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Extended Abstract 

Abstract 

There is a great similarity between the Fiat-Shamir zero-knowledge scheme [8], 

the Chaum-Evertse-van de Graaf [4], the Beth [l] and the Guillou-Quisquater [1‘2] 

schemes. The Feige-Fiat-Shamir [7] and the Desmedt [6] proofs of knowledge also 

look alike. This suggests that a generalization is overdue. We present a general 

zero-knowledge proof which encompasses all these schemes. 

I. Introduction 

An interactive proof-system, or simply a proof, is an interactive protocol by which, 

on input I, a prover A&e) attempts to convince a verifier B(d) that either (a) 

I E C, L: a language (proof of membership), or (b) that she “knows” a witness S for 

which (I, S) satisfies a polynomial-time predicate P(., .) (proof of knowledge). A 

proof is zero-knowledge if it reveals no more than is strictly necessary (for a formal 

definition of a proof of membership see [ll]; f or p roofs of knowledge see [7]). Jvlany 

zero-knowledge proofs have been described in the literature and various definitions 

of a proof-system ha>-e been suggested. The property of zero-knowledge has also 

been analyzed and refined (e.g., [7]). 0 ne might wonder why so many different 

zero-knowledge proofs have been proposed. One reason is that schemes which are 

‘Some of the results in this paper have been briefly announced at the rump session of Crypto’88. 

+Research partly done when visiting RHBNC and sponsored by SERC. 
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based on zero-knowledge protocols must be easy to implement. Another is the 
complexity of protocols: practical considerations make it necessary to increase the 
speed of a protocol [8] ,  to reduce its storage requirements [1,12] and to reduce the 
number of its iterations [2]. Finally the theoretical approach to zero-knowledge is 
closely related to the theory of computational complexity [ll]. 

The purpose of this paper is to provide a general setting for these zero- 
knowledge protocols and to show that many known protocols fit into this setting. 
The advantages of having such a generalization are that: 

0 it illustrates the essential features of the protocol, 

0 it provides a proof that a general class of  protocols are zero-knowledge, 
thereby establishing a straightforward set of criteria to determine whether 
or not a given protocol is zero-knowledge. 

In this paper we consider an algebraic framework which includes the systems of 
Fiat-Shamir [8], Feige-Fiat-Shamir [7], Chaum-Evertse-van de Graaf [4], Beth [l], 
Desmedt [6] and Guillou-Quisquater [12]. We shall not discuss non-interactive 
zero-knowledge protocols [2]. 

The Fiat-Shamir scheme 

To start with we briefly describe the set up of the Fiat-Shamir scheme [8].  This 
will help the reader to appreciate the setting for our scheme and to understand 
the details. In the Fiat-Shamir scheme we have: 

0 a set of secret numbers S1, S2,. . . , S, which are chosen from the group of 
units 2; of t.he ring of integers modulo n. 

0 a set of public numbers Il ,I2, .  . , ,Im E QR,, t.he set of quadratic residues. 

0 a predicate P(1, S )  = ( I  = S2(modn)), satisfied by all the pairs (I?: Sj). 

The protocol repeats t = O(ln1) times: 

Step 1 A ,  the prover, selects a random integer X modulo n and sends B,  the 
verifier, the number 2 = X2(modn). 

Step 2 B sends A the random bits q1,q2, .  . . , q m  as a query. 

Step 3 A sends B: Y = X . Sy (modn), when all q; E (0, l ) .  
j 

Step 4 B verifies that Y E 2; and that Y 2  = 2 .nIj" '  (modn). 
j 
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B accepts A’s proof only if for all t iterations the verifications in Step 4 are  
successful. 

Remark: If Y $L 2; were allowed (as in the Fiat-Shamir protocol) then a crooked 
prover A’ could convince the verifier B (who must adhere to the protocol) that 
some quadratic non-residues belong to QR,,. Eg., if A‘ chooses X 3 0 ( mod n ) ,  
then B will always accept.’ 

We will describe a protocol which generalizes this scheme and we will show 
that all the protocols in [1,4,6,7,8,12] are particular cases of this protocol. In Sec- 
tion 111. we will prove that our protocol is a zero-knowledge proof of membership 
or a zero-knowledge proof of knowledge, depending on the setting. 

11. A framework for a zero-knowledge proof 

In our general scheme the “public numbers” I,,Iz,.  . . , I ,  are taken from a set 
‘H and the “secret numbers” belong to a set G. These numbers are related by 
a predicate P(.,  .), that is P(Ij ,  Sj )  for all j. We assume that ‘H, 4 have some 
algebraic structure and we take P ( I ,  S) to be the predicate ( I  = f ( S ) ) ,  where f 
is a homomorphism. Such predicates are a common feature of all the protocols 
we consider. We remark that the notion of group homomorphisms has also been 
used in [13] but in a different context. In our protocol we use the following: 

0 a monoid G”, with subsets G,Q’  such that G c G’ c 6“. All the secret 
numbers Si belong to 4. G‘ contains the identity and all the elements of G 
are units (it means invertible elements). 

0 a semigroup IH”, with subsets 31,X’ such that 31 c 7-1’ c 7-1”. 31’ has an 
identity and its elements are units. 

0 a (possibly one-way) homomorphism f : 4” ---+ 7-1” with f(G) = 31. 

The security parameter is In1 = O(logn), where n = 17-11, We shall regard this 
framework as being a particular instance of a general framework which is de- 
fined for all (sufliciently large) integers n. We therefore are tacitly assuming that 
G = G n ,  IH = 31,; etc. In this setting we have a framework for ( u )  a proof of 
membership for the language C = U, 31, : the prover wants to prove that all the 
public numbers I, belong t o  C; ( b )  a proof of knowledge for the predicate P(1, S) : 
the prover wants to prove that she “knows” secret numbers Sj such that P(I j ,  S j )  
for all j. Let us now describe the protocol. 

‘An interesting case occurs when I, is a quadratic non-residue of p ,  II 1 (modq), n = p q ,  and m = 1. If A‘ 
sends Z = pa in Step 1 and Y = p in Step 2 then B will always accept (p = 5, q = 7, II = 8 is worth exploring). 
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Protocol 

First the verifier checks that all the Ij E R’. Then the protocol starts. Repeat t 
times: 

Step 1 A selects a random X E G” and sends B: 2 = f ( X )  (A’s cover). 

Step 2 B sends A a random q = (91,. . . , qm) E Q” (B’s query). 

Step 3 When all gi E Q ,  A sends B: Y = X - fl Sy (-4’s answer). 

Step 4 B verifies that  Y E G’ and that f ( Y )  = 2 
j 

(B’s verification). 
j 

If the precondition is satisfied, and if for all iterations the conditions in Step 4 
axe satisfied then B accepts A’s proof. 

Remark: An important feature of this protocol is the inbuilt probability ( [ ( G ”  \ 
G’>1/1G’’1) that an honest prover fails to convince the verifier. 

11.1. A group based framework 

We now state conditions that make the protocol a zero-knowledge proof. First 
consider the case when G = G’ = G” is a group. We assume that: 

1. Conditions for computational boundedness of B: 

1.a) We can check if I E 31’ in polynomial time. 

1.b) We can check if Y E G‘ in polynomial time. 

1.c) Multiplication in R” can be executed in polynomial time. 

1.d) f is a polynomial time mapping. 

2. Completeness condition: none. 

3. Soundness conditions: 

3.a) The set of exponents is Q is ( 0 , l ) .  

4. Zero-knowledge condition: 

4.a) We can choose at  random with uniform distribution an element X E g’’. 
4.b) m is O(logIn1). 

5.  Conditions for Proofs of knowledge: 

5.a) R’ = R. 
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5.b) Multiplication in G’ and taking inverses in G’ are polynomial time op- 
erations. 

We show in Section 111. that the conditions above are sufiicient to make the 
protocol a zero-knowledge proof. However these conditions axe rather restrictive 
and we only get the Chaum-Evertse-van de G r d  protocols [4]. In the following 
section we relax these conditions and show that the [1,6,7,8,12] are also particular 
cases of our protocol. 

The Chaum-Evertse-van de Graaf protocols 

Many protocols related to the discrete logarithm problem in a general sense were 
presented by Chaum-Evertse-van de Graaf [4]. The first one, called the multiple 
discrete logarithm, proves existence (and knowledge) of Sj such that as) = I .  J ,  

where Q is an element of a group 3-1”. Examples of 3-1” are Z$(.), where N is a 
prime or composite number. This is a particular case of our protocol for which 

0 G = Zn(+>, n is a multiple of the order of 0, 

0 3-1” = 3-1’ is a group, 7-1 = (a) is the group generated by a, 

0 Q = (0, l}, m = 1, and f is the group homomorphism f : 2, -+ 7-1 ; z 3 a’. 

We assume that the verifier knows an upper bound for n. Let us check the above 
conditions. Conditions 1.b and 5.b are satisfied even if one does not h o w  what 
n is. Conditions 1.a and 1.c must be satisfied by X’, which is automatically the 
case when 3-1’ = 2;. All the other conditions are trivially satisfied. 

Next let us consider the Chaum-Evertse-van de Graaf protocol for the re- 
laxed discrete log and show that it is also a particular case. This proves exis- 
tence (and knowledge) of S = (s1, s 2 , .  . . , Sk) such that Q.~’Q? -aSt - - I ,  where 
a1, a2, . . . , QL, I are elements of a group 3-1”. To relate this scheme to OUT protocol 
we use “direct product groups”. We take: 

0 G = Znl(+) x Zn,(+> x ... x Z,,,(+), where ni is a multiple of the order of 
a; (1 5 i 5 k), 

0 3-1” = 3-1’ is a group, 7-1 = (cq, a2 , .  . . , a k ) ,  

Q=(O,I},  f : G - t ’ H :  (51,22, ...,xk)--tCY~’O~Z...CY~t. 

As in Chaum-Evertse-van de Graaf, 3-1” has to be commutative, (G is commuta- 
tive). There is one difference between the Chaum-Evertse-van de Graaf scheme 
and our description of it. In the former, A sends a;’, ag2, . . . , a;’ in Step 1, 
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whilst in ours A sends f ( X )  = a~1a;2 - .a;k. This means that the prover makes 
more multiplications. the verifier makes fewer multiplications, and less is commu- 
nicated. 

Chaum-Evertse-$-an de Graaf take m to be 1, which is not necessary. In- 
deed when m > 1 the protocol proves knowledge of the multiple relaxed discrete 
log. It proves knowledge of S1 = ( ~ 1 1 , .  . , , s l k ) ,  S 2  = ( s z ~ , . .  . , s z ~ ) ,  . . ., Sm = 
( s m 1 , .  . . , Smk), such that CY;" . . . = 11, ($1 . . . 

Chaum-Evertse-van de Graaf also discussed a protocol for the simultaneous 
discrete log. This proves knowledge of S such that as = I I ,  a: = 1 2 ,  . . . , a; = &. 
For this protocol we have G = Z,,(+), 'H = (a1) x (a*) x . - . (ak) ,  and f : 4 --+ 

3-1 ; 5 -+ (a:, a:, . . . ag). The other sets an the remarks about the conditions are 
similar to those for the multiple discrete logarithm. 

a s k t  - k - Ik. as'l . . . 1 2 ,  . . . l  1 = 

11.2. A monoid based framework 

We relax the conditions of the group based framework by allowing the sets G,  G'l G" 
to be distinct, by taking the set of exponents Q to be any set of integers, and 
by introducing some new conditions and modifying others. We use the same 
numbering and list only those conditions which are new or modified. 

2. Completeness conditions: 

2.a) IG'I / IS"] 2 1 - ~ T Z I - ~ ,  c any constant. 

2.b) 0' - G c G'. 

3. Soundness conditions: 

3.a) There is an a such that: (i) I(Q f u )  n QI 2 1c, IQI, where (Q f u )  = 
(Q+a)U(Q-a) and .1c, E (0,1] is a constant, and (ii) if f (Y ' )  = f(Y)-I" 
for some Y, Y' E G' and I E 7-l then there exists an element S E G such 
that P ( I :  S). 

4. Zero-knowledge condition: 

4.b) mloglQI is O(logIn1). 

5. Condition for Proofs of knowledge: 

5.b) (replaces 3.a (ii)) Given Y,  Y' E G' and I E 31' with f (Y ' )  = f ( Y ) .  I" ,  
we can obtain in polynomial time an element S E 4 such that P ( I ,  S). 

Remark: In most cases Q is of the form [O:m] or [ l : m ] ,  a = 1 and li. = 1. 
If Y is a unit and 1 E Q then Condition 3.a is trivially satisfied for a = 1 and 
s = Y-'Y'. 
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The Fiat-Shamir scheme 

This protocol was discussed earlier. We take, 6’’ = 31” = Z,(.), R a product 
of two distinct primes, G’ = G = 7-f‘ = Z;(.), 7-f = QR,, Q = (0, l}, a = 1 and 
f : 2, -+ 2,; z --t z2, which is a homomorphism of.the monoid 2,. The reader 
c m  easily check that all conditions of Section 11.2. axe satisfied. 

The Feige- Fiat- S hamir scheme 
For this scheme I, = +.s; [7] (to be consistent with our general presentation we 
have modified slightly the notation), so that the secrets S, consists of two parts: 
the sign part and the s j .  To make the relation of the Feige-Fiat-Shamir scheme 
with our protocol we use direct products of monoids. Let n = p q ,  p , q  distinct 
primes with p = q f 3 (mod4). Take . G” = {-l,+l}(.) x Zn(.), G’ = {-l,+l} x z;, 2; = 2, \ ( 0 ) .  G = 

{-l,+l} x z;, 
0 7f = 7-1’ = Zn(.), 3-1 = z,+l = .{y E 2; I (y I n)  = l}, where (y I n) is the 

Jacobi symbol, 

Q = (0, l}, u = 1 and f : {-1, l} x 2, + Zn; (g,z) + 92’. 

This scheme is essentially the same as the Feige-Fiat-Shamir scheme except that 
in Step 3 of the protocol the prover sends Y = XH, S:, where Y is a pair with 
a sign part y1 E {-l,l} and a number part y2 E Z,, whereas in Feige-Fiat- 
Shamir only a number is sent. However in the latter the verifier must check if 
Y2 = 2 - n. Iq’ (modn) OT if Y z  = -2 .  n. I?’ (modn). By doing this he knows 
exactly what the sign y1 is. Therefore, for us the prover sends one extra bit in 
Step 3 whereas in Feige-Fiat-Shamir the verifier has to check one more equation. 
The two schemes are essentially the same, only the actual implementation is 
slightly different. Observe that the remark about the Fiat-Shamir protocol in the 
introduction applies to this protocol as well: if Y @ 2; were allowed then we do 
not have a proof system. 

3 1  1 1  

The Desmedt scheme 
For this scheme [6] take the same parameters a s  we discussed for the Feige- 
Fiat-Shamir scheme, except that f : {-I, 1) x 2, - 2,; ( h ,  z) 3 hz””. Take 

z2(modn) and gl(5) = 4z2(modn). 
Ij = Rj/~i ( l ) (modn) ,  where gi(z) = gid(gid-i(. * .  (gi,(gio(T))) .)), with go(.) = 
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The Guillou- Quisquater scheme 

Take 

For m = 1 we get the Guillou-Quisquater scheme [12]. We observe that: 

1. When vmt = O( Inl'), c a constant, this scheme is insecure (since then "guess- 
ing the query" is a convincing strategy). So we must have mtlog v + log 1711.~ 

In Section 111. Are shall see that this scheme is sound when t + log I R I .  
2. The zero-knowledge proof in Section 111. requires that turn = O(lnl"), c a 

constant. This proof cannot be used when either t + lnIc, or urn > In/'. 

The Beth scheme 

In this scheme' [l], a centre possesses the security numbers 2 1  . . . x, E Z,-l and 
makes public a, a primitive root of GF(q)  and the values y j  = L Y " ~  for all j .  
For each user the centre chooses a random k E Zq-l and gives the user r = 
a' as one part of her public number. The other part consists of the numbers 
ID1, . . . , ID ,  E Zq-l. The centre determines the secret numbers S1, . . . , S m  by 
solving the congruence 

xjr + kSj  ID? mod ( q  - l), j = 1,.  . . ,m.  (1) 

In Step 1 of the protocol the prover sends z = r-* ( t  random in Zq-l) to the 
verifier. In Step 2 the verifier replies with b = ( b l . .  .b rn) ,  bi E Q C Zq-l: and 
finally in Step 3 the prover sends u = t + Cj bjSj E Zq-l. The verification is 

l-~ yjrbl ruz = & j  b, IDj .  

j 

Let us now make the relation with our protocol. Take 

0 G = G' = G" = Z,-i(+), Q c .Zq-l, X" = X' = GF(q)* (* ) ,  

0 31 = (T), r E GF(q)*,  and f : Zq-l --.$ GF(q)*;  IC + rz. 

aThis means that log In((mt logu)-' - 0 as In1 - co 
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Clearly f is a homomorphism of Q onto 7.1. This is a discrete logarithm proof 
which looks very similar to  the Beth scheme, except for the relation between the 
public and secret keys of A and the consequences in Step 4. Let us discuss this 
difference. We have, 

using (l), so that we can rewrite (2) in the form 

This is the same as the verification in our protocol for Y = u,  2 = z-’ and 
q = b. So the Beth scheme is essentially a particular case of our protocol. 
Observe that the verifier can use the Ij’s instead of the d D j  y;‘, which simplifies 
the computations (if 0 , l  E Q then the verifier can obtain Ij by sending the query 
q = q1 * - 1 qm with all entries zero except the j-th entry which is 1). The difference 
between the Beth scheme and our scheme is that in the former it is hard for the 
user to make her own IDj ’ s ,  whereas in the latter it is trivial to make the Ij’s- 
This is exactly the same difference as exists between the Fiat-Shamir versions in 
[8] and the Fiat-Shamir scheme of [7,9]. 

111. Fundamentals of the scheme 

Theorem 1 If the conditions of Section II.1. are satisfied with G = G‘ = Q”, 
then the conditions in Section II. 2. are also satisfied. 

Proof. Trivial (take a = 1, $I = 1 and S = Y-’Y’). 0 

Theorem 2 If the Conditions 1-4 of Section 11.2. are satisfied, i f  mlog /& I  5 
log In1 and i f  t is  bovnded by log In1 -i t 5 lnIc, c any constant, then the protocol 
in Section II. is a (perfect) zero-knowledge proof of membership fo r  the language 
c = un 7.1,. If, furthermore,  Conditions 5 are satisfied3 then the protocol is a 
(perfect) zero-knowledge proof of knowledge for  the predicate €‘(I, S ) .  

Proof. 

Completeness: (If A i s  genuine then B accepts the proof of -4 with ovemlhelming 
probability) 
This is obvious since the mapping f is an operation preserving mapping. 

(sketch) lire remark that we do not rely on unproven assumptions. 

3We can relax the condition n = 1x1 to n = in this case. 
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Soundness: (If A‘ i s  crooked then the probability that B accepts the proof of A’ 
is negligible) 
The proof is an extension of the one in Feige-Fiat-Shamir [7]. Suppose that A’ 
convinces B with non-negligible probability. We consider the execution tree T 
of (A‘ ,B):  this is a truncated tree which describes the responses of A’ to the 
requests of B. A vertex of T is super heavy if it has more than w = 1 - $$ 
sons (1c, is the constant in Condition 3.a of Section 11.2.; in [7] we have heavy 
vertices with w = 4). In the hal paper we will show that the condition log 1121 4 t 
guarantees that T has at least one super heavy vertex. The following Lemma 
makes it possible to show that there exist S, such that P(Ij, Sj) for all j .  

Lemma 1: At a super heavy vertex, for  e a c h j  €[l:m] there exists at least one 
pair of queries q = (qi) ,  q’ = (9:) with q: = q; for  all i # j and q$ = qj + a ,  which 
A’ answers correctly. 
Proof: Will be given in the full paper. 

Apply this Lemma to a super heavy vertex. For each pair of sons we have: 

f ( Y )  = f ( X )  IT1 * * * I;Y;Ig 
f (Y‘) = f(X’) Ip - .  ~I~:-~@ 

with j ( X )  = f(X’). To find the Sj we use a recursive procedure: first we find 
S, and then we use it to calculate S,-1 and continue in the same way until we 
find all the Sj. Suppose that q and q’ differ in the last place. Since Ikm and 
I,$ = I&m+a are units the equations above can be written in the form, 

so that f(Y’) = f(Y) 1:. Then using Condition 3.a we obtain an S, such that 
P(Im7 S,). This solution is not necessarily the S,, but it is a good substitute. 

This procedure is repeated to find Sm-lr Sm-2,. . . , S1. This completes the 
proof, for proofs of membership. For proofs of knowledge we have to show that 
there exists a polynomial time Turing machine, the interrogator M ,  that will 
extract the secrets from A‘. M is allowed to reset A‘ to any previous state: this 
means that it can Gobtain” all the sons from a super heavy vertex and hence all 
the Sj in the manner described earlier, this time using Condition 5.b. It remains 
to show how the interrogator can find a super heavy vertex in polynomial time. 
In the extended proof we will show that: 

Lemma 2: At a suitable level i of the execution tree the fraction of super heavy 
vertices is at least -,. where y E (0,1] i s  a constant. 
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Proof: Will be given in the full paper. 

In the fmal paper we prove that M will find a super heavy vertex (with over- 
whelming probability) in polynomial time. 

Zero-knowledge: (FOT each B' there exists a probabihtic expected polynomial 
time Turing Machine Mp which can simulate the communication of A and B') 
The simulator proceeds as follows: 

Step 1 ME, chooses a random X from G'' (using Condition 4.a) and a random 
vector q from &" and sends to B': 2 = f(X)(nj IT)-'.  

Step 2 I M B ~  reads the answer of B', q'. If q' = q then it sends X to B'. If q' # q 
then it rewinds B' to its configuration at the beginning of the current 
iteration and repeats Step 1 and Step 2 with new random choices. 

When all the iterations are completed, MBt outputs its record. The expected 
number of probes for a complete run is t [&I" = 0 (Inlc). Observe that the 
probability distribution output by MB, is identical to that of the transcript set of 
(A ,  I?'). So this scheme is a perfect zero-knowledge scheme (111. 

IV. Conclusion 

In this paper we have shown that the schemes described in [1,4,6,7,8,9,12] are 
aIl particular cases of one protocol. This protocol has been further generalized 
to include the Goldreich-Micali-Wigderson graph isomorphism scheme [lo], the 
Chaum-Evertse-van de Graaf-Peralta scheme IS], and schemes based on encryption 
functions, such as the Brassard-Chaum-Crepeau [3] scheme and the Goldreich- 
Micali-Wigderson proof of 3-colourability [lo]. However this is not in the scope 
of the monoid based framework. 
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