, but the important point, is t h a t  this decision is independent of the 
rest of the definition. Compare Beaver, hficali. and Kogaway in [a]. 



293 

We remark for the interested reader that  these definitions support proofs that  
resilience is transitive and that  sequent,ial (black-box) coinpositions preserve 
resilience (see [ l ,  31). 

Let us also remark that  the inclusion of a translator provides a notion of 
security more stringent than ot,herwise necessary: the theory stands on its own if 
the  translator is omitted, as long as we continue to  require that  Z be poly-time. 
Even if we do not require the translator, the arguments of $8 show that  a proof 
of security - ze. a satisfactory interface cannot be found. But the translator 
helps make it explicit that  the adversary must know the effect,ive inputs it uses, 
and it provides a useful tool to  detect vulnerabilit,y to bluffing attacks. 

8 Finding and Fixing Security Holes 

In  an at tempt  to  find a transparent int.rrface that maps attacks on protocol 
BOER-OT to attacks on the ideal OT protocol, two problems arose. We consider 
primarily the harder situation, when A chooses to corrupt Alice. 

The first is fixable: how would Z come up wit11 bit b to send to the trust8ed 
host? Interface Z could create an “environment“ for an adversary A that  ma- 
nipulates Alice, by playing the role of Bob. The problem is t,hat Z would then 
obtain bit b from A only half the t,ime, so it might have to  “reset” A until Z gets 
the bit b that  A sends. Then Z can send this bit to the trusted host, and in the 
ideal protocol, Bob receives it with probability 4. Clearly, Z is poly-time. 

The second problem is inescapable. Even though Z can send bits t o  the 
trusted host with the same probability as A (heuce inducing a correct distribu- 
tion on final outputs in the ideal scenario), it, does not make A’s attack trans- 
parent: A might not be able to compute the bit b it effectively sent. Provably, 
no polynomial-time machine M can determine whether Z sends 0 or 1 t o  the 
trusted host, based on A’s view. Assume otherwise; consider an adversary A 
that  makes Alice generate 2 at random. Then the output of M must be Qn(z.), 
which is what the interface passes on to  the trusted host. Intuitively, the output 
of M is the effective bit that  corrupt Alice sends. But this would mean that  
Quadratic Residuosity is not hard. Thus: 

- Either the QRA is untrue and protocol BOER-OT is therefore invalid, or 
- the  QRA is true and the protocol is insecure because Alice’s view is not 

translatable, ie .  because i t  fails to have a t,ransparent, interface, ie. because 
i t  permits a “bluffing” attack in which Alice does iiot know 6 .  

8.1 How to Fix den Boer’s Protocol 

Clearly, we must require Alice to  prove that  she k n o w  Q n ( e c )  or Q n ( v ) .  I t  is a 
fairly straightforward exercise to  come up with a direct number-theoretic method 
for Alice to  demonstrate such knowledge without revealing whether u is 1: or y 
(we may adapt [13] to these purposes, which is especially suitable because the 
verifier has already generated a suitable 77). Note, horvrver, that  this significantly 
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increases the round complexity and message complexity of the protocol. Fortu- 
nately, many such demonstrations can he done in  parallel. Fortunately as well, 
it seems that  the added computations seem less expensive than the alternative: 
generating many large Bliirn integers. Our main theorem becomes: 

BB-OT(b, k )  

1. Bob chooses n = p q  +- BLUMI-, rc~~~crr~hers ( j l , q ) ,  selects a c ZR, and sends (n,a) 
to Alice. Bob provcs i n  zero-knowlcdge that n E B L U M ~ .  

2. Alicc selects c c { 0 , 1 )  a id  .r +- Z:, slid setk z = (-l)Ca. Alice computes z = 
(-l)*r2(inod n )  and sets y = z ~ - ’ ( i r ~ o d  ) a ) .  Alicc scts  ( u , ~ )  = (z ,y)  if z < y, 
elsc (zI,u) = (y, I). she scnds ( f i , ~ ~ )  lo 13011 altd provcs ill  zero-knowledge that she 
knows the residuosily of one of t t  or ‘u. 

fn(lnocl . I $ ) .  Uoh cornputcs Qn(uu); it 0, he outputs 
( 1 ,  Ql,(u)) (“reccived Q , , ( i t ) ” ) ,  else hc oulpuLs (O,O) (‘received nothing“). 

3. Bob checks that uu 

I Fig. 3. Our corrections t o  den Uocr’s protocol, along with somc modifications. (“BB” 
reprcseiits ‘Bcaver/Boer“ or “Boer/ Bpaver .” ) 

Theorem5. There exists n n  c f i c i e n t  protocol for O T  that is cornputationally 
resilient . 

Proof Sketch. Figure 3 out,lines t,hr rorrectlPtl protocol. We can now find a 
transparent interface and prove the modified version secure. If A corrupts Alice, 
Z simulates Bob internally and corrupts ideal-Alice. Whenever Alice fails to  prove 
that  she knows how ( u ,  u )  was constructed (ze.  that  she knows b ) ,  Z sends quit 
to the trusted host, causing idea,l-Bob t80 out,put ABORT, just  as the “real” Bob 
does. If the  proof succeeds, then the int,erface can in fact derive the bit b from 
Alice’s view (briefly: by resetting a copy of A and making different challenges, 
thereby extracting b ) ,  and i t  sends b to the trusted host. Because the proof of 
knowledge is such that  a successful proof indicates b can be efficiently extracted 
from A’s view, not only Z but 7 as well can extract Z’s message b in poly-time. 

If A corrupts Bob, Z corrupt,s ideal-Bob in ID(0T) and obtains (0,O) or (1, b)  
from the trusted host. Z plays the part of Alice in BB-OT. If Z got ( O , O ) ,  i t  plays 
using b = 0 and resets A until i t  fails t o  receive the bit. If T got (1, b ) ,  it plays 
using b and resets A until it does rfxeive a bit. Ignoring detectable cheating, 
these require one expected reset. If A tries to cheat, then with equal probability, 
Z resets A or accepts the cheating and sends quit t o  the trusted host, so that  
honest-ideal-Alice outputs abort with t,he same probability as honest-real-Alice. 
0 
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Some Remarks. One must be ext,remely careful i n  formalizing the notion of 
“proof of knowledge.” It is quite easy to  come up wi th  a notion that  seems fine 
in isolation but which fails when protocols are executed i n  pa.ralle1, unless some 
identification scheme is available. 

An interesting flaw in R.abin’s protocol comes to light when one applies our 
definitions to parallel executions. Alt,liough provably secure individually or in se- 
quential composition, Rabin’s protocol (even wi th  corrections) is insecure when 
used in parallel, unless some identification scheme is available. One serious prob- 
lem is that a proof that n is the product, of two primes is not, exactly a proof 
that  Alice knows those two primes. A full description of the attack and of neces- 
sary conditions to  ensure the resilience of parclllrl composition exceeds our space 
bounds here but is forthcoming [4]. 

It should be clear that  deriving b from Alice’s ilieui is possible when she 
gives a satisfying proof of knowledge. \,Ve enipha.size that, deriving 6 from Alice’s 
conversation should never be easy, or else Rob could do it himself. In this case, 
one must define input-comniittal/trai~spa~ency with respect to views. 

8.2 Yet Another Protocol 

We mention an O T  protocol developed by the author with Nicol So, which led the 
author to  den Boer’s protocol and inspired tliic, paper Like den Boer’s protocol, 
this O T  protocol does not require repeated gentmtion of large Blurn integers.2 

1. Bob chooses n = pp c- B L U M ~ ,  remember5 ( p ,  q ) $  selccts u - Z i ,  and sends 
(R, u )  to  Alice. Bob proves in zero-knowledge that  77 E B L U M ~ .  

2.  Alice chooses T + ZS, and randoin bit d ,  coinputes : = [(-l)du]br2(rnod n), 
and sends ( d ,  z) to  Bob. She proves that ; na.; conlputed properly and that  
she knows ( b ,  T ) .  

3 .  Bob concludes ( d @  Qn(a), ( d @  Qn(u)] Q,,(x))? meaning. if d = Qn(a>,  Bob 
received nothing; else he received Q , ? ( z )  = 6 

Like the corrected BOER-OT protocol, this protocol requii’es that  Alice demon- 
strate that  she behaved and that  she knows b 

9 Conclusion 

We have found and fixed a flaw in  a recently publislied protocol for Oblivious 
Transfer [ll]. The flaw was found by a.pplying a new, robust definition for security 
and fault-tolerance, which we ca.11 resiliei>ce. Resilience expresses the idea that  
one protocol is as secure as another if the result4s of at.tacks on t,he first are the 
same as those on the second. Using our dehiit,ions. we were able to  identify the 
flaw quickly and even to  give a direct fis for i t .  

A correction for the flawed sbep int,rocluces a significaiit amount of commu- 
nication, but  in practical and computat.iona1 t,erms it  seeins less costly than 

References to any other appearances of t.liis or  simi1a.r protocols would be greatly 
appreciated. 
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repeatedly generating large products of two primes. N’e have recently developed 
a non-generic proof of knowledge optimized specifically for this OT protocol [5], 
performing much better than using a generic proof of knowledge to correct the 
protocol. Thus, we believe that the computational advantages of den Boer’s el- 
egant OT protocol can be salvaged, and we can provide provably-secure OT at 
low cost. 
Acknowledgements. Thanks to Nicol So for many discussions of OT. Thanks 
to Claude Crkpeau for pointing out den Boer’s paper. 
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