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Abstract. The interlamellar domain of semicrystalline polyethylene is studied by
means of off-lattice Metropolis Monte Carlo simulations using a realistic united
atom force field with inclusion of torsional contributions. Both structural as well as
thermal and mechanical properties are discussed for systems with the {201} crystal
plane parallel to the interface. In so doing, important data is obtained which is use-
ful for modeling semicrystalline polyethylene in terms of multiphase models. Here,
we review the main results published previously by us [P.J. in ’t Veld, M. Hütter,
G.C. Rutledge: Macromolecules 39, 439 (2006); M. Hütter, P.J. in ’t Veld, G.C. Rut-
ledge: Polymer (in press), (2006)].

On the one hand, the full interlamellar domain was characterized in terms of
heat capacity, thermal expansion coefficients, Grüneisen coefficients, and the elas-
tic compliance tensor at atmospheric pressure in the temperature range [350, 450]K.
The simulation results corroborate the fact that the properties of the non-crystalline
interlamellar phase lie between those of the amorphous melt and the semicrystalline
solid, as quantitative comparison with experimental data shows. On the other hand,
the interface between polyethylene crystal and melt is characterized in the tempera-
ture range [380, 450]K. We invoke the concept of the sharp Gibbs dividing surface to
define and quantify the interface internal energy and the interface stresses. We find
that the latter are in reasonable agreement with values derived from experimental
data. By way of the Herring equation one can also infer that the surface tension of
the fold surface is independent of shear strains in the interface.

14.1 Introduction, Motivation

Polymers are typically not fully crystalline below the melting temperature,
due to frustration effects. As a result, a significant fraction of the sample con-
sists of non-crystalline material between lamellae. These frustration effects
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are particularly pronounced when the polymers are considerably longer than
the lamella thickness. Chains then form bridges and loops, which are possibly
entangled in the region between different lamellae, which in turn has rami-
fications also for the mechanical properties [1]. The characterization of this
interlamellar domain is complicated by the presence and overlap of signals
from several different phases and uncertainty in the assignment of a particu-
lar response to the interlamellar domain material [2,3]. In addition, in flexible
and fast crystallizing polymers such as polyethylene (PE) where crystal phase
relaxations are present, relationships between the crystal formation and the
structure of the interlamellar material are obscured by fading memory [4]. It
is also believed that the constraints imposed by the lamellae influence dra-
matically the dynamics of the interlamellar chain segments [5].

Two aspects, at least, of semicrystalline polymers must be discussed for ar-
riving at a meaningful description, namely, structure and material properties.
The effect of structure on the macroscopic material properties is described in
many textbooks, e.g. by Torquato [6]. The importance of characterizing the
structure is also realized in continuum modeling approaches, where powerful
nonequilibrium thermodynamics techniques are used to incorporate structural
information consistently into continuum models, which are then suitable for
process modeling [7,8]. In particular, we mention the crystallization rate equa-
tions of [8] which not only separates the semicrystalline polymer into crystal
and melt, but specifically distinguishes between the fold surfaces and growth
surfaces of lamellae. In this way, information gained by microscopic studies
can indeed be incorporated into descriptions on a different level. This being
said, we address the material properties of the interlamellar domain and of
the interface in the following.

Since a substantial amount of material is contained in the interlamel-
lar region, the properties of the latter give significant contributions to the
overall material behavior. The properties of the interlamellar material lie be-
tween those of the unconstrained amorphous melt and those of the crystalline
phase [9–11], and the influence of the crystalline constraints can be addressed
experimentally [12–14]. Furthermore, the properties of the crystal-melt inter-
face have various ramifications that can be observed experimentally [15], e.g.,
interface stresses lead to distortion of the crystal lattice spacing [16–18], and
they are possibly responsible for lamella twisting [19]. In addition, the surface
tension enters in theoretical models for crystallization rates [20,21].

To characterize the structure and to quantify the mechanical and thermal
properties of the interlamellar, non-crystalline material, Metropolis Monte
Carlo simulations have been performed [22–26] on systems kept in metastable
equilibrium [27,28]. Here, we give a summary of our most recent results for a
realistic model for polyethylene including torsion interactions. For more details
the reader is referred to the original publications [29, 30]. Throughout the
manuscript, we concentrate our attention on the {201} crystal surface, because
it was found to be energetically favored in simulations [25] and predominant
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Fig. 14.1. Illustration of semicrystalline polyethylene on the left, consisting of crys-
talline lamellae and non-crystalline material (not necessarily indicative of actual
morphology). The simulation box in the middle shows two crystalline lamellae and
the interlamellar phase in between, which consists of loops (thin solid lines), bridge
chains (thick solid lines), and tails (dashed lines). The polyethylene unit cell (grey
box, middle figure) with coordinate axes (a, b, c) is tilted by an angle αtilt with re-
spect to the surface normal and the coordinate system (x, y, z). The bars with label
“I” indicate the extended interface between crystalline and non-crystalline material,
while “B” denotes regions with bulk-like properties, as explained in the text. On the
right, snapshots are shown, viewing along the x- and y-direction, respectively

in experimental observations [31]. Figure 14.1 shows an illustration of the
simulation box, as well as a snapshot of the simulations.

In the remainder of this contribution we study, on one hand, the entire
interlamellar domain as a whole, termed “Study 1” [29]. On the other hand,
the crystal-melt interface specifically is examined in “Study 2” [30]. In the
course of explaining the results, the benefits of both of these approaches will
become evident.

14.2 Methodology

14.2.1 Force Field, Virial Calculation of Stress

Polyethylene is modeled according to the united atom model of Paul et al.
[32], as modified subsequently by Bolton et al. [33] and by In ’t Veld and
Rutledge [26], including the torsion angle terms. Using this force field, kinetic
processes in semicrystalline PE have already been modeled accurately [34,35].
The stable crystal phase, though similar to that for PE, is actually pseudo-
hexagonal.
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Interactions both between non-bonded united atoms (CH2) on different
chain segments and between united atom pairs separated by four or more
bonds in the same chain segment were calculated using a Lennard-Jones po-
tential with a cut-off distance rc = 2.5σLJ. In addition, three types of bonded
interactions are included, accounting for the stiffness in the bond length, bond
angle and torsion. The interaction potentials are, in that order,

ELJ,ij = 4εLJ

[(
σLJ

|di,j |

)12

−
(

σLJ

|di,j |

)6
]

, (14.1)

El,i =
1
2
kl (li − l0)

2
, (14.2)

Eθ,i =
1
2

kθ

sin2 θ0

(cos θi − cos θ0)
2

, (14.3)

Eφ,i =
3∑

n=0

kn cosn φi , (14.4)

with parameters specified in Table 14.1, and di,j = ri − rj the distance
between the Cartesian coordinates ri and rj of united atoms i and j. Fur-
thermore, li is the length of bond i, θi is the complement of the bond angle
constructed by bond i and i− 1, and φi is the bond torsion angle constructed
by the angle between the vectors di,i−1 × di−1,i−2 and di−1,i−2 × di−2,i−3.

For each of the force field contributions described above, there is a cor-
responding contribution to the total instantaneous stress tensor σ, which is
expressed in terms of the individual virial contributions. Explicit expressions
for these contributions can be found in [26,29]. When using Lennard-Jones in-
teractions for total energy calculations or for virial calculations of the stresses,
long range corrections need to be included, as discussed by In ’t Veld et al. [26].

14.2.2 Simulation Setup

Monte Carlo Simulation

The simulation box consisted of an immobile crystal phase and a mobile inter-
lamellar phase – the combination of both interfacial material (covered by bars

Table 14.1. Parameters for the Interaction Potentials

Interaction Parameter Value

Lennard-Jones εLJ (J/mol) 390.95
σLJ (nm) 0.4009

Bond length kl (J/mol/nm2) 376.1 × 106

l0 (nm) 0.1530
Bond angle kθ (kJ/mol) 502.1

θ0 (−) 68.0◦

Bond torsion {k0, k1, k2, k3} (kJ/mol) {6.498,−16.99, 3.626, 27.11}
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“I” in Fig. 14.1) and truly amorphous material (middle bar “B” in Fig. 14.1)
– as a model for semicrystalline polyethylene. The goal of studying the inter-
face between crystal and melt also at temperatures different than the melting
temperature requires that one imposes certain constraints on the system to
keep the interlamellar domain in a metastable state [27]. Crystallization at
low temperatures is prevented by keeping the volume constant, while in order
to prevent melting at high temperatures the crystal sites are immobile.

Phase space is sampled in Metropolis Monte Carlo fashion by topology
altering (end-reptation [36,37] and end-bridging [38]) and displacement (end-
rotation [23], rebridging [39,40], and single-site displacement) moves [26], and
parallel tempering [41] to facilitate more efficient sampling at low tempera-
tures. For Study 1, the temperature profile according to the criteria in [41] is
given by T ∈ {350, 359.9, 370.1, 380.6, 391.4, 402.4, 413.8, 425.6, 437.6, 450}K.
In Study 2 we used T ∈ {380.6, 391.4, 402.4, 413.8, 425.6, 437.6, 450}K. An
illustration of the simulation setup is given in Fig. 14.2.

Once created, the sufficient number of initial configurations generated
as described below were randomized and then quenched, via intermediate
temperatures, to the desired temperature profile, and equilibrated before any
measurements were taken.
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Fig. 14.2. Illustration of parallel tempering scheme as used in this study, with tem-
peratures {T1, . . . , Tn} and box geometries described by the tensors {h1, . . . , hn}.
Boxes represent simulated systems, each column denotes a parallel tempering sim-
ulation. The solid line represents P = 1 atm in the interlamellar phase as obtained
by interpolation of the simulated data, and used in Study 1. For Study 2, the box
geometries {h1, . . . , hn} are determined by the requirement of atmospheric condi-
tions sufficiently far away from the interface into the crystal and melt, respectively,
i.e., Pc = Pm = 1 atm
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Crystal Unit Cell

It is widely known that united atom force fields lead to hexagonal symmetry
of the crystal structure. However, they are quite accurate and efficient for
simulation of amorphous structure. In our case of polyethylene, the united
atom force field of Paul et al. leads to pseudo-hexagonal symmetry in the
ab-plane, in contrast to the experimentally observed orthorhombic symmetry.
Nevertheless, we deliberately accept this, because using a better force field in
the crystal brings about the problem of how to transition between the two
force fields at the interface. Also, the region of interest is not the crystal phase,
but the interlamellar region.

In Study 1, the unit cell is adjusted to satisfy atmospheric pressure condi-
tions at 400K within the crystal phase. Specifically, the undeformed unit cell
had a = 0.77479 nm, b = 0.44626 nm, and c = 0.251822 nm, with all crystal-
lographic angles being 90 degrees. For Study 2, it was necessary to achieve
atmospheric pressure conditions in the crystal at all temperatures consid-
ered, which can be achieved with unit cells with pseudo-hexagonal symme-
try and lattice parameters a(T ) = (0.774053 + 0.0000471 × (T − 400)) nm,
b(T ) = (0.445817 + 0.0000261 × (T − 400)) nm, and c(T ) = (0.252748 +
0.0000014 × (T − 400)) nm, where T is the temperature in units of K.

Simulation Box

The simulation box is illustrated in Fig. 14.1. It consists of the interlamellar
phase enclosed between two lamellar crystals oriented with the {201} plane
normal to the z-direction of the simulation cell.

Further specifications concerning the simulation cells used are summarized
in Table 14.2, such as the dimensions of the rectangular simulation box, the
thickness of the interlamellar domain lz,il, the number of tails ntail, bridges
nbridge and loops nloop. Here, we note that the Monte Carlo moves used keep
both ntail and the sum nbridge + nloop constant. The loop and bridge popula-
tions are not constant individually but rather determined dynamically from

Table 14.2. Parameters and numbers as used in Study 1 and Study 2. The sym-
bols are explained in the text. Quantities with a superscript star are temperature
dependent, and only average values are reported in this table

Study 1 Study 2

box size: (x, y, z) (nm) (2.77, 1.79, 8.72) (2.77, 2.67, 12.64)
lz,il (nm) 7.66 7.22
ntail (−) 12 18
nbridge + nloop (−) 18 27
ρil (g/cc) 0.7947 0.79 �

Nsites (−) 1536 3750 �

Nsites,il (−) 1296 1950 �
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the simulation. Notice also that the simulated lamellar surface is larger in
Study 2 compared to Study 1, but the fraction ntail/(ntail +nbridge +nloop) is
identical in both studies, i.e., the same surface is studied. The average mass
density of the interlamellar domain, ρil, is adjusted in Study 1 in order to
achieve atmospheric pressure conditions on average over the interlamellar do-
main at 402K. In Study 2, we aimed at atmospheric conditions not on average
but rather in regions where the influence of the interface is negligible, i.e., in
the mid-plane of the simulation box. The total number of sites in the entire
simulation cell and in the interlamellar domain are denoted by Nsites and
Nsites,il, respectively.

Keeping in mind that only the relevant surface region of the lamellae in
the simulation cell in Fig. 14.1 is shown and needed for the simulation, these
simulations are representative of semicrystalline morphologies having thicker
crystal lamellae. Assuming realistic lamellae thicknesses, our simulation pa-
rameters can be translated into an estimate of the molecular weight of the
polyethylene, Mw ∼ 104 g/mol, and a degree of crystallinity, φc ∼ 62%, as
shown in [27]. Thus, the crystallinity and lamellar spacing studied here are
comparable to the values cited by Hoffman [42] and Crist et al. [14].

For purposes of elastic property calculations, tensile and compressive de-
formations were simulated at εi (i = 1, 2, 3) in the interval [−8.75%, 8.75%]
in steps of 1.25%, with a few unimportant exceptions. Combined tensile de-
formations, used in calculation of the off-diagonal stiffness coefficients, were
simulated for values of pairs {εi, εj} (i, j = 1, 2, 3; i �= j) with magnitudes
εi = εj in the range [−4.375%, 4.375%] with increments of 0.625%. Shear de-
formations were performed under simple shear for εi (i = 4, 5, 6) in the range
[−5%, 5%] in steps of 1.25%.

14.2.3 Thermal and Elastic Properties of Interlamellar Domain

The calculation of elastic properties in Study 1 was performed by simula-
tions in the NhT -ensemble for specific values of T and h (see Fig. 14.2).
Here, h is the tensor that describes both the size and shape of the sys-
tem, e.g. V = det(h) [43]. At each point (T,h), the pressure is calculated
as P = −Tr [σ(T,h)/3]. Since our focus is on the interlamellar domain, stress
contributions from the rigid crystals are not included in Study 1. Lines of
constant pressure can thus be obtained through interpolation. In Fig. 14.2,
the solid line is a schematic representation of the condition P = 1atm. The
pressure in the interlamellar domain at each temperature can be adjusted by
varying only that component of h which describes the interlamellar thick-
ness perpendicular to the interface. In the other two orthogonal directions
in the interface plane, the extension of the interlamellar domain is more
rigidly constrained due to continuity with the crystal lattice. The condition
P = 1atm leads to a relation between cell volume and temperature, V0(T ).
Any property X can hence be considered in terms of X(V, T ) or X(P, T ).
In particular, temperature derivatives at constant volume, (∂X(V, T )/∂T )|V
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(along vertical lines in Fig. 14.2), and at constant pressure P = 1 atm,
(∂X(P, T )/∂T )|P = (dX(V0(T ), T )/dT ) (along the solid line in Fig. 14.2),
can be calculated.

After appropriate interpolation procedures [29], isochoric and isobaric heat
capacities at atmospheric pressure were calculated,

CV = (∂E/∂T )|V , (14.5)
CP = (∂E/∂T )|P + P (∂V/∂T )|P . (14.6)

Furthermore, stresses were calculated as functions of strain and temperature.
For each temperature, each component of stress was fit to a second order
Taylor series expansion in terms of the strains, about the P = 1atm reference
volume V0(T ) at each specific temperature. Based on the stresses, the elastic
moduli Cij and the Grüneisen coefficients γi (i = 1, 2, 3) of the non-crystalline
interlamellar phase were calculated using

Cij = (∂σi/∂εj)|T,εk �=j
, (14.7)

γi = −V0 C−1
V (∂σi/∂T )|V =V0

= C−1
V (∂S/∂εi)|T,εk �=i

, (14.8)

where the Voigt notation is used throughout the manuscript. The Grüneisen
coefficients provide a measure of entropic contributions to the elastic moduli.

14.2.4 Energy and Stresses in the Crystal-Melt Interface

Chain connectivity between the crystalline and non-crystalline domains and
the finite stiffness of polyethylene result in a finite thickness of the transition
region that has no counterpart in the crystal-liquid interface for low molecular
weight substances. On the molecular scale, this transition region extends well
beyond what may be regarded as the surface of the crystal phase, prompting
use of the term “interphase” to describe this transition region [44]. For ther-
modynamic purposes, however, it is convenient to characterize the properties
of this interphase as those associated with an interfacial dividing surface. In
order to approximate this region (termed “I” in Fig. 14.1) using a sharp in-
terface, a coarse-graining step is involved. The procedure adopted here uses
the concept of the Gibbs dividing surface [45–47].

The finite width of the transition region is reflected in the position de-
pendent profiles of mass density ρ(z), internal energy density e(z) and stress
tensor σ(z), which can all be obtained from Monte Carlo simulations. In ac-
cord with these profiles as a function of the coordinate z along the surface
normal, one can define the corresponding properties of the interface,

ρint :=
∫ ∞

−∞

[
ρ(z) − ρstep(z)

]
dz , (14.9)

eint :=
∫ ∞

−∞

[
e(z) − estep(z)

]
dz , (14.10)

παβ :=
∫ ∞

−∞

[
σαβ(z) − σstep

αβ (z)
]
dz (α, β = x, y) . (14.11)
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Each quantity with superscript “step” denotes a Heaviside step function which
on either side of the step takes the values identical to the corresponding bulk
values of the crystal and melt domains sufficiently far away from the transition
region. Therefore, regions far away from the interface do not contribute to
the integrals, i.e., the integrand approaches zero rapidly. The criterion of a
massless interface, ρint = 0, determines the position of the step, i.e., the
position of the Gibbs dividing surface, zdiv. The latter is then used also in
the step functions for eint and παβ , see Fig. 14.3. The physical interpretation
of the interface properties given by (14.9-14.11) as ‘excess quantities’ is now
obvious: It is the differences between the real profile and the extrapolation of
the bulk values up to the sharp interface. In that sense, they isolate the effect
of the interface. We note that determination of the surface tension γ, i.e., the
Helmholtz free energy per unit area, from the interface stresses is non-trivial,
as expressed by the Herring equation [18,48,49]

παβ = γδαβ +
∂γ

∂εαβ

∣∣∣∣
T

, (14.12)

where δαβ denotes the identity matrix. Because one of the adjoining phases is
solid, γ depends on the strain in the interface, εαβ (α, β = x, y).

Since the crystal-melt interface under consideration has zero curvature, it
is natural to assume that atmospheric pressure conditions prevail sufficiently
far away from the interface, putting constraints on the lattice parameters of
the pseudo-hexagonal unit cell, and on the interlamellar domain. All these
parameters of the box geometry are included in the label h in Fig. 14.2. Dark
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Fig. 14.3. Illustration of the procedure to calculate interface internal energy, eint,
and the interface stresses, παβ , as used here for the polyethylene {201} crystal surface
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boxes indicate the systems in which atmospheric conditions are established in
the bulk crystal and melt domains, respectively.

14.3 Results and Discussion

14.3.1 Conformational Properties

The average lengths of bridge, loop and tail segments in the interlamellar
phase as functions of temperature were investigated in Study 1. In the sim-
ulation procedure, the probability for attachment and removal of a single
CH2 group is independent of the chain length n, and hence one can antici-
pate that the chemical potential for a chain segment of n united atoms takes
the form µ(n, T ) = µ0(T ) + µn(T )n with µn(T ) > 0. As a consequence, the
loop, bridge and tail distributions should depend exponentially on n, i.e.,
p(n, T ) ∼ exp[−µ(n, T )/kBT ] for sufficiently large n, in agreement with our
simulation results (not shown).

As far as the temperature dependence of the average segment length is
concerned, one finds that it increases with temperature for both bridge and tail
populations, from 〈nbridge〉 ≈ 139 and 〈ntail〉 ≈ 44 at 350K to 〈nbridge〉 ≈ 169
and 〈ntail〉 ≈ 55 at 450K. These temperature dependences originate primarily
from the factor 1/T in the exponential of the distribution function. In contrast,
for loops one observes a slight decrease in average length with increasing
temperature, from 〈nloop〉 ≈ 36 at 350K to 〈nloop〉 ≈ 30 at 450K. This reverse
trend is attributed to torsional hindrances, which become more stringent the
shorter the loops. Hence, we conclude that the temperature dependence of
µn(T ) is significant in the case of loops, due to torsional contributions.

Next, we consider the equilibrium topology, i.e., the relaxed state long
after crystallization has stopped, of the {201} crystal/amorphous interface
in polyethylene, which has ramifications for material properties of the inter-
lamellar phase. In particular, we focus on the statistics of loops. We abbre-
viate with [mn0] the reentry vector or end-to-end vector for a loop segment,
[±mlx,±n ly, 0], with lx and ly representing the projected length of a unit
cell vector (a or b) at the crystal surface in the x- and y-directions, respec-
tively. Figure 14.4 shows results at temperatures 350K and 450K, where the
length of the reentry vector increases from left to right, and n is assumed
to be integer. Firstly, one observes that loops with reentry vectors oriented
along [0n 0] are the most common. This population is dominated by the [0 1 0]
loops, which are the shortest of all possible loops in the {201} interface for
the pseudo-hexagonal unit cell considered here. Secondly, the loop populations
decrease with increasing distance between reentry points. Thirdly, the “rest”
population is comprised exclusively of loops with reentry vectors longer than
that for the [1 1 0] direction. Comparison of the results for PE and the freely-
rotating chain (FRC) show that the torsion leads to longer loops [29]. This is
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Fig. 14.4. Reentry distribution at the undeformed state of polyethylene as a func-
tion of reentry orientation at two temperatures; light bar: 350K, dark bar: 450K.
The last entry “rest” lumps together all the remaining loops not explicitly consid-
ered in the other sets. The shortest reentry vector length in a particular direction
increases from left to right. See text for notation. Reproduced from [29] with written
permission from ACS Publications

in accord with our observation above that the loop length distribution is sub-
stantially influenced by the torsion potential. Lastly, Fig. 14.4 indicates that
reconstruction of reentry topology associated with changes in temperature
between 350K and 450K has a relatively small effect.

14.3.2 Thermal and Elastic Properties of Interlamellar Domain

In this subsection, the interlamellar domain is characterized in terms of ther-
mal and elastic properties, as obtained from our Study 1 MC simulations. The
most important results are summarized in Table 14.3.

Isochoric and Isobaric Heat Capacities

The isochoric and isobaric heat capacities of the interlamellar domain are dis-
played in Fig. 14.5 as functions of temperature at atmospheric pressure. In
terms of the scheme in Fig. 14.2, isochoric temperature derivatives describe
changes along vertical columns of constant h evaluated on the solid line rep-
resenting P = 1atm, while isobaric temperature derivatives capture changes
along the line P = 1atm. The isochoric heat capacity CV (T ) at P = 1atm
is of the order of 26 J/K/molCH2, which was also checked using the fluctu-
ation formula [50] with consistent results. The isobaric heat capacity CP (T )
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Table 14.3. Summary of the properties of the interlamellar phase and of the
sharp interface, as discussed in the text. Superscripts: values from Study 1 at
P = 1 atm (a1) in the temperature range [350, 450]K, (a1-) in the temperature
range [360, 450]K, and (b) at T = 435 K; (a2) denotes values from Study 2 in the
temperature range [380.6, 450]K and Pc = Pm = 1 atm. For ranges of temperature,
we give only the values of that specific property at the lowest and at the highest
temperature. Note that all properties summarized here have a monotonic tempera-
ture dependence in the temperature range given, except for CV and α3, which both
have a shallow maximum

Property Value

Interlamellar CV (J/K/mol CH2) [25.0 ± 0.8, 25.5 ± 0.3] (a1)

Domain CP (J/K/mol CH2) [32.7 ± 0.2, 31.8 ± 0.2] (a1)

{E1, E2, E3} (GPa) {0.49, 0.77, 0.27} (b)

{G1, G2, G3} (GPa) {−0.17, 0.12, 1.17} (b)

K (GPa) 0.89 (b)

γ1 (−) [0.77 ± 0.04, 0.43 ± 0.01] (a1)

γ2 (−) [0.74 ± 0.03, 0.44 ± 0.02] (a1)

γ3 (−) [0.77 ± 0.04, 0.43 ± 0.02] (a1)

α1 (10−4/K) [2.38, 0.41] (a1−)

α2 (10−4/K) [−0.45, 0.27] (a1−)

α3 (10−4/K) [6.54, 6.49] (a1−)

Crystal-Melt eint (J/m2) [0.299 ± 0.006, 0.340 ± 0.004] (a2)

Interface (∂eint/∂T )|h (10−3J/m2/K) [−2.5 ± 0.6, 0.9 ± 0.2] (a2)

πxx (J/m2) [−0.293 ± 0.009,−0.244 ± 0.007] (a2)

πyy (J/m2) [−0.379 ± 0.008,−0.428 ± 0.007] (a2)

πxy (J/m2) ∼ 0 ± 0.006 (a2)

at P = 1atm is of the order 32 J/K/molCH2, i.e., approx. 20% larger than
CV (T ), but slightly lower compared to extrapolated experimental values of an
amorphous polyethylene melt (from 33.1 J/K/molCH2 to 37.8 J/K/molCH2)
at the same pressure and temperatures [51].

Elastic Stiffness and Compliance, Stability

In Fig. 14.6, tensile (i, j = 1, 2, 3) and shear (i, j = 4, 5, 6) components Cij

of the stiffness matrix (Voigt notation) at constant pressure are shown. In
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Fig. 14.5. Heat capacities at atmospheric pressure; �: Cp; �: CV . Reproduced
from [29] with written permission from ACS Publications

Fig. 14.6. Tensile and shear contributions to the elastic stiffness matrix C at at-
mospheric pressure; �: C11; �: C22; �: C33; �: C12; �: C13; ♦: C23. Lines are drawn
as a guide to the eye. Reproduced from [29] with written permission from ACS
Publications

general, they decrease with increasing temperature, as expected [52]. The
shear components were calculated as functions of temperature, but only for
deformation about a single reference cell, h0 at T = 435K. For that temper-
ature, we can report the full stiffness tensor C for the non-crystalline inter-
lamellar material in PE at P = 1atm (in GPa):
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C =




1.54 1.21 0.83 0.00 −0.18 0.00
1.21 2.02 0.87 0.00 −0.24 0.00
0.83 0.87 0.90 0.00 0.05 0.00
0.00 0.00 0.00 ∼ 0.00 0.00 −0.20
−0.18 −0.24 0.05 0.00 0.22 0.00
0.00 0.00 0.00 −0.20 0.00 0.57




. (14.13)

This stiffness tensor has monoclinic symmetry rather than pseudo-hexagonal,
since the underlying pseudo-hexagonal crystal is tilted away from the c-axis.
The uncertainty in each of the tensile stiffnesses is ±0.03 GPa; the uncertainty
in each of the shear stiffnesses is ±0.06GPa, with the exception of C44, where
the uncertainty is closer to ±0.1GPa. Within the accuracy of our sampling,
C44 is zero within errors. As a consequence the system is at best only mar-
ginally stable, since the determinant of the stiffness matrix in (14.13) is close
to zero.

The best estimate of the elastic compliance matrix S at P = 1atm and
T = 435K is obtained by inversion of the stiffness matrix and using standard
propagation of errors. One obtains for S (in GPa−1)

S =




2.0 −0.34 −1.6 0. 1.6 0.
−0.34 1.3 −1.0 0. 1.3 0.
−1.6 −1.0 3.7 0. −3.2 0.
0. 0. 0. −6.0 0. −2.3
1.6 1.3 −3.2 0.0 8.3 0.
0. 0. 0. −2.3 0. 0.85




. (14.14)

The uncertainty in C44 does not affect most of the compliances, but it does
result in unreliable values for S44 and S66. From (14.14), we estimate the
Young’s moduli Ei = 1/Sii (i = 1, 2, 3), the shear moduli Gi−3 = 1/Sii

(i = 4, 5, 6), and the bulk modulus K = 1/((S11 + S22 + S33) + 2(S12 + S13 +
S23)) [53], with values reported in Table 14.3. Due to the aforementioned
uncertainty in C44, the results for G1 and G3 should be interpreted with
caution. We also mention that Krigas et al. reported shear modulus data
for the fully amorphous melt below the detection limit of our simulations,
explaining our difficulty in determining an accurate value of G1 [54]. The
results for the Young’s moduli are similar to experimental values between
0.02GPa and 0.4GPa estimated by Crist et al. [14]. Reported experimental
bulk moduli for a PE melt range from 1.38GPa to 0.87GPa at 350K to
450K, respectively, and from 3.37GPa to an extrapolated value of 0.84GPa
for semicrystalline PE at the same temperatures [52]. Due to the connectivity
between the crystal and the interlamellar material, the latter is expected to
be stiffer than the pure melt.

The entropic contributions to the elastic moduli (see Fig. 14.6) is given
by the Grüneisen parameters, which show a close to linear temperature de-
pendence in our simulations, ranging from ∼ 0.75 at 350K to 0.4 at 450K.
These results are lower than our previous results [26] which ignored torsion



14 Monte Carlo Simulations of Semicrystalline Polyethylene 275

Fig. 14.7. Thermal expansion coefficients as functions of temperature at at-
mospheric pressure; �: α1; �: α2; �: α3. Reproduced from [29] with written permis-
sion from ACS Publications

contributions and where the average interlamellar pressures (1300−2500 atm)
were substantially different from the one used here (1 atm).

Coefficients of Thermal Expansion

The coefficients of linear thermal expansion are reported in Fig. 14.7 as
functions of temperature. The method to their calculation is described else-
where [26], under the assumption that γ5 � γ1,2 or 3, and interpolated to vol-
umes corresponding to atmospheric pressure conditions. Experimental data
for linear thermal expansion coefficients for the amorphous melt range from
7.11×10−4/K to 7.23×10−4/K under comparable conditions [55]. We empha-
size that this agrees nicely with the simulated value for α3 shown in Fig. 14.7.
While the thermal expansion in the direction normal to the crystal surface
is not immediately constrained by the crystal, it is substantially decreased in
the xy-plane due to chain continuity, in accord with the data for α1 and α2

reported in Fig. 14.7.

14.3.3 Properties of the Crystal-Melt Interface

Much of the interesting physics in semicrystalline materials is hidden in the
transition region between the crystalline domain and the melt-like domain.
In particular in polymeric systems with a certain degree of stiffness of the
backbone, the chain connectivity between both phases results in a rather
wide transition region. In the following, we focus on the characterization of
the crystal-melt interface by invoking the Gibbs construction of a sharp
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Fig. 14.8. Position of the Gibbs dividing surface zdiv plotted versus temperature
T at atmospheric conditions in the bulk phases, Pc = Pm = 1 atm (�), and its
temperature derivative at constant box geometry, (∂zdiv/∂T )|h (�). Reprinted from
[30] with written permission from Elsevier

dividing surface. The most important quantitative results are summarized
in Table 14.3.

Position of the Gibbs Dividing Surface

The calculation of the interface properties as described in Sect. 14.2.4 requires
determination of the position of the Gibbs dividing surface, zdiv. We calculated
the mass density profiles ρ(z), and then used the criterion ρint = 0 with (14.9).
The resulting values are reported in Fig. 14.8. There, the position of the Gibbs
dividing surface is measured with respect to the real crystal surface, which is
defined midway between the top layer of united atoms in the crystal and the
first layer of mobile atoms bonded to it. The thickness of the interface (approx.
equal to 2zdiv) decreases for the higher temperatures as a result of weakened
chain stiffness and entropic effects, in accord with previous results [26].

The derivative of zdiv at constant bulk pressures (i.e., along the diagonal
in Fig. 14.2) as obtained from Fig. 14.8 (�) goes from approximately −9 ×
10−4nm/K below T = 400K to zero within error bars above T = 430K. On the
other hand, the derivative at constant box geometry (i.e., along vertical lines
in Fig. 14.2) are about a factor of six larger (� in Fig. 14.8). We believe that
this is explained by the fact that increasing the temperature at constant box
geometry leads to increased pressure in the melt phase, which in turn further
compresses the interface. Therefore, this additional effect leads to larger values
for (∂zdiv/∂T )|h in comparison to (∂zdiv/∂T )|Pc=Pm=1 atm.

The error bars in Fig. 14.8 (as also for Figs. 14.9 and 14.10) are calcu-
lated by splitting the entire Monte Carlo simulation in ten blocks, from which
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Fig. 14.9. Interface internal energy eint plotted versus temperature T at Pc = Pm =
1atm (�), and its temperature derivative at constant interface strain and constant
system volume, (∂eint/∂T )|h (�). Reprinted from [30] with written permission from
Elsevier

Fig. 14.10. Interface stresses, plotted versus temperature at atmospheric bulk
stresses in the adjoining crystal and melt phases: πxx (�), πyy (�), and πxy (�).
Solid bars indicate the ranges of values given in [16–18] for n-paraffin at T = 296K
(dark grey), and melt-crystallized polyethylene at T = 298K (light grey). Reprinted
from [30] with written permission from Elsevier

ten statistically independent block averages are calculated. In turn, these ten
averages are used to determine the total average and the associated error.
Propagation of errors is employed to obtain the error of the temperature



278 M. Hütter et al.

derivatives, based on the three successive data points used for the calculation
of the slope.

14.3.4 Internal Energy of the Interface

The internal energy of the interface can be calculated in our MC simulations
according to (14.10), with the aid of the position of the Gibbs dividing surface,
zdiv (see Fig. 14.3). The results are shown in Fig. 14.9 (�). The interface en-
ergy increases steadily from 0.30 J/m2 at 380K to ∼ 0.335 J/m2 at the melting
temperature (Tm � 410K), and remains approximately constant above.

The temperature derivative of the interface energy is particularly inter-
esting. We have mentioned in the previous section the difference between
temperature derivatives at constant bulk pressures in contrast to constant
box geometry. Although the fact that they are different may not come as a
surprise, it is unexpected that these two types of temperature derivatives may
even have opposite sign, as illustrated in the following. While the derivative
at constant bulk pressure (change along the diagonal in Fig. 14.2) has a pos-
itive slope according to the data in Fig. 14.9 (�) at low temperatures, the
derivative at constant box geometry (change along columns in Fig. 14.2) is
negative below the melting temperature (� in Fig. 14.9). An explanation for
the different signs of the slopes needs to take into account that the temper-
ature derivative of the interface energy depends not only on the profile e(z),
but also on zdiv, which in turn originates from the profile ρ(z). For a detailed
explanation the reader is referred to [30].

As shown in detail in [30], the heat capacity at constant total volume
of semicrystalline polyethylene contains phase change contributions due to
a change in volume fraction (here, ∂zdiv/∂T |h) and due to a change in the
internal energy of the interface (here, ∂eint/∂T |h), which is the reason for
calling the heat capacity of semicrystalline polymers “apparent”. We mention
that we refrain from calling (∂eint/∂T )|h a “heat capacity at constant surface
area” of the interface, as suggested by analogy to its bulk counterpart “heat
capacity at constant volume”. We recall that eint is an excess property by
definition, and its behavior upon changing temperature is strongly interwoven
with the thermodynamic behavior of the two adjoining bulk phases.

14.3.5 Interface Stresses

The values for the interface stresses calculated according to (14.11) for Pc =
Pm = 1atm (i.e., on the diagonal of the schematic in Fig. 14.2) are reported
in Fig. 14.10.

Two features of the data in Fig. 14.10 are striking, namely the sign of the
diagonal stresses and the anisotropy. The fact that the interface stresses are
negative means that the interface tries to expand, which can be rationalized
with these two arguments. Firstly, the chains are in perfect crystalline registry
in the crystal domain, but then the chains exit the crystal and attempt to gain
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more configurational entropy, i.e., they exert pressure on each other to gain
more space. Secondly, (short) folds preferentially try to increase the distance
between anchor points due to the stiffness of the backbone. Our results are of
the same order of magnitude as the ones reported by Cammarata, Eby and
Fisher [16–18], which are between −0.1 J/m2 and −0.3 J/m2 for the {001}
surface.

By virtue of the Herring equation (14.12), measurements of the surface
tension of the fold surface are also interesting, which in turn enters in theoret-
ical models for experimentally measurable crystallization rates [20,21]. In view
of the interface stress values in Fig. 14.10 it is interesting to note that exper-
imental values for the scalar surface tension are in the range γ = +0.1 J/m2.
The fact that these values are of the same order of magnitude as the interface
stresses, but with opposite sign, draws attention to the strain dependence of
the surface tension in the Herring equation (14.12). For the diagonal com-
ponents, the term (∂γ/∂εαα)|T over-compensates the isotropic contribution
γ by far, which serves as a measure of the strong dependence of the surface
tension on tensile strains. We also observe |πxx|, |πyy| > γ, which we suppose
to be related to the presence of short folds [15]. This is in agreement with our
simulations for which the average loop length is rather short, as reported in
Sect. 14.3.1

The off-diagonal stress πxy is zero within error, according to Fig. 14.10.
From this one can conclude that the scalar surface tension is independent of
small shear deformations in the plane of the interface, as can be inferred from
the Herring equation (14.12).

The rigorous definition of the interface stresses relies on mechanical equi-
librium, i.e., the shear stresses in the out-of-plane directions being zero and
σzz independent of z. In order to measure such effects in our simulations in
relation to the in-plane interface stresses, the definition (14.11) is also ap-
plied to the out-of-plane components of the stress profile. One finds that
|πxz| � 0.05 J/m2, |πyz| � 0.01 J/m2, and |πzz| � 0.05 J/m2. Hence, the stress
integrals involving the z-direction are 20% or less in magnitude compared to
πxx, and even smaller when compared to πyy. Nevertheless, they are signifi-
cant, and we believe that the stresses πxz and πzz are a signature of the tilted
chains exiting the crystal with a certain persistence along the backbone.

14.4 Summary and Discussion

The structural, thermal and mechanical characterization of the interlamellar
domain and of the {201} crystal-melt interface of semicrystalline PE was per-
formed, and compared with experimental data where available. Monte Carlo
simulations complete with three-fold torsional potential were used with a
united atom representation of polyethylene. We have employed two different
strategies to assess the properties of the interface.



280 M. Hütter et al.

14.4.1 Entire Interlamellar Domain

The morphology was quantified in terms of loop reentry distributions and the
average lengths of loops, bridge molecules, and dangling chain ends, i.e., tails.
The distribution of reentry vectors on the {201} surface of PE showed that
the shorter the reentry vector the more probable its occurrence. In particular,
the shortest reentry vector [0 1 0] was the most common. We found that the
length distribution of the different types of segments (loops, bridges, tails)
over a large range decays exponentially with segment length, i.e., that the
chemical potential, µn, for addition/removal of united atoms to a segment is
independent of the segment length. However, our simulation suggested that
µn is strongly dependent on temperature for loops, in contrast to bridges and
tails, which we attribute to the effect of torsion and hence chain stiffness on
short loops.

Thermodynamic and mechanical properties of the interlamellar domain
have been determined at average atmospheric conditions in a range of tem-
peratures, P = 1atm and T ∈ [350, 450]K, namely the isobaric and isochoric
heat capacity, Grüneisen coefficients, and the anisotropic thermal expansion
coefficients. The latter clearly resembled melt-like behavior in the direction
normal to the surface, while in-plane one observes low, crystal-like expansion.
In large systems consisting of several lamellae as shown on the left in Fig. 14.1,
this strong anisotropy in thermal expansion will dominate the behavior close
to the crystal surface. When measuring the thermal expansion of the entire
system, averaging comes into play which in turn depends most probably on
the size, density, and orientation distribution of the lamellae. In that sense,
the simulations performed here provide estimates for the ingredients needed
in such more complex studies.

A full mechanical characterization of any material for deformations in the
linear regime is given by the stiffness or compliance matrix, respectively. For
the interlamellar domain at P = 1atm and T = 435K, we extracted exactly
these matrices, from which Young’s moduli and shear moduli were determined.
According to the simulations, the bulk modulus of the interlamellar domain
lies between between the experimental values reported for a purely amorphous
melt and the semicrystalline solid.

14.4.2 Sharp Crystal-Melt Interface

The interface between the lamellar crystals and the non-crystalline, inter-
lamellar region was studied using the technique of the Gibbs dividing surface.
In so doing, one is able isolate the effects of the interface alone, irrespective
of thickness of the lamellae and, to some degree, of the interlamellar domain.
Therefore, the properties attached to the sharp interface can be used in a
three-component model with arbitrary composition, which accounts for the
interface contribution explicitly, in addition to the crystal and melt bulk con-
tributions.
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Our simulations resulted in values for the in-plane diagonal stress com-
ponents πxx � −0.27 J/m2 and πyy � −0.4 J/m2, which compare reasonably
well with experimental values. The anisotropy is a signature of the tilted
chains exiting the lamella at the {201} surface. The sign of these stresses in-
dicates that the interface is under pressure, due to entropic effects and due to
connectivity between the crystal and non-crystalline segments. The Herring
equation taught us that the surface tension (i.e., Helmholtz free energy per
unit area) depends strongly on the tensile strains, but is independent of shear
strains in the interface plane. Furthermore, the interface internal energy, eint,
and its change versus temperature was studied and quantified. The latter is
of interest because it enters into the “apparent” heat capacity as measured
for the entire semicrystalline material.

Throughout the manuscript, we carefully specified the variables under con-
trol. In particular when taking temperature derivatives, we observed differ-
ences between keeping pressure constant or the geometry of the system. We
point out that such book keeping is essential, because it is not only respon-
sible for quantitative differences, e.g., CV vs. CP , but it can even result in a
alteration of the overall sign, as shown in Study 2 of the interface energy and
stresses.

The internal energy and the stresses of the interface were both calculated
on the basis of the respective profile obtained from our MC simulations, i.e.,
based on (14.10, 14.11). The way in which they are defined has clear physical
meaning, as explained previously. However, one may ask about the existence of
a single thermodynamic potential, namely a Helmholtz free energy of the inter-
face, from which the internal energy and the interface stresses can be derived,
in close analogy to the corresponding relations for bulk materials. Whether
or not the data reported here have a chance of being derived from a single
Helmholtz free energy can be discussed by testing the Maxwell relations, i.e.,
the relations between mixed second order derivatives of the thermodynamic
potential. Doing so requires data on the strain dependence of the internal en-
ergy of the interface, which are currently not available to reasonable accuracy
(see [30] for more details). Furthermore, one must realize that the thermody-
namic state of the interface depends on the conditions in the two adjoining
bulk phases, e.g., the pressure. Under the assumption that the difference be-
tween the surface tension γ and eint equals the temperature times the entropy
of the interface, sint, our results for eint combined with the experimental value
γ ∼ 0.1 J/m2 for the fold surface [20, 21] leads to Tsint � 0.2 J/m2. However,
due to the difficulties just mentioned this number should be used with caution.

14.4.3 Perspectives

Measurements of the interlamellar domain and interface, as presented here,
develop their full strength when put in a wider context and combined with
the material properties of the adjoining phases, e.g. the effect of the internal
energy of the interface on the heat capacity of the semicrystalline material.
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Another such example is the connection between interface stresses and crys-
tal lattice distortion, and lamellar twisting. The latter phenomenon requires
two additional ingredients, in addition to the interface stresses: Firstly, the
interface stresses must occur asymmetrically at the two opposite lamella sur-
faces [56, 57], which can not be achieved in our simulations by construction
of the simulation cell. Reasons for such asymmetries have to be found on dif-
ferent grounds. Secondly, lamellar twisting can only be predicted if also the
material properties of the crystalline lamellae are incorporated, either based
on experimental [58,59] or simulated data [60].

Table 14.3 summarizes the most important results of our MC simulations
in terms of thermal and mechanical properties. It is striking that no mechani-
cal response data, e.g., stiffness or compliance data, are available for the sharp
interface. In that respect we mention that measuring the change in the inter-
face stresses with respect to small deformations (tensile, shear) in directions
of the interface plane with reasonable accuracy is difficult, as discussed in
more detail in [30]. However, we have the feeling that such data would be
useful for calculating the average mechanical response of semicrystalline poly-
ethylene, in conjunction with similar data for the melt and crystal phases [60]
and appropriate multiphase models.
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