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Abstract. The equilibrium state of polymer single crystals is considered by explic-
itly taking into account the amorphous fraction formed by loops and tails of the
chains. Using ideal chain statistics, a general expression for the free energy excess
of the amorphous part is derived. I show that tight loops and close reentries are fa-
vored under experimental conditions for under-cooling of polymer single crystals. For
many chain crystals, I show that the lamellar thickness increases with the number of
chains in the crystal, and that extended chain conformations are thermodynamically
favored when the number of chains in the crystal is sufficiently large. The role of
finite bending rigidity of chains is discussed for folded chain crystals, as well as tilt
effects in extended chain crystals.

2.1 Introduction

Since the discovery of folded chain crystals [1–3] polymer crystals are con-
sidered as meta-stable systems which properties are controlled by kinetic ef-
fects [4,5]. This point of view is supported by many observations, such as the
spontaneous thickening of lamellae [6], the dependence of the melting behav-
ior on the thermal history of bulk samples [7], and spontaneous morphological
transformations as observed in thin films [8,9]. Moreover, true thermodynamic
coexistence is not observed in polymers, the crystallization temperature being
generally lower than the melting temperature. The under-cooling necessary to
obtain polymer crystals under laboratory conditions can be as large as 100 K.
Furthermore, it is commonly believed that equilibrium forms of polymer crys-
tals consist of extended chains and that such (usually extraordinary thick
lamellae) are usually not observed under experimental conditions. Exceptions
are short chains such as n-Alkanes [10] and polyethylene (PE) under high
external pressure [11].

In contrast to crystals formed by small molecules, the positions of the
individual monomers in polymer crystals are restricted due to their connec-
tivity, and the polymer chain as a whole has to undergo a transition from the
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random coil (high entropy) state to a partially folded or extendend (low en-
tropy) state. Thus, viewed on the scale of individual chains, the crystallization
transition involves an internal transition of the molecule itself. This causes a
kinetic barrier as the chain has to be rearranged into the ordered conforma-
tion, a process which bears some similarity to the folding transition of protein
molecules [12]. However, in contrast to proteins which are supposed to attain
their stable ground state within a short time, polymer crystals get trapped
in meta-stable states. Using this paradigm, attention has focused on the un-
derstanding of the kinetical effects during the formation of chain crystals far
away from equilibrium states [13].

On the other hand, not much attention has been paid to a thorough
mathematical description of the equilibrium state of polymer single crystals.
This involves the calculation of the free energy excess of the amorphous part
formed by loops and tails of the chains. In the past there were attempts to
explain properties of crystalline polymers with equilibrium concepts address-
ing the coexistence of crystalline and amorphous phases in the semi-crystalline
state [14], in particular aimed to explain their broad melting behavior, see [15],
as well as the phenomena of partial reversible melting [16, 17]. Recently, this
issue has been raised again by Muthukumar [18] who emphasized the possi-
bility of folded chain states as the equilibrium form of polymer single crystals.
His approach has been originally addressed to crystals formed by single chains
as they can be studied in computer simulations [19, 20]. Here, the extended
chain form can be trivially excluded.

In this work, I consider several aspects of the equilibrium state of polymer
single crystals using the model proposed by Muthukumar which will be ex-
tended to multi-chain crystals. In particular I will show that extended chain
crystals are the equilibrium form for many chain crystals if sufficiently many
chains are accessible and I will give a simple argument for their thermody-
namic stability with reference to folded chain crystals. Furthermore, the role
of finite flexibility of chains is discussed as well as the tilt of stems in extended
chain crystals.

2.2 Thermodynamic Considerations
about the Equilibrium Shape of a Polymer Single Crystal

Throughout this work the free energy of chain segments will be defined with
respect to their value in an amorphous unrestricted chain in the melt phase,
i.e. the free energy is expressed as the difference to that of the liquid phase.
Using the approximation of Gaussian statistics for individual chains in the
melt phase, the free energy per segment can be written as −kT ln c, where c
denotes the number of states available for the segment in a free chain. In the
following, we take the statistical segment of length b as the basic unit of the
chain.
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For an infinitely extended crystal, we denote the latent heat of fusion per
statistical segment by ε0. Let us now consider the free energy of a segment,
ε, at a temperature T below the melting temperature T0. In a first order
thermodynamic approximation, we obtain

ε =
ε0∆T

T0
, (2.1)

with
∆T = T0 − T . (2.2)

This approximation can be improved for larger under-cooling by the following
expression [16,21]

ε =
ε0∆TT

T 2
0

. (2.3)

As an example, we consider polyethylene (PE) where the heat of fusion per
mol of CH2-units is about 4.11 kJ. Taking a statistical segment formed by 6
chemical units, we obtain ε0 = 4.1 ·10−20 J. Using T0 = 414 K and T = 300 K
in Eq. (2.3) yields ε � 0.8 · 10−20 J which corresponds to about 2 kT. This
gives us an orientation for the values of ε in the experimental relevant range
of under-cooling.

In a next step, we consider the finite size of a single crystal formed by
µ crystalline stems (oriented orthogonal to the cylinder cross-section) each
comprising m statistical segments, as sketched in Fig. 2.1. The excess free
surface energy of the amorphous fraction (loops and tails) is denoted by σf .
For simplicity, we use the term “surface tension” instead of the term “excess
surface free energy” in the following. Furthermore, we assume a spherical
shape of the cylinder cross-section. The latter property, however, agrees rather
nicely with recent simulations of single chain crystals [20]. The free energy can
be written as

F = −µmε + 2µσf + σ
√

µm , (2.4)

where σ = 2
√

πσe represents lateral surface tension of the lamella and σf

denotes the surface tension of the fold surface.
With the condition

N � µm = const , (2.5)

we obtain
F = −Nε + Nσ

1
√

µ
+ 2µσf . (2.6)

The equilibrium solution is readily obtained:

µ∗ = N2/3α (2.7)
m∗ = N1/3/α . (2.8)

Here, I have introduced the shape factor α given by
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Fig. 2.1. Cylinder model for the single crystal. The cross-section contains µ crys-
talline stems of length m. The (tight) folds and ends are comprised in an excess free
energy σf . Almost all monomers are considered to be contained in the crystalline
fraction

α =
( µ

m2

)1/3

=
(

σ

4σf

)2/3

. (2.9)

Note that this solution corresponds to Wulff’s construction for the equilibrium
shape of a cylindrical crystal [22].

In the above consideration, the surface tension, σf , has been introduced
ad hoc. Its measurement is non-trivial since equilibrium crystals are usually
extended chain crystals with a large lateral extension, i.e. µ � µ∗, so that
the shape factor cannot be directly obtained. Usually, the value for σf is
inferred from the melting line of the non-equilibrium crystal according to
a Gibbs-Thompson approach, see [14]. I note that in this case neither the
surface tension can be truly assumed to be an equilibrium property, nor can
the validity of the Gibbs-Thompson extrapolation be tested independently.
For a criticism of the Gibbs-Thompson approach for non-equilibrium polymer
crystals, see [23].

It is therefore desirable to calculate the contribution of σf from equilib-
rium models which will provide more insight into the nature of the amorphous
fraction. Clearly, we are restricted here to simplified models for the chain and
the crystal part. As a first step, a two-phase model for the single crystal has to
be introduced, which is illustrated in (Fig. 2.2). Segments can be exchanged
freely between the crystalline (C) and the amorphous fraction (A) by conserv-
ing the total number of segments:

N = C + A = const , (2.10)

Than, Eq. (2.4) can be generalized to
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Fig. 2.2. Two-phase model for a cylindrical polymer crystal. (a) Loops and tails
are explicitly considered as an amorphous fraction in thermodynamic equilibrium
with the crystalline fraction. The height of the amorphous layers is denotes by h,
keeping the notation for m as the length of the crystalline stems. Both length scales
are considered in units of statistical segments. (b) Illustration of the thermody-
namic equilibrium system. Segments can be exchanged between two phases and the
temperature is considered to be lower than equilibrium melting temperature

F = −µmε + σ
√

µm + Fa = Fc + Fa , (2.11)

where Fa denotes the free energy of the amorphous fraction with respect
to the state of free chains and Fc represents the free energy of the crystalline
fraction as discussed above. In the following, I will outline tractable statistical
mechanical models for the amorphous fraction to understand the origin of the
fold surface tension in equilibrium crystals.

2.3 The Brush State of the Amorphous Fraction
is Thermodynamically Suppressed

Let us assume that the amorphous fraction forms a dense layer with an average
loop length of g � 1 segments on either side of the crystal, and that the surface
is sufficiently extended to obtain a homogeneous density of segments cA in the
amorphous fraction. Then, the height of the amorphous layers, see Fig. (2.2)
is given by

h =
g

2

(
1

cAξ2

)
∼ g , (2.12)

where the distance between the crystalline stems is denoted by ξ which corre-
sponds to a crystallographic value of a few Å. The relation h ∼ g corresponds
to a brush-like state where the loops and tails are extended in the direction
perpendicular to the surface. Using a scaling approach [24], the free energy
per loop can be written as

Fg ∼ kT

(
h

bg1/2

)2

∼ g , (2.13)
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where we have used Eq. (2.12), and b denotes again the length of a statistical
segment. Thus, we can write Fg = rkTg, with a numerical constant r and the
free energy of the brush-decorated crystal can be written as

F = µrkTg + µεg − εN + σ
√

µ(N/µ − g) . (2.14)

The third term in this expression is the free energy of a crystal without an
amorphous fraction. The free energy excess of the amorphous part is domi-
nated by the first two terms which are both strictly positive. The first term
corresponds the effort for stretching the chains in the brush state while the
second term corresponds to the increase of free energy by pulling g segments
out of the crystalline phase. Thus, under equilibrium conditions, where g is a
variational parameter, the stable solution corresponds to the absolute minium
of g which is possible to form a loop conformation. I note that the correction
due to lateral surface tension (last term in Eq. (2.14) is also positive for√

µ > σ/(rkT + ε) which corresponds to a small number of stems. This cal-
culations clearly demonstrate that a dense layer of long loops (and tails) does
not correspond to a stable equilibrium state of the polymer crystal. In partic-
ular the brush-like state merely adds a free energy of several kT to each loop
or tail which is transformed into the amorphous phase.

It is interesting to add that also individual chain tails are not favored
thermodynamically. Here, we simply obtain

F = γµεg − εN + σ
√

µ(N/µ − γg) , (2.15)

where faction of long loops/tails is given by γ � 1. Again, there is no stable
solution for finite value of g, if the lateral extension of the crystal is not too
small (

√
µ > σ/ε). This result is easy to understand: An isolated loop/tail with

g � 1 just increases the free energy by a value of gε without any compensation
as referred to the equilibrium amorphous state.

2.4 Extended Chain Crystals and Sliding Entropy

In the section above we have tacitly assumed that the anchor points of the
loops and tails are fixed. However, the possibility to distribute the amorphous
segments in all possible ways along a given chain will give rise an an addition
entropy as compared to the liquid state.

Let us consider a laterally infinitely extended polymer crystal. Each (ex-
tended) chain of length Nch is composed of a (central) crystalline part made
of m segments enclosed by g = Nch − m amorphous segments, which is illus-
trated in (Fig. 2.3). Since the crystalline part can be located anywhere along
the chain this corresponds to a sliding entropy of

Sslide = k ln g , (2.16)
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m

g

Fig. 2.3. Single chain within an extended chain crystal. Sliding of the chain trough
the crystal phase (comprising m monomers per chain) is possible if g monomers are
placed in the amorphous phase

where a constant S0 can be suppressed. Thus, the free energy of a single chain
in the extended chain crystal can be written as

Fext = −kT ln g + εg − εNch . (2.17)

Minimization of Eq. (2.17) yields the equilibrium fraction of amorphous
monomers per chain:

ge =
kT

ε
. (2.18)

If we remember our example of PE given in section (2.2), we would obtain
a small value of ge. However, extended chain crystals can be observed rather
close to the equilibrium melting temperature, where ε can become only frac-
tions of kT . Using Eq. (2.3), we obtain

ge =
kT 2

0

ε0∆T
. (2.19)

The nominator leads to a divergency of ge when approaching T0
1. A similar

effect has been already discussed by Fischer [16] and Zachmann [15] in the
context of equilibrium pre-melting in semi-crystaline polymers.

1 For short chain crystals such as obtained for n-Alkanes, the equilibrium melting
temperature T0 must be replaced be maximum equilibrium melting temperature
corresponding to the finite thickness of the crystals for m = Nch. This takes into
account a certain melting point depression due to the bare surface tension of the
top and bottom surface.
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However, Eqs. (2.18) and (2.19) are only valid for moderate values of ge.
Large values lead to the brush state in the amorphous fraction where the
logarithmic entropy gain due to sliding is quickly compensated by the linear
penalty term due to chain stretching, see Eq. (2.13). Taking into account
Eqs. (2.13) and using the same symbols as in Eq. (2.14), we obtain

ge =
kT

ε + rkT
, (2.20)

which regulates the divergency for ε → 0. On the other hand, the crystal can
avoid part of the stretching free energy by tilting the stems thus increasing
the distance between stems projected onto the top and bottom surfaces. This
issue will be discussed in Sect. 2.9.

In the above consideration I have neglected the surface tension of the lat-
eral surfaces by assuming an infinitely extended crystal. In many experimen-
tal situations where extended chain crystals are studied, this approximation is
justified since the lateral extension can be orders of magnitude larger than the
height of the crystal. The free energy for finite crystal with the shape factor
α, see Eq. (2.9) is given by

F = α3m2Fext + σα3/2m2 . (2.21)

For α � 1, the second term dominates the free energy of the crystal, and
the chain must obtain a folded conformation. An extreme case being a crystal
formed by a single chain only, where the extended conformation can not be
stable at all, since no crystalline bonds can be formed.

An interesting question arrises of how many chains are necessary to make
the extended chain form the stable solution. The above considerations suggest
α � 1. For m � 1 and g � m (the latter is again related to the avoidance of
the brush state) we have m � Nch and the number of chains necessary for the
extended chain form is given by next � N2

ch. Using a more rigorous approach,
I will show further below that this results is qualitatively correct.

2.5 The Slip-Loop Model for the Entropy
of the Amorphous Fraction of a Single Chain Crystal

In the last section I have shown that sliding of chains yields to an additional
entropy which favors a finite fraction of amorphous tails. This idea can be
generailzed to folded chain conformations as sketched in (Fig. 2.4). Here, I
will consider a crystal made of a single chain.

The essential idea is to assume that all segments of the amorphous part
can be distributed in all possible ways among the various loops and tails for
a given stem length m and for a given number of stems µ. The equilibrium
solution is than obtained by minimizing the resulting free energy with respect
to both variables. This shall be denoted as the slip-loop model.
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Fig. 2.4. Sketch of the slip-loop model for the amorphous part. The segments in
the amorphous fraction can be arbitrarily distributed among the µ − 1 loops and
the both tails

In order to proceed, I have to make some assumptions about the chain
statistics and about the form of the crystal. The latter should be given again
by the model sketched in (Fig. 2.2). In particular, all stems should have the
same length. To start with a tractable model, I will further ignore excluded
volume interactions between the segments of the amorphous fraction as well
as the conformational constraints due to the impenetrable crystalline surface.
Furthermore, I treat the chain statistics as Gaussian and ignore effects of finite
flexibility of the chain. These relaxed conditions overestimate the entropy of
the amorphous fraction. I will reconsider these approximations in the context
of the exact solution for the idealized model.

The number of conformations available for a Gaussian chain with g seg-
ments starting at r0 and ending at r with respect to the free unconstrained
chain is given by

G(r0, r; g) =
(

1
4πl2g

)3/2

exp
(
− (r − r0)2

4l2g

)
∆v , (2.22)

with l2 = b2/6. The factor ∆v compensates for the formally infinitely sharp
localization of the end-segment of the chain in a continuous space and denotes
the uncertainty of the localization of the end-segment. The physical meaning
of this factor will be discussed further below. We call G(x,x′; g) the Green
function. The free energy difference of the restricted chain with respect to a
free chain is than given by F = −kT ln G which corresponds to my notation
of the free energy in this work. The mathematical task is completed if the
Greensfunction of the amorphous part Ga has been calculated.

The contribution of the tails can be explicitly taken into account, since
each tail just provides Gt = 1 (integration of Eq. (2.22) over r/∆v). This
yields

Ga(A) =
∫ A

0

dn(A − n)GL(n, µ − 1) , (2.23)
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where GL denotes the contribution from loops only. Note that the contribution
to Eq. (2.23) is only due to the various positions the loop part, made of n
segments, can take within the amorphous part made of A segments. The
details of the calculation of the loop part is more technical and can be found
in Appendix A. The result is given by

GL(A,µ − 1) =
1

κµ−1

√
(µ − 1)ξ2

4πAl2
1
A

exp
{
− (µ − 1)2ξ2

4Al2

}
. (2.24)

Here, I have introduced the dimensionless localization parameter

κ = 4πl2ξ/∆v , (2.25)

where ξ characterizes the minimal distance between the loop ends, see also
Sect. 2.3. Note the similarity between Eq. (2.24) and the single chain result
of Eq. (2.22). Using Eq. (2.23) the final solution reads

Ga(A,µ) =
4A

κµ
·
[(

1
4

+
1
2
y

)
erfc(

√
y) −

√
y

2
√

π
e−y

]
=

4A

κµ
· f(y) , (2.26)

where I have introduced the scaling variable y, defined by

y =
(µ − 1)2ξ2

4Al2
(2.27)

and erfc(y) denotes the complimentary error function (erfc(y)= 2√
π

∫∞
y

dxe−x2
).

In the following I consider only the case µ � 1, which is the physical
relevant solution for single chain crystals. The scaling variable can be related
to the average loop length in the amorphous fraction

g =
A

µ
. (2.28)

by
y =

a

kT

µ

g
, (2.29)

where
a =

3
2
kT (ξ/b)2 . (2.30)

denotes the maximal energy of the Gaussian spring which is formed by a
single loop. The scaling variable y thus denotes the spring energy in units of
kT related to µ loops, containing g segments each. Assuming an average free
energy per loop of the order of kT , we can conclude that the physical relevant
case is given by

y � 1 . (2.31)

The opposite case of y � 1 can only be realized if the average loop length is
very large (g � µ). The latter must be excluded in order to avoid the brush
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regime. However, Eq. (2.31) can also be justified without referring the brush
regime. Generally, we obtain from Eq. (2.27)

A ∼ µ2 for y ∼ 1 . (2.32)

The free energy effort to transfer A segments into the amorphous state is given
by εA ∼ µ2. I will show below that the solution for the case y � 1 leads to a
surface excess which scales proportional to µ only.

Using Eqs. (2.26) in the limiting case (2.31), the free energy of the amor-
phous fraction can be written as

Fa = −kT ln Ga = µ

(
2σf0 +

a

g

)
for y � 1 and µ � 1 , (2.33)

with
2σf0 = kT ln κ . (2.34)

For details, see Appendix B.
The localization parameter κ, see Eq. (2.25), can be related to the en-

tropic restriction of an anchoring segment compared to a segment in a free
chain. I will therefore consider κ as the ratio of the number of states of the end
segments in the free chain compared to the anchored state. In a rough approxi-
mation the segments which directly anchor to the crystalline stem loose about
half of the degrees of freedom being restricted to the half space. Therefore,
the anchoring contribution might be estimated as κ � 2 for each anchored
segment. The corresponding free energy contribution per stem is thus compa-
rable to kT . This free energy excess gives rise to an entropic surface tension,
σf0, which increases with temperature.

I note that the solution in Eq. (2.33) is equally obtained using the loop
part only, see Eq. (2.24). This indicates that tails do not play an singular role.

2.6 Tight Loops and Effective Fold Surface Tension
for Single Chain Crystals

Using Eq. (2.11) we get for the free energy of the single chain crystal

F = Fc + Fa = −µmε + σ
√

µm + µ

(
2σf0 +

a

g

)
. (2.35)

The state of thermodynamic equilibrium is given by the minimum of F with
respect to µ, g and m under the constraint of Eq. (2.10). A solution can be
obtained analytically for N � 1, which is the physically relevant case. The
direct solution of the minimization problem is given in Appendix C.

However, the solution presented in Appendix C can be rederived using a
simple argument which reveals the essential physics most clearly. For N � 1,
we disregard the lateral surface tension and assume that the optimal value
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g

m

Fig. 2.5. Sketch of a single loop-stem element in the crystal

of g can be obtained by minimization for a single stem-loop element which is
sketched in Fig. 2.5. The corresponding free energy reads

Fsl = 2σf0 + gε +
a

g
= 2σf0 + gε +

3
2
kT

(ξ/b)2

g
. (2.36)

Here, the second term is attributed to the transition of g monomers into the
disordered phase and the third term represents the g-dependent part of the
free energy from Eq. (2.33) related to a single loop. This latter part, however,
agrees exactly with the free energy stored in a loop of g segments with the
end-to-end separation of ξ. Thus, the essential free energy balance is between
melting a segment and the corresponding decrease of the free energy of a
Gaussian spring which is prolongated by one segment. Minimization of Fsl

with respect to g gives

g2
0 =

a

ε
=

3
2

ξ2

l2
kT

ε
, (2.37)

which agrees with the solution for the full minimization problem given in
Appendix C. According to our discussion in Sect. 2.2, the value of ε is not ex-
pected to become very small under usual experimental conditions. Therefore,
the solution above indicates the formation of tight loops. Physically speaking,
g2
0 represents the ratio between the maximum free energy of the Gaussian

spring to the free energy loss by pulling a segment out of the crystaline phase.
Being at the limit of validity, the Gaussian statistics used so far has to

be scrutinized. This concerns in the first place the effect of finite bending
rigidity which involves a fine-graining of the model towards a length scale
smaller than the statistical segment length. I will come back to this issue in
Sect. 2.8. On the other hand, for equilibrium crystals it should be possible (at
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least theoretically) to consider also small values of ε thus approaching close
to the equilibrium melting point. In this case, g0 can become sufficiently large
to justify the Gaussian statistics.

Using the result of Eq. (2.37), we obtain for the minimal free energy excess
per loop of the amorphous fraction

Fsl = Fsl = 2σf0 + g0ε +
a

g0
= 2σf0 + 2

√
εa = 2σf , (2.38)

where I have introduced the effective fold surface tension σf defined as

σf = σf0 +
√

aε . (2.39)

The optimal shape is now easily derived from the free energy of the single
crystal taking into account the lateral surface tension

F = −εN + 2µσf + σ
√

µm . (2.40)

The relation between m and µ is given by m + g0 = N/µ. For m � 1, we can
disregard the difference between m and N/µ, and we are let to the effective
one-phase approach of Eq. (2.4). The shape factor is given by

α =
(

σ

4σf

)2/3

=
(

1
4

σ

σf0 +
√

aε

)2/3

. (2.41)

Thus, we obtain the equilibrium values of the extension of the single crystal:

µ∗ = N2/3

(
1
4

σ

σf0 +
√

aε

)2/3

(2.42)

m∗ =
N

µ
− g0 � N

µ
= N1/3

(
1
4

σ

σf0 +
√

aε

)−1/3

(2.43)

As I have shown, the origin for the finite amorphous fraction formed by
the (prevailing) loops is due to the balance between the entropic spring force
created by the finite separation of the anchoring segments on the one hand
side and the effort to remove the loop segments from the thermodynamically
preferred crystalline phase on the other side.

There is another interesting conclusion from our free energy argument
concerning the value of ξ. In the calculation it was introduced as the smallest
possible separation between the end points of the loops. This mathematical
argument can now be supported by a physical argument: Since the entropy
of a loop increases quadratically with the distance ξ, see Eq. (2.36), in ther-
modynamic equilibrium the smallest possible distance is favored. Thus, loops
have the tendency to close, i.e. tight folds are preferentially formed by ther-
modynamic reasons.
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2.7 Many Chain Crystals

The results obtained in the last section can be readily extended to the case
of many chain crystals. As I have shown, the essential argument which leads
to the equilibrium state of the amorphous fraction can be reduced to the free
energy balance of a single loop. As far as the number of folds per chain is
large, i.e. the role of tails is only minor, the result of Eq. (2.37) holds true also
within many chain crystals. A formal mathematical analysis of this problem
can be found in [25]. Given a crystal thickness of m (not yet optimized), the
free energy for a single chain within the many chain crystal is given by

Fch = −εNch + 2σf
Nch

g0 + m
, (2.44)

where µch = Nch/(g0 +m) can be replaced again by Nch/m for m � 1. Then,
the free energy for the overall crystal formed by n chains is given by

F = nFch + σm
√

µn . (2.45)

Introducing the total number of segments N = nNch, we obtain

F = −εN + 2σf
N

m
+ σ

√
Nm , (2.46)

an expression which is again fully equivalent to Eq. (2.4). The solution for the
equilibrium thickness m∗ then reads

m∗ = (nNch)1/3

(
4σf

σ

)2/3

∼ n1/3 . (2.47)

This result tells us that the equilibrium thickness of the crystal is growing
with the number of chains. Thus, at a certain point the thickness can become
larger than the extension of the individual chains, and the extended chain
crystal becomes the equilibrium form. With m∗ = Nch, I obtain

next = N2
chα3 . (2.48)

Further thickening is hampered by additional surface tension which is created
by stacking several chains in one stem. This result corroborates the conclusion
obtained at the end of Sect. 2.4, where I have approached the problem from
the opposite limit of extended chain crystals.

In order to appreciate the values calculated above, I consider the example
of an extended chain crystals formed by PE under high external pressure [11].
A polymer chain of about 100, 000 g/mol of molecular weight for PE corre-
sponds to a value of Nch = 1000. Using Eq. (2.48), the estimated number of
chains necessary to reach the stretched state amounts to about 1, 000, 000.
This corresponds to a lateral size of the crystal of a few hundred nanometers.
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On the other hand, given the usual thickness of non-equilibrium PE crystals
of the order of 10 nm, the same amount of chains require a lateral size of the
order of a few micrometers which is within the experimentally observed range.
Thus, non-equilibrium polymer single crystals can have the potential to form
extended chain crystals in equilibrium.

The phase diagram for the equilibrium crystal is sketched in Fig. 2.6. If the
number of chains, n, is increased, the thickness of the equilibrium crystal grows
as the third root of n until it reaches the extended chain state at n = next.

Fig. 2.6. Phase diagram of a polymer single crystal. The equilibrium states are in-
dicated by the thick line. Non-equilibrium states (hatched area) are usually observed
below the equilibrium line

When we approach the extended chain crystal, the approximation for the
free energy of the amorphous fraction of the folded chain, Eq. (2.44), must
be corrected to account for the dominating role of tails. This can be done
using the full result for the free energy for the amorphous fraction, but the
essential physics can be obtained in a much simpler way. In Sect. 2.4, the exact
expression the free energy of an extended chain crystal has been derived. Here,
only the tails contribute to the free energy of the amorphous fraction. In this
case, only sliding of the chain (positioning of the crystal stem within the
chain) is responsible for a finite amount of amorphous material per chain. By
contrast, in case of folded chain crystals, the Gaussian spring energy of loops
competes with the crystallization energy and the sliding term is reduced to
a small contribution when many folds are formed. At the cross-over between
both regimes, the amount of sliding entropy becomes increasingly important
and eventually prevails the contribution from the loops. The transition is
finally discontinuous because an integer number of folds have to be formed.

The only part which is left to prove is the stability of the extended chain
form with respect to the folded chain form. This can be easily inferred from
the following Gedankenexperiment as sketched in Fig. 2.7. Let us consider a
single chain crystal formed by a huge chain of length N in thermodynamic
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folded
single chain crystal

extended
multi chain crystal

cutting all loops

Fig. 2.7. An extended chain crystal is obtained by cutting all loops of a single
chain, folded crystal

equilibrium with µ � 1 and m � 1, see left part of Fig. 2.7. Then, we cut all
loops and obtain a multi chain crystal formed by N/µ extended chains having
the length of Nch = m + g0 monomers, see right part of Fig. 2.7. Note that
Nch can be arbitrary large, since m ∼ N1/3, see Eq. (2.43). The free energy
change for the transition from the folded to the extended chain crystal is given
by

∆F = µ

(
−a

g
− kT ln g

)
, (2.49)

which is strictly negative. The first term corresponds to the opening of the
loops (release of Gaussian stretching free energy) and the second term corre-
sponds to the fee energy gain due to the independent sliding motions of the
individual stems as is has been derived in Sect. 2.4. Thus, the extended chain
form is thermodynamically preferred, if the freedom to open chain loops is
given.

The essential conclusion from this paragraph is that folded chain crystals
are equilibrium forms only if the number of chains contained in the crystal is
limited. Here, the extended chain form can violate the optimal crystal shape
according to the Wulff construction.

2.8 The Role of Bending Rigidity for the Formation
of Small Loops

So far, I have considered the Gaussian chain model based on coarse-graining
on the scale of a statistical segment length. For folded chain crystals, the equi-
librium loop length according to Eq. (2.37) turns out to be close to unity if ex-
perimental values for the under-cooling are considered. Such small loops, how-
ever, have to bear a considerable amount of bending energy and the Gaussian
approximation is limited. In this section, I will discuss the effect of finite bend-
ing rigidity for a continuous chain model. This will address the situation of
tight loops only where the Gaussian approach fails. The chain is described by
the path r(s) parameterized by the arc length along the chain’s contour.
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The bending rigidity B of the homogeneous chain (worm-like chain model)
is related to the statistical segment by [26]

B = 2kTb . (2.50)

Then, the energy of a loop of length gb can be written as

E = kTb

∫ gb

0

ds

(
dt(s)
ds

)2

, (2.51)

where t(s) = dr(s)/ds denotes the normalized tangent vector of the chain at
position s. Here, g, denotes a real number which can be smaller than unity.
For a loop-like conformation, one obtains

E = ζ4π2kT
1
g

, (2.52)

where the constant ζ accounts for a non-trivial form of the loop. The value
ζ = 1 gives the result for a circle. The statistical weight to be taken into
account for each loop can be thus written as

Gw(s) ∼ exp
{
−1

4
a2
0

g

}
, (2.53)

with
a2
0 = 16ζπ2 . (2.54)

Here, the index “w” reminds to the worm-like chain model. Note that this
approach is only valid if fluctuations of the chain’s contour are not dominating.
Thus, it represents the complementary case to the Gaussian approach, were
only fluctuation are taken into account.

Nevertheless, there is a strong similarity between the exponentials of
Eqs. (2.53) and (2.22). To proceed, it is worth noting, that the essential part
of the Laplace-transform which allows the calculation of the multiple integral
for GL, see Appendix A, is determined by a stationary point of the Laplace-
integral only and hence (within this approach) the same result is obtained
using Gwl instead of G. Thus, following the same steps as presented in Ap-
pendix A, the essential part of the free energy of the amorphous fraction can
be written as

Fa = µ

(
2σf0 +

a

g

)
, (2.55)

where the constant a is now defined as

a = 4ζπ2kT . (2.56)

I note that the bare surface tension, σf0, has an empirical meaning only, al-
though it must be still related to the localization of the end-points of the loop.
In fact, being constant, σf0 is not important for the physical most significant
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conclusion about the average loop length. Mapping the redefinition of a onto
the results obtained in Sect. 2.6, I get

g2
0 =

a

ε
= 4ζπ2 kT

ε
. (2.57)

Comparing this result to Eq. (2.37), one can conclude that the equilibrium
loop length is larger (in units of the statistical segment length), although a
physical interpretation is now possible for g smaller than unity. Using reason-
able estimates for PE at room temperature, see Sect. 2.2, a value for g0 of the
order of a few statistical segments (depending on the value of ζ) is predicted.
This, however, means that even under such conditions, the optimal loop length
does not correspond to the absolute minimum (given by the tightest fold which
can be formed [4]), but may contain a few persistence lengths.

To conclude, the calculation using a worm-like chain model gives further
evidence for the formation of small loops, but suggests that these loops are
not necessarily limited by the chemical structure. This is easy to understand,
since the free energy loss for pulling one segment out of the crystalline phase
is only of the order of kT (or less) at experimental temperatures.

2.9 Tilting in Extended Chain Crystals

As I have shown in the previous sections, the equilibrium state of a polymer
single crystal contains extended chains only, if sufficiently many chains are
available. An interesting aspect in the calculation of Sect. 2.4 is the existence
of a positive entropy related to the amorphous fraction due to the sliding of
chains, see Eq. (2.16). This, however, is quickly balanced by the excluded
volume interactions between the tails, as has been discussed in the context of
Eq. (2.20).

Now, there is a possibility to reduce the effect of excluded volume interac-
tions by tilting the crystal stems with respect to the top and bottom surface.
This idea is illustrated in Fig. 2.8.a). The increase of surface area per chain is
given by

ξ′2 = ξ2/ cos α , (2.58)

where the tilting angle α is defined between the stem orientation and the
normal to the interface between the crystaline and the amorphous phase.
Using the scaling approach to the brush limit of Sect. 2.3, see Eqs. (2.12) and
(2.13), the free energy contribution for a single chain with respect to the brush
state can be written as

Fbrush = kTg
r

(cAv0)2
cos2 α , (2.59)

where r denotes a constant which cannot be obtained from scaling. The symbol
v0 = ξ2b denotes the segment volume as used for the derivation assuming a
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α

α

excess surface

a) b)

ξ

Fig. 2.8. Tilted extended chain crystal. (a) Tilted stems lead to a decrease of the
grafting density of the tails. The angle α is defined between the stem orientation
and the normal of the interface between the crystaline and the amorphous phase.
(b) Tilting of stems increases the free energy by creating excess surface

dry brush state. Thus the product cAv0 should be close to unity. To abbreviate
the notation, I introduce the constant r′ = r/(cAv0)2.

On the other hand, tilting gives rise to the formation of an excess surface
per chain as illustrated in Fig. 2.8.b). The corresponding free energy excess
per chain is given by

Fexe = 2s′ξ tan α
ε

b
= 2sε tan α . (2.60)

Note that the excess free energy (as well as the brush free energy) has to be
taken on both sides of the crystaline fraction which gives rise to the factor
of two. Here, I have assumed that the excess free energy is related due to
a missing neighbor effect to the free energy difference ε, and s (s′) denotes
again a constant. In a more general approach, a surface tension σexe could be
introduced instead of sε. By using sε in Eq. (2.60), it is tacitly assumed that
the excess surface tension vanishes if the system approaches the equilibrium
melting point.

Using Eqs. (2.16) and (2.17), the total free energy per chain can be written
as

F = Fext+Fbrush+Fexe = −kT ln g+εg−εNch+kTgr′
1

1 + q2
+2sεq , (2.61)

with
q = tanα . (2.62)

The minimization problem for F with respect to q and g can be solved in the
limit of small values of ε and yields to

q3 � r′

s

(
kT

ε

)2

. (2.63)

Details can be found in Appendix D.
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The second derivative of Eq. (2.61) with respect to q is given by

∂2F

∂q2
=

2gkTr′

(1 + q2)3
(3q2 − 1) . (2.64)

Thus, a minimum for the free energy is impossible for angles below a critical
angle αc given by

tan αc =
1√
3

and αc = 30◦ . (2.65)

Given the other approximations, this is valid as long as the scaling approach
for Fbrush holds. The latter condition will fail at larger under-cooling where g
becomes very small. In order to estimate the temperature effect, the solution
given by Eq. (2.63) shall be analyzed further. Using Eq. (2.3) leads to

q � r′

s

(
kT0

ε0

)2/3

∆−2/3 , (2.66)

where I have introduced the dimensionless under-cooling

∆ =
T0 − T

T0
. (2.67)

The first prefactor in Eq. (2.66) might be rather large because s is small,
however, r′ is unknown. The second prefactor, given by the latent heat of
melting of a segment at the equilibrium melting point, takes a value of about
1/8 for PE.

Experimentally, tilting of chains in polymer crystals is well known. Re-
cently, chain titling has been analyzed in annealing experiments of long n-
Alkanes using FTIR and SAXS techniques by de Silva et al. [27, 28]. Here,
the authors found irreversible tilting up to an angle of about α � 35◦ dur-
ing annealing experiments. This is qualitatively explained as a perfectioning
process of surface disorder [29] although the “overcrowing problem” has been
noted by the authors. However, these crystals are usually grown under non-
equilibrium conditions, and relaxation into the equilibrium state at rather low
temperatures might be prohibited. It is interesting to note that the observed
maximum tilt angle before melting is close to the critical angle predicted in
Eq. (2.65). This might suggest that the irreversible tilting observed in these
experiments are due to the meta-stability of the brush with respect to tilt.
At this point, more experimental (and simulation) studies close to the melt-
ing point of extended chain crystals are necessary to understand the origin of
chain tilt in short-chain crystals. The above presented arguments provide an
alternative explanation for such effects and should be taken into account for
the interpretation of experimental results.

2.10 Summary and Conclusion

In this work I have considered the equilibrium state of a polymer single crystal
as a two-phase systems composed of a crystalline and an amorphous fraction.
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A statistical mechanical model is used for the amorphous fraction taking into
account the disorder in the distribution of monomers among the loops and
tails. The major results of the analysis are summarized as follows:

• Folded chain crystals form equilibrium states only if the number of chains
within the crystal is resticted.

• For folded chain crystals the average loops size in the amorphous fraction is
determined by the balance between the Gaussian spring force (or bending
rigidity) and the effort to transform a segment into the amorphous phase.
The latter is of the order of kT under experimental conditions. Loops at
the limit of a few statistical segments are likely to be formed.

• Extended chain crystals gain free energy due to chain sliding. Extended
chain crystals are formed if an unrestricted number of chains is available.

• Titling of stems reduces excluded volume effects in the amorphous fraction
close to the melting point.

• The equilibrium tilt angle increases with temperature. Small tilt angles
are meta-stable.

These results rely on a number of assumptions. First, the Gaussian statis-
tics of amorphous sequences does not properly account for the finite flexibility
of chains (in case of tight loops). This aspect has been reconsidered explicitly
using a model of finite bending rigidity. The obtained results suggest that the
equilibrium loop length can be well above the statistical segment size thus the
Gaussian approach is just on its limit. Excluded volume effects are explicitly
discussed using a scaling approach for the free energy of a polymer brush.

Due to the presence of many tails and loops in the amorphous fraction the
effect of half-space restriction is less important. Following Silberberg’s argu-
ment [30] for a dense polymer system, the polymer-type adsorbing boundary
condition [24, 26] should be replaced by a reflecting boundary condition. For
the latter case, the surface represents a much weaker constraint. Moreover,
there is another argument which relativizes the effect of the impenetrable
surface: If the average length of amorphous sequences is short, bending rigid-
ity is important. Since the sequences start perpendicular to the surface the
probability of stochastic returns can be neglected. On the other hand, if se-
quences are longer, excluded volume interactions become important because
of the high grafting density provided by the crystal packing of stems, and the
sequences are stretched away from the surface. Thus, I’m let to the conclu-
sion that entropic effects due to geometric restrictions of chains should not be
dominant.

Another approximation made throughout this work is the assumption of
a flat, non-fluctuating crystal surface. The stems in the crystalline phase are
assumed to be of equal length and transitions between the crystaline fraction
and the amorphous fraction occur instantanousely. Here, two effects are disre-
garded: First, fluctuations of the stem length might decrease the free energy
in a certain range of temperature, and second, a curved or tapered from of the
crystal might become favorable. The latter argument seems to be tempting for
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extended chain crystals where the free energy of the amorphous fraction can
become very small (sliding entropy leads even to a negative contribution) and
a tapered form might reduced the free energy be reducing the lateral surface
tension. A closer analysis shows that a tapered shape would also induce an
excess surface tension since neighboring stems have missing neighbor effects.
This is in full analogy to the arguments used for tilting of chain in Sect. 2.9. A
simplified calculation, following the idea of Sect. 2.9 for calculating the excess
free energy, see also Fig. 2.8, leads to a flat surface with isolated steps. How-
ever, other possible effects should be considered for the formation of tapered
forms such as the role of excluded volume interactions, in particular the effect
of “overspilling” of tails close to the crystal boundary.

Only equilibrium states have been considered in this work. Many of the
effects mentioned here, can be alternatively discussed in the context of non-
equilibrium. On the other hand, the question arrises, whether the calculations
presented here can be applied to meta-stable states of polymer crystals, in
particular to the case of semi-crystalline polymers. In fact, similar arguments
have been used in early works [15,16] to explain the melting behavior of semi-
crystaline polymers. A few points should be taken in mind here. First, and
in contrast to the equilibrium scenario, the loop lengths in non-equilibrium
semi-crystalline systems will be distributed with a distribution determined by
the growth process and the averaged loop length is not simply related to the
equilibrium loop length discussed in this work. Second, when temperature is
changed in non-equilibrium systems, relaxation effects are accelerated, such
as thickening of lamellae [9], and unfolding of chains [27]. These generic non-
equilibrium forces are superposed to the equilibrium-forces considered in this
work.

The calculations presented in this work should serve as an alternative start-
ing point for a deeper understanding of the coexistence between crystaline and
amorphous phases in polymers. In particular, a closer inspection of the effect
of finite flexibility and possible orientation dependent interactions between
amorphous segments could lead to better understanding of the crystalline-
amorphous interface which plays an important role in experimental analysis
and applications of crystalline polymers.

I kindly acknowledge discussions with M. Muthukumar, A. Johner and G.
Reiter.

Appendix A

The partition function for the loop part of the amorphous fraction is obtained
by integrating over all possible distributions of individual loop lengths
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GL(n, µ) =
∫ n

0

dgµG(∆rµ;n − gµ)
∫ gµ

0

dgµ−1G(∆rµ−1; gµ − gµ−1) · · ·

· · ·
∫ g2

0

dg1G(∆r1; g2 − g1) ,

(2.68)

where ∆rk denotes the spatial distance between the both endpoints of the kth

loop. In order to simplify the calculation we assume a constant end-to-end
distance for all loops

|∆rk| = ξ . (2.69)

In adjacent folds the distance ξ corresponds to the lateral distance between the
stems (the lattice constant a or b of the crystal). Hence, ξ can be considered
as a small cut-off distance. It is essential to keep this distance non-zero – as it
corresponds to reality. Otherwise, the integrals in Eq. (2.68) will diverge for
∆tk → 0. As shown in Sect. 2.6, the equilibrium solution predicts the smallest
possible value for ξ, which corresponds to adjacent folds.

Using the convolution theorem of the Laplace transformation we obtain

ĜL(p, µ) = Ĝ(ξ, p)µ , (2.70)

where Ĝ(ξ, p) denotes the Laplace-transform of the Green function G(ξ, g)
with respect to the contour length variable. From Eq. (2.22) we obtain

ĜL(p, µ) =
(

a0∆v

4πl3

)µ

e−µa0
√

p , (2.71)

with
a0 = ξ/l . (2.72)

Inverse Laplace transformation of Eq. (2.70) using (2.71) yields

GL(n, µ) =
1
κµ

µa0

2
√

π

1
n3/2

exp
{
−µ2a2

0

4n

}
, (2.73)

which corresponds to Eq. (2.24) after substitution of (2.72).

Appendix B

Here, the limiting case y � 1 is considered for the result of Eq. (2.26). Using
the leading term in the asymptotic expansion of the complementary error
function we obtain

f(y) � e−y

8z3
√

π
for y � 1 . (2.74)

Thus, the free energy for the amorphous fraction is given by
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Fa = kTµ ln κ − kT ln A − kT ln f(z)

= 2µσf0 − kT ln(gµ) + kTy +
3
2
kT ln(y) ,

(2.75)

where Eq. (2.34) has been used. In the limiting case y � 1 and µ � 1 both
logarithmic terms can be disregarded, and using Eqs. (2.29) and (2.30) we
obtain

Fa = µ

(
2σf0 +

a

g

)
. (2.76)

Appendix C

To solve the extreme value problem for the free energy given in Eq. (2.35)
we introduce a Lagrange multiplier λ to fulfill Eq. (2.10). Using further the
crystalline fraction as defined in (2.10) we obtain

Fλ = −Cε +
σ
√

µ
C + µ

(
σf0 +

a

g

)
− λ (N − C − gµ) . (2.77)

Minimization of Fλ with respect to the three parameters g, C and µ leads to
the following three equations:

λ =
a

g2
(2.78)

ε =
σ
√

µ
+ λ (2.79)

C =
2µ3/2

σ

(
gλ +

(
σf0 +

a

g

))
. (2.80)

Additionally, Eq. (2.10) has to be satisfied. First, we obtain from Eqs. (2.78)
and (2.79):

µ =
(

σg2

g2ε − a

)2

. (2.81)

Inserting Eq. (2.81) in Eq. (2.80) and using Eq. (2.10) we get

N =
(

σg2

g2ε − a

)3 1
σ

[
2σf0 +

3a

g
+ gε

]
. (2.82)

It is now possible to obtain a solution of Eq. (2.82) for large values of
N . There are two alternatives: First, g growths proportionally to N . This
corresponds to y � 1 and has to be excluded, see Sect. 2.5. The second
solution is given by very small values of g2ε − a and corresponds to tight
folds. For N → ∞, the solution is

g2
0 =

a

ε
. (2.83)



2 Theoretical Aspects of the Equilibrium State of Chain Crystals 43

Appendix D

Minimization of Eq. (2.61) with respect to z and g yields to

q

(1 + q2)2
=

Eδ

g
(2.84)

g =
1

E + r′

1+q2

, (2.85)

with
E =

ε

kT
and δ =

s

r′
. (2.86)

The solution for q can be written as

q = δE2(1 + q2)2
(

1 +
r′

E

1
1 + q2

)
. (2.87)

This equation can be solved iteratively for any value of r′, δ and ε by starting at
some value of q on the right hand side. As discussed in the text, see Eq. (2.64),
the free energy is unstable with respect to the tilt angle for small values of q.
Therefore, the possible solution q → 0 for ε → 0 is unphysical.

The stable solution for small values of ε is thus given by large values of q,
where the first approximation reads

q � δE2q4 , (2.88)

which yields to Eq. (2.63). The self-consistency of this solution can be checked
by substitution of Eq. (2.63) in Eq. (2.87).
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