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Abstract. We describe a modification of an interactive identification scheme of 
Schnorr intended for use by smart cards. Schnorr’s original scheme had its secu- 
rity based on the dificulty of computing discrete logarithms. The modification that 
we present here will remain secure if either of two computational problems is in- 

feasible, namely factoring a large integer and computing a discrete logarithm. For 
this enhanced security we require somewhat more communication and computational 
power, but the requirements remain quite modest, so that the scheme is well suited 
for use in smart cards. 

1 Introduction 

In this note we describe an interactive identification scheme that is a variation 

of a scheme presented by Schnorr at Crypt0 ‘89 191. Schnorr’s scheme has several 

features that make it advantageous for use in smart cards or other environments 
with limited computing power. Its security is based on the difficulty of the discrete 

logarithm problem in a subgroup of Zi. In this paper we shall describe a variation 

with the property that a successful attack on the scheme requires the ability to solve 

an instance of the discrete logarithm problem, and in addition to factor an integer 
that is divisible by two large primes. 

Due to the current state of complexity theory, cryptographic schemes whose 
security is based on the difficulty of solving a specific computational problem are 

exposed to the danger that a fast algorithm may be found for the underlying compu- 
tational problem. It therefore seems desirable to design systems with the property 
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that breaking them requires the ability to solve two apparently dissimilar compu- 
tational problems, both of which appear to be hard. An example of such a scheme 
was given in [7], where a key distribution scheme with this property was given. The 
key distribution scheme of [7] uses arithmetic modulo a number r~ that is a product 
of two primes. Breaking the system requires the factorization of n and the ability 
to solve the Diffie-Hellman problem modulo the prime factors of n. In the present 
paper we take a slightly different tack, by using arithmetic modulo a prime p .  We 
choose p with the property that p - 1 has at least two large prime factors, so that 
the factorization of p - 1 is hard to recover. We then construct the system in such 
a way that breaking it requires both computing a discrete logarithm in a subgroup 
of Z;, and factoring p - 1. 

The extra security gained in this scheme extracts a penalty both in the compu- 
tation time and the communication time, but the scheme still carries the advantage 
of allowing preprocessing of most of the computation, and should still be quite fea- 
sible for use in smart cards. The relative merits of the schemes will be discussed 
later, after we first present the schemes in detail. 

2 Schnorr’s Identification Scheme 

We begin by describing the original Schnorr authentication scheme in terms a 
security parameter t .  In this scheme, each person who wishes to use the scheme to 
prove his identity will visit a key authentication center (KAC) and register his or 
her public key. When the KAC is originally set up, it chooses 

- primes p and q such that q I p - 1, q 1 P 4 0 ,  and p 2 2‘12, 

- a of order q in the group Z6, 

- its own private and public keys. 

The KAC publishes p ,  q, a, and its public key. When a user comes to the KAC 
for registration, the user chooses a secret s E (1,. . . , q} ,  computes u E a-’ (mod p ) ,  
and submits u to the KAC along with some form of identification. The KAC 
verifies the user’s identity, generates an identification string I ,  and also generates a 
signature S of the pair (I, u ) .  The KAC can use any secure digital signature scheme 
whatsoever for generating this signature. 

We now describe the procedure by which party P (the prover) can prove its 
identity to V(the verifier). In a preprocessing phase, P should first have chosen a 
random number r E (1,. . . , q }  and computed z E a‘ (mod p ) .  In the identification 
procedure, P first sends to V its identification string I ,  its public key u,  the KAC’s 
signature S of (I,.), and z. V then checks P’s identification by verifying the 
signature S, chooses a random e E (0,. . . ,2‘ - l}, and transmits e to P. P sends 
to V the value y := r + se  (mod q).  Finally, V checks that z G aYvC (mod p )  and 
accepts P’s proof of identity if this holds. 
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Schnorr suggests using t = 72, although this can be reduced substantially for use 
in the identification scheme (Schnorr also proposed a companion signature scheme 
which requires the larger t ) .  The parameter t is used to control the probability that 
an impostor will be able to guess a correct response to a challenge e. For use in 
an identification scheme, we need only choose t so large that the probability 2-' of 
guessing the challenge e is negligible. 

This scheme has a number of novel features. First of all, much of the arithmetic 
to be done by the prover can be done in a preprocessing phase, using idle time of 
the processor. This is well suited to the case of a smart card, where the processing 
power is relatively small. Second, the number of bits that must be communicated 
is considerably reduced over other schemes such as RSA or Fiat-Shamir. There is 
also a signature scheme based on the same choice of keys, but we shall not discuss 
it here. 

Schnorr's scheme may be regarded as a practical refmement of the zero-knowledge 
protocols of Chaum et.al. 131, (21 for demonstrating possession of a discrete loga- 
rithm. In [3], the challenge e was either a zero or a one, and the basic protocol was 
repeated several times (requiring the prover to perform multiple exponentiations). 
Yet another interesting identification scheme based on discrete logarithms was pro- 
posed by Beth [l]. The security of the latter scheme is however more closely related 
to the ElGamal signature scheme. 

3 The Modified Scheme 

In this section we shall describe the modification of Schnorr's scheme. In the 
modified scheme, each user will have his own prime p and base element a, and 
these will need to be transmitted along with u during each identification session. 
Once again the KAC serves only to sign the public keys of each user, but now 
these include p and a. Rather than the single security parameter t ,  we describe the 
scheme in terms of the parameters k, t ,  and u. 

When a user wishes to join the system, he chooses primes q and w with q < W ,  

Zk-' < q < 2k, and qw > 2'12. The user further chooses a prime p z 1 (mod qw),  
an element a E 23; of order q, and a random number s E (1,. . . ,q} .  The user 
then computes u = a-' (mod p ) ,  and presents p ,  u, and a: to the KAC along with 
some form of identification, but keeps q, w ,  and s secret. The KAC verifies the 
user's identity, generates an identification string I ,  and produces a signature S of 
the quadruple ( I , v , p , a ) ,  which it provides to the user. Once again the KAC can 
use any digital signature scheme whatsoever. 

In the identification procedure, P once again has a preprocessing phase, where 
P chooses a random number r E {I,. . . , q }  and computes z E a' (mod p ) .  Then P 
sends to V the identification string I, its public keys u ,  p ,  and a, the KAC's signature 
S,  and z. V checks P's identification by verifying the signature S of ( I , u , p ,  a). If 
the keys are authentic, then V chooses a random e E (0,. . . ,2' - 1) and a random 
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f E (0, .  . . , 2' - l } ,  and transmits the pair (e, f) to P. P then computes an integer 
y such that y z r + se (mod q) and 2k f 5 y < 2k( f+  I), and sends y to V. V checks 
that z E a V w e  (mod p )  and 2'f 5 y < 2'(f + l), and accepts P's proof of identity 
if these conditions are satisfied. 

The parameters u and t can be adjusted to suit specific needs, but we suggest 
using u = t = 20. With this choice, there are 240 possible challenges (e, f ) ,  and the 
probability of guessing the challenge ahead of time is therefore 2-". If an impostor 
somehow discovers the secret prime q ,  then a precomputed pair y,x that satisfies 
aYve x (mod p )  can always have the y adjusted to fit any challenge f ,  but the 
probability of guessing the e ahead of time is still only 2-". Similarly if an impostor 
knows a discrete logarithm of v to the base a, then the probability of success in 
guessing ahead of time is also 2-20. We regard this as being acceptably low for use 
in an identification scheme. 

Some care shouId be exercised in choosing the primes q and w ,  and in particular 
we should try to choose them in such a way as to thwart any known algorithms for 
factoring qw. The choice of k > 140 is probably marginal in avoiding a determined 
implementation of the elliptic curve method of H. W. Lenstra, Jr., but may suffice 
for applications of a commercial nature. At present the record for the largest factor 
found by the elliptic curve method has 38 decimal digits, or about 127 binary digits 
(this factor was found by Robert Silverman). On the other hand, choosing k > 200 
will probably be safe against any conceivable implementation. The construction 
of p should be relatively easy, since heuristic evidence (see [lo]) suggests that we 
should expect a prime p = 1 (mod qw) can be found with p 5 qw log2(qw). 

The recent results of Lenstra and Manasse [S] and Lenstra et. al. [5] have raised 
a question about how long a 512 bit modulus will remain safe from attack by current 
factorization methods. We suspect however that by the time anyone will have at 
their disposal enough computational power to factor a 512 bit modulus, the smart 
card technology will probably have advanced enough to allow easy use of a 1024 
bit modulus. Moreover, the best known attack for breaking the scheme we present 
here requires in addition the computation of a discrete logarithm modulo a 512 bit 
prime, and current algorithms will probably have a much more difficult time with 
this problem. 

4 Performance Analysis of the  Modified Scheme 

It is evident that the modified scheme suffers from a disadvantage in the number 
of bits that must be communicated. The following tables show the number of bits 
to be communicated in the two schemes, using the security parameters mentioned 
above. For the sake of comparison, we have assumed that 100 bits suffice for each 
of I and S. We have used a value of k = 140 in the original and k = 200 in the 
modified scheme. 
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Modified Scheme 
I 100 
V 512 
P 512 

Original Scheme 
I 100 
V 512 a 512 
S 100 s 100 
2 512 z 512 
e 40 (e, f 1 40 

total 1404 total 2508 
The modified scheme therefore pays a penalty of an extra 1104 bits in commu- 

nication, and possibly more if error correction is included. On the other hand, this 
is still well within the realm of possibility using present technology. 

We now compare the computational requirements of the two schemes. In both 
the original Schnorr scheme and the modified scheme, numerous refinements can be 
devised to improve peformance. No matter what we do, however, the amount of 
arithmetic required in the new scheme appears to impose a slight penalty on speed. 
Part of the penalty comes from the fact that the prime q is larger for the modified 
scheme. Both schemes can use a 512 bit modular exponentiation with an exponent 
r of at most 140 bits in the preprocessing stage. 

In the original Schnorr scheme, the prover is required to compute y z r + se 
(mod q) ,  and the most obvious way to do this requires a multiplication, an addition, 
and a division by q. In the modified scheme, we require in addition a multiplication 
by q and an extra addition. 

This does not however take into account any optimization. We now discuss a 
method for speeding the computations in both the original Schnorr scheme and the 
modified scheme. The idea here is to  replace the divisions by q with multiplications 
(using shorter integers). This can be done by precomputing (only once, when the 
initial keys are selected) an approximation Q of s / q .  If 0 < s / q  - Q < 2-'-', then 

Y 140 Y 220 

where [[z]] denotes the nearest integer to z. Hence after computing r + se - q [ [ & e ] ] ,  
at most one subtraction or addition of q will be required to reduce r + se modulo 
q. The overall improvement from performing the precomputation is to replace the 
division by q with a multiplication of Q and e (both of which are only t bits) followed 
by multiplication of q and a t bit integer, followed by at most two subtractions or 
additions involving k bit integers. Depending on the implementation, this may 
result in a significant speedup by eliminating the multiple precision division. 

In the modified scheme, we can employ a similar approach. For the modified 
scheme we need to compute y so that y = r + se (mod q )  and 2k f 5 y < 2'(f + 1). 
To do this, we precompute two sufficiently good approximations Q1 and Qz of s / q  
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and 2 k / q  respectively, We then compute r + se  + q([Qzf - Qle]], and if necessary 
adjust the result with at most one addition or subtraction of q. 

Using these division-free algorithms for the computations, the only extra work 
required in the modified scheme is for an additional multiplication and subtraction, 
on numbers of approximately t bits. This should have a negligible effect on the 
overall computation speed. As we shall see in the next section, this slight degra- 
dation in performance brings in return the promise of an extra measure of security 
that cannot be achieved by simply increasing the key size. 

We close this section with a final comment on the original Schnorr scheme. In 
that scheme, y is reduced modulo q before transmission. At first sight it may appear 
advantageous to remove the reduction of y modulo q in the original Schnorr scheme 
and thus gain a significant computational advantage in the on-line portion of the 
computation. In fact, this would be disastrous because if we know r + se and e, then 
we can construct an interval of length approximately q / e  containing s. An algorithm 
of Pollard [8] can then be used to compute s in only about J4/e operations. For 
the parameters suggested by Schnorr, the expected value of this is only 235. 

5 Security of the Modified Scheme 

Like all cryptographic schemes, identification schemes can be attacked in a va- 
riety of ways. The purpose of introducing interaction to identification schemes is to 
protect against passive eavesdroppers recovering secret information that they can 
later use to impersonate the legitimate user. In this section, we will give evidence 
which indicates that  our scheme does provide such protection. However, there are 
other kinds of attacks that might arise in applications that are not protected against 
by using an interactive identification scheme by itself. 

In particular, Desmedt et.al. (41 have pointed out that an interactive identifica- 
tion scheme offers no protection against the situation in which the verifier cheats by 
passing on information provided to him by the prover to another cheating prover 
who (falsely) proves his identity at another location. 

Furthermore, an interactive identification scheme does not offer any protection 
against a prover who gives away his secret information to another so that they may 
impersonate him, or against a prover who chooses weak secret keys that anyone can 
guess. A variant of this point was discussed by Burmester in the rump session at 
Eurocrypt '90. 

Both of these attacks can be protected against if the system uses physical char- 
acteristic information to uniquely identify an individual. If the identification by 
physical characteristics offers perfect security, then there is no security gained by 
using an interactive identification scheme instead of simply using a digital signature 
(issued by the KAC) of the physical characteristics. However, if the identification 
by physical characteristics offers less that perfect security, then using an interac- 
tive identification scheme can in some cases result in increased total security of the 
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system. For example, if two people share the same physical characteristics, then 
a digital signature of these characteristics could be transferred by a cheating veri- 
fier between these two people. With the use of interaction this will be impossible 
without the cooperation of the legitimate prover. 

In the remainder of this section, we will consider only the security provided by 
the system against a passive eavesdropper. There are several basic attacks that can 
be mounted by a passive eavesdropper against identification schemes. For example, 
in the original Schnorr scheme, one kind of attack would be to try to construct a 
pair ( I ,  a-') and a legitimate signature S of this pair for later use in identification. 
This would however require a successful attack on the signature scheme of the 
KAC. Another attack would involve observing a user identify himself several times, 
collecting a set of the tuples (2, e ,  f ,  y). It can be shown that a reasonable number of 
such tuples cannot provide any useful information, since the attacker could himself 
construct such tuples from a distribution that is very close to the legitimate user's 
distribution by fist choosing y, then f ,  then e ,  and then z. 

A more serious attack would involve observing a user going through the identifi- 
cation process, and for the pair (I, v )  that is observed, try to later produce an z for 
which there is a reasonable chance of being able to answer the challenge by finding a 
suitable y. Schnorr proved that an attack of this kind €or the original scheme would 
require the ability to compute the discrete logarithm of u. In the same spirit, we 
shall prove in Theorem 1 that an attack of this kind on the modified scheme would 
require the ability to factor p - 1 and the ability to find the discrete logarithm of u. 

We should be careful to observe that an attack on the system has not been 
proved to be completely equivalent to the problem of simply factoring p - 1. While 
a successful attack requires the ability to factor p - 1, a cryptanalyst will be in 
possession of some side information. The most obvious information available is the 
knowledge of an element a whose order is the unknown factor q of p - 1. Whether 
this information can be used to discover the factor q is unknown. 

Let p and a be as described in Section 9. Let A = Ap,a,v,z be 
an algorithm with running time bounded b y  T that receives an input ( e ,  f ) ,  and 
attempts to compute an integer y such that d u e  If A will pro- 
duce a correct output for  at least ~ 2 ~ + '  of the possible challenge pairs (e, f) (where 
E 2 rna~(2'-',2'-~)), then there ezists a probabilistic algorithm that with at least a 
constant probability, will compute the prime factor q of p-1 and a discrete logarithm 
of u in O(10g3 p + $) bit operations. 

Theorem 1 .  

z (mod p ) .  

Proof. We first describe an algorithm for computing a discrete logarithm of u.  
The idea is to construct correct triples (el ,f l ,yl)  and ( e z , f 2 , y 2 >  with e l  # ez. We 
first choose random pairs (el ,f l)  until one is found for which A gives a correct 
output y;. We then choose random pairs ( e 2 , f 2 )  with e2 # e l  until we find one 
for which A gives a correct output yz. We now have a Y 1 - V 2  = ue2-e1 (mod p ) .  We 
use the Euclidean algorithm to compute d = gcd(e2 - e l , p  - 1). Assume first that 
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d = 1. Then the extended Euclidean algorithm gives an integer l with (e2 - e l ) l  1 
(mod p - l), so that = u (mod p ) .  Hence (yl - y2)! is a discrete logarithm 
of u to the base a. 

Suppose now that we found d > 1. In this case we let dl = d ,  rnl = p - 1, 
and for i = 2,. . ., we compute mi = mi-l/&, and. di = gcd(e2 - el,rn;). Since 
le2 - el/ < q < w ,  we will eventually arrive at d, = 1 and q I mi. Applying the 
extended Euclidean algorithm, we then obtain an integer l such that l ( e 2  - el) 3 1 
(mod mi), and it follows that (y1 - yz) l  is a discrete logarithm of v .  

Clearly, after examining O(l /c )  pairs (el,fl) we have a probability of at least 
1/2 of getting an output from A. Even if all pairs (el,!) for 1 5 f 5 2" are in the 
set of pairs on which A produces a correct output, the probability is still at least 
c-2-' that a pair (ez, f 2 )  with e l  # e2 will yield a correct output from A,  so we have 
again a probability at least 1/2 of success after we examine O ( l / ( c -  2-')) = 0(1/~) 

We now describe the algorithm for recovering the factor q. From the previous 
discussion, we may assume without loss of generality that we are already in pos- 
session of an integer L such that aL = ZI (mod p ) .  We begin by choosing random 
(e1,fi) until a pair is found for which A produces a correct output yl. After this 
we search for a second pair (e2, f2)  for which A produces a correct output. Since 
aV1-Ya = uez-cl (mod p ) ,  we have y1 - yz = (eZ - el)L (mod q).  If it happens that 
yl-yyz $ ( e z - e l ) L  (mod w ) ,  then gcd(yl-y2-(e2-el)L,p-l) will give asplitting 
of qw. On the other hand, for each e2, the congruence y1 - y2 E (ez - e l ) L  (mod w )  
has only one solution y2 in the interval [ l ,w] ,  so there is at most one f 2  for each 
e2 that can give such a solution y2. Hence the number of pairs (e2, f2) that  do not 
lead to a splitting of qw is at most 2', and therefore the probability of success in 
finding a pair (e2, fz )  that will split qw is at least E - 2-". Hence we expect to split 
q and w after examining 0(1/(~ - 2-") = 0 ( 1 / c )  pairs (ez,fi) ,  and this completes 

pairs (ez , fz). 

the proof. 0 
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