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Abstract 

In 1986, Fiat and Shamir [2] exhibited zero-knowledge based iden- 
tification and digital signature schemes. In these schemes, as well as in 
subsequent variants, both the prover and the verifier have to perform 
modular multiplications. This paper is an attempt to build identifica- 
tion protocols that use only very basic operations such as multiplica- 
tion by a tied matrix over the two-element field. Such a matrix can 
be viewed as the parity-check matrk of a linear binary error-correcting 
code. The idea of using error-correcting codes in this area is due to 
Harari [3] but the method that is described here is both simpler and 
more secure than his original design. 

1 The signature scheme 

The proposed scheme uses a fixed (n-k)-matrix G over the two-element 
field. This matrix is common to all users and is originally built randomly. 
Thus, considered as a parity-check matrix, it should provide a linear binary 
code with a good correcting power. Also common to all users is a family 

Wl,..., wp of words with n bits. 
Any user chooses a secret key s which is an n-bit word with a prescribed 

number p of 1’s. This prescribed number p is also part of the system. Then 
he computes his public identification as 

i = G(s) 
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The sequence wj will be essentially used as a pseudo-random number 
generator. Whenever an n-bit word z is given, together with two random 
integers a, c ,  with a prime t o  q, a sequence 

is produced. 

commitment. If u is an n-bit word, a commitment for u is a sequence 
The identification scheme will rely heavily on the technical notion of a 

built from 

such that 

where 0 and @ respectively denote bitwise multiplication and bitwise addi- 
tion modulo 2. Usually, a commitment will be built by choosing randomly 
a partition of (1,. . - , n} into I pieces. The notion of commitment can be 
extended to words of length > n. By padding randomly, we may restrict 
ourselves to  words whose length is a multiple of n and break these into a 
sequence of words of length exactly n. Especially, a sequence of integers 
nl, . . . , nq coded on a fixed number h of bits can be written as a single word 
of length hq and be given a commitment. 

A commitment will be used as a one-way function: in order to  disclose 
it, one announces the sequence 

from which it was built. Once this is done, anyone can check the correctness 
of the commitment by applying G to the sequence u j ,  recover the original 
word u and use the information it encodes. 

We now describe the interactive protocol that enables any user (which 
we will call the prover) to identify himself to another one (which we call the 
verifier). The protocol includes r rounds, each of these being performed as 
follows. 

1. The prover picks a random n-bit word y and sends commitments for 
y and y @ s to  the verifier. 
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2. The verifier computes 2 = G(y) and x' = G(y @ s) and checks that 
x = x' @ i. Then, he sends a random n-bit word z to the prover. 

3. The prover computes the sequences 

n j  =I Y e z j  I 
mj  =( 3 @ zj  @ s I 

where I w I is the weight of an n-bit word v, that is the number of 
its ones and where the sequence zj is produced, as explained above, 
from integers a and c randomly chosen by the prover. He sends com- 
mitments of the sequences nj ,  1 5 j 5 q and mi, 1 5 j 5 q ,  t o  the 
verifier. 

4. The verifier sends a random element b of {0,1,2). 

5. If b is 0 or I, the prover announces his commitment for y' where 
y' = y @ b - s. He also discloses another of his commitments: the 
one corresponding to  the sequence nj if b equals 0 and the one for mj 
if b is 1. Finally, if b equals 2, the prover reveals both commitments 
for sequences but no other information. 

6. If b equals 0 or 1, the verifier checks that the commitment was cor- 
rect and that  the integers nj or mj disclosed from the commitment 
have been computed honestly. Now, if b is 2, the verifier checks the 
commitments and computes the average value 

In the last case, the verifier accepts the round if 

The number r of consecutive rounds depends on the required level of se- 
curity and will be discussed further on as well as the values of the parameters 
n, k, 4 P, cl. 

2 Soundness of the scheme 

We first prove that a fair user will not be rejected. This is not obvious, a t  
least when b sends a 2 and the probabilistic analysis that we need will also 
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be used to establish the security of the scheme. We consider a random n-bit 
word. Such a random word t can be viewed as a sequence of n independant 
Bernouilli trials. F?Te let 

m=lt l  , m ‘ = I t $ s j  

and we consider the distribution of 1 m - m’ \.If we let 

then, it is 
study the 
Bernouilli 

s( i )=l  

easily seen that I rn - m’ I is exactly I 2T - p 1 .  Thus, we have to  
random variable 1 2T - p 1, where T is the sum of p independant 
trials. The expectation Y of this variable can be estimated by 

and its standard deviation by 

0. = Jp - 2p f lr NN 0 . 6 0 3 f i  

Now, the values I nj - mj 1, which are computed in step 6, are precisely 
values of I 2T - p I corresponding to the random choice t = y @ 2;. We will 
use the central limit theorem in order to estimate the probability that the 
computed average value p does not differ too much from the expectation v. 
Of course, this is not quite correct as the wj’s are fixed so that we don’t 
have independant variables. Still, it is heuristically justified as the wj’s have 
been chosen randomly. Furthermore, no contradiction arises from extensive 
numerical simulations. 

Following these lines, we get 

Setting r = 0.272, one finds that the probability of having p above 1.07fi 
is at most 6.96 lo-: for q = 128. Even if the number of rounds is GO,  in 
which case average values will be computed about 20 times, this makes an 
overall probability that  a fair user is rejected as small as 1.4 This 
can be easily handled, e.g. by giving the prover another chance to identify 
himself. 
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3 Security of the scheme 

Before we discuss the security of the proposed scheme, let us consider pos- 
sible collisions between public keys. If s ans s’ are secret keys which yield 
the same public idehtification, then, s @j s’ is a codeword of lenth at most 
2p .  Now, recall that  G was chosen randomly, so that the corresponding 
code should have a good correcting power. More precisely, i t  is known, 
that random codes almost surely satisfy the Gilbert-Varshamov bound ([4]). 
Granted this fact, we get, for k = n/2, that any non-zero codeword has 
weight at least 0.11 n. Thus taking p < 0.055 n should prevent any collision 
to happen. Even if we don’t fulfill this condition, collisions remain very 
unliquely. The same argument shows that a commitment essentially bounds 
the prover to  his original choice, provided that the pieces have small weight. 

Of course, the security of the scheme relies on the difficulty of inverting 
the function 

s --i G(s )  
when its arguments are restricted to valid secret keys. In order to give 
evidence of this difficulty, let us recall from El] that it is NP-complete t o  
determine whether a code has a word s of weight 5 p whose image is a given 
k-bit word i. Let us also observe that, in case no collision of secret keys can 
happen, finding s is exactly equivalent to finding the codeword w minimizing 
the weight of t @ w, when an element t of C‘-l(i) is chosen. But this is the 
problem of decoding unstructured codes which is currently believed to  be 
8nsolvable. 

In order to counterfeit a given signature without knowing the secret key, 
various strategies can be used. 

0 Having only y ready for the verifier’s query and annoucing something 
very close t o  I y @ zj I in place of m3. In this case, the false prover 
hopes that b is 0 or 2 and the probability of success is (2/3)-7, where 
T is the number of rounds. A similar strategy can be defined with y @j s 
in place of y and shifting beetween the two yields the same probability 
of success. 

0 Having both y and y @ t ready where t is some element such that 
G(t)  = i, presumably distinct from s but whose weight is reasonably 
small. If the cheater realizes he will fail the round that way, he can 
still go back to  the previous strategy for this round. 

We will now describe two choices of the parameters such that the corre- 
sponding code can resist attacks based on the ability of a cheater to produce 
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elements of G-l(Z) of moderate weight. We feel that our analysis gives evi- 
dence to  the security of our scheme because the cheater’s performances that 
we consider are not met by known algorithms, as far as we are aware. 

0 Welet n = 512,k = 256,1= 4 , p  = 3 0 , q  = 128 and we assume that the 
cheater can produce elements of G-l(i) of weight approximately 0.27~. 
With these assumptions, computations similar to the above show that, 
each time he tries some t ,  the cheater has a probability of producing an 
average deviation p lying below the critic value 1 . 0 7 m  E 5.86 which 
is roughly 9 and this only increases by a minute fraction the 
probability of success 2/3 of the basic cheating strategy, thus yielding 
a probability (0.67)T of going through T rounds. 

0 We let n = 1024, k = 512, I = 8 , p  = 40, q = 128 and we assume that 
the cheater can produce elements of G-l(i> of weight close to  0.1272. 
Assuming that the Gilbert-Varshamov bound holds, this is almost the 
optimum, except of course if an algorithm can disclose s. With these 
assumption, any trial has a probability of producing p below the critic 
value 6.76 which is roughly 1.03 and, once again, i t  does not 
increase drastically the probability of success of the basic strategy. 

4 Discussion of the scheme 

We close the paper by various remarks. 

1. We first discuss the amount of information on the secret key s which 
is disclosed when the scheme is used. Our basic assumption is that 
i t  is not possible to  break a commitment. Once again, this hypothe- 
sis relies on the supposed difficulty of finding a word of small weight 
whose image by G is given. In our examples, the average length of 
the words used to  build a commitment is 64 and thus, these words are 
out of reach: given the ability that we have assigned to an opponent 
in each case. Granted this, the only information that comes out of a 
round is either a random word, y or y 8 s, or else two distribution of 
numbers n; and mj. Now, if j is fixed, nj and mj can be considered 
as independant random variables following a binomial ditribution. Of 
course, the family obtained when j varies is not made of independant 
variables. Still, since the order of appearance is essentially unknown, 
it seems virtually impossible to undertake any statistical analysis that 
might reveal .s. 
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2. One of the defects of the proposed scheme is the required amount 
of memory: in order to  store G and the wj’s,one needs 150 kbits in 
the weaker case considered and 630 kbits in the stronger case. Still, 
because the operations to  perform are very simple, they can be imple- 
mented in hardware in a quite efficient way. On the other hand, the 
communication complexity of the protocol is not much worse than in 
the Fiat-Shamir scheme: in our smaller example,the nj’s are numbers 
which almost surely do not differ from 256 by more than 128 and can 
therefore be coded on 8 bits, so that the sequence of 4 commitments 
sent by the prover is 4000 bits long. 

3. The security of the scheme can be increased by taking q and T larger. 
Also, the zj ’s can be interactively produced instead of being defined in 
a rather systematic way: all random choices are really independant and 
this makes the theoretical analysis of the protocol more reliable. On 
the other hand, the communication complexity becomes much larger 
and this does not seem to be desirable. Finally, the rounds can be 
performed in parallel, reducing the number of steps to 6. 

4. In order to limit the communication complexity, it is possible to  let 
the prover commit himself to  y and y @ s by simply announcing G(y) 
and G(y @ s). This actually opens a new way to cheat by trying a 
lot of members t of G-l( i )  instead of one. Since i t  involves heavy 
on-line computations, the number of trials can be limited by a timing- 
out device. Still, it will be necessary to increase q. In order to  resist 
against lo4 trials, we propose q = 150. Accordingly, o u r  statistical 
requirements can be made a bit more strict (e.g. 1.05@ instead of 
1 . 0 7 d ) .  

5 .  It is tempting to lower the value of p .  It would be rather dangerous: 
using the arguments of [z], one can see that secret keys of small weight 
(e.g. p = 20) will presumably be found. 

6. acknowledgement We wish to thank S. Harar-i for sending us an 
early version of his work [3]. 
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