
Software Run-Time Protection: A Cryptographic Issue

Josep Domingo-Ferrer
Departament d’lnformdtica

Universitat Autckoma de Barcelona
08193 Bellaterra, Catalonia-Spain

Abstract. A new method is featured which solves the sofhvare integrity problem by

properly coding rather than enciphering. Adopting the lengthy and expensive solution which

consists of having the whole program signedlencrypted by an authority would require fiil

decryption and secure storage for the whole program before execution, whereas one signed

instruction, pipe-lined decoding-executing, and secure recording of a few of the last read

instructions sujj7ce in our case. A general use of the proposed system co& practically

prevent any viral attack with minimum authority operation.

0. Introduction

Our goal is program integrity for the user, i. e. ensuring that, given an image code, any

instruction insertion, deletion or modification before or during execution, will cause

execution to stop. This requires that the image be stored under a suitable structure, which

can be almost completely worked out by the same user who wrote the program. A one-

way function F Piff76], such that in general F(X G3 Y) <> F(X) @ F(Y) (where G3 denotes

addition modulo 2 on the binary representations of the operands), and a public-key

signature scheme must be agreed upon before implementing the method. The signature

consists of a private transformation D, exchlsively owned by an authority, and a publicly

registered inverse transformation E. Also, a normalized instruction format must be defined.

Suppose an algorithm A consisting of machine-code executable instructions i,,i,,..., i,.

Assume that i. is not a branch instruction (it can be for instance an END or a RET

instruction). Call 1, the instruction resulting from padding ii to a fixed length and adding

a redundance pattern to i,.

I.B. Damgard (Ed.): Advances in Cryptology - EUROCRYPT ‘90, LNCS 473, pp. 474-480, 1991
0 Springer-Verlag Berlin Heidelberg 1991

475

1. User Preparation Phase

In order for the user to turn a program he has written into a trurred program, he first

normalizes it into a sequence I,, ..., I., where n is the number of instructions in the

program. Then he replaces each ti with a trace Ti. The traces are computed in a reverse

order, from T,, to TI. In this way, the sequential program I,, ..., I, looks like

TI = F(TJ 03 I,
Tz = F(TJ Ct3 I3

T,, = F(TJ 03 I ,
T,, = F(IJ

...

I, does not appear in the sequence (1): it will be dealt with in section 2. Once the

structure for a sequential program has been designed, we must solve the forward

unconditional, forward conditional and subroutine branchings in order to be able to treat

any program having no backward branches. Although for clarity we will present 11: as
located in a sequential truce Ttr, this need not be true, as it will become evident. For the

same reason, in the rest of the paper we will also sometimes write the traces following a

branch as sequential ones. A forward unconditional branch at instruction Ik to instruction

Ij is translated as

... Tbl = F(TJ 03 I ,
T, = F(Tj) @ li
Tk+, = ...

...
Tj = ...

When is a forward conditional branch to instruction ii. the following traces are

computed (also in an index decreasing order)

476

For a branch to subroutine (machine-code subroutine) we must also guard against the

right subroutine being replaced at run-time; so, assuming that the instructions PI, ..., ZAm

of the subroutine are already encoded as TAo, TAl, ..., TAm, we retrieve F(TA,) 43 PI from

Po = D(F(TAI) C.33 PI) (see section 2 about the heading,trace TA0) and include it in the

calling program as follows

If I k is a branch to lj with j < k , the branch trace structures proposed so far cannot be

used to compute T, (for a backward unconditional branch) or T, (for a backward

conditional branch), since a trace T, is needed which has not yet been computed and

depends on Tk (resp. T,.). So a backward unconditional branch at instruction I k to

instruction I j is translated as

... Ti-, = F(T;) CB F(T$ %3 1,
T ; = F(T,) 63 T-(j)
Tj = ...

...
Tk.1 = F(TA @ 1,
Tk = F(T-(j)) @ I,
Tk,, = ...

(5)

Finally, the trace structure for a huckw~urd conditional branch is straightforward

... Ti-, = F(T-j) C.33 F(Ti) 9 I,
T ; = F(TJ 9 T-(j)
Ti = ...

Tk.1 = F(TJ @ 1,
...

' k = F (T K) F (T k + l) &+I

T, = F(T-(j)) 0 I,
T,,, = ...

Both in (5) and (6) , T-(j) has been computed by applying a one-to-one function to j .

477

2. Authority Endorsement Phase

After user trace computation, the authority owning the private transformation D endorses

the trace sequence by computing a closing trace To = D(F(T,) 0 f,). Notice that the

missing instruction I , appears now in the trace sequence, and that the whole program need
not be supplied to the authority, but just F(T,) 8 1,.

3. Program Execution with Controlled Instruction Flow

Theorem 1 (Correctness). The program i,, i,, ..., in can be retrieved and executed from its

corresponding trace sequence To, TI , T,, .._, T,.

Proof (sketch). We have six cases: (a) sequential instruction blocks, (b) forward

unconditional branchings, (c) forward conditional branchings, (d) subroutine branchings, (e)

backward unconditional branchings, and (f) backward conditional branchings. Due to lack

of space, we only prove the first case here. The run-time setting used consists of a

coprocessor p ’ , whose task is retrieving the instructions Zk and forwarding them to a usual

processor p ; it is assumed that p’ and p are pipe-lined. The path between p and p‘ must

be a secure one, so that it is advisable that both processor and coprocessor be encapsulated

in a single chip (with a hybrid circuit [Ebe186], this is achieved at low redesign cost).

Now, for a sequential instruction block, operation at cycle k is: Tk is being read,

T,, is available in a coprocessor internal register, Tk.2 is being evaluated by p’ and I,, is

being executed by p (actually the i,, stripped from Ik.z is executed, after redundance

checking). Evaluating a trace T, means to retrieve the instruction contained in the trace

(Im+, for a sequential trace, I , for a branch trace to T,, see section 1). Then, following this

scheme, after reading To and TI during cycles 0 and I, at cycle 2 T2 is read and p’

evaluates To by computing F(T,) 8 E(T,,) = I , . It must be pointed out this computation is

feasible because of the transformation E being easy and public and T, being available to

p ’ . Thus instruction 1, has been retrieved, if its redundance pattern is all right, of come.
Now suppose that at cycle k-1 I , through I,, have been retrieved and the program has

been executed till IL~ . Then at cycle k, I,, is executed and I,, is retrieved from TLz by

478

computing F(T,,) @ Tk.* = I,-,. Again this is possible because of T,, being available at

cycle k and F being public and easily computable. The result follows by induction.

Execution stops at cycle n+2 after executing f", which means that only two overhead cycles

have been introduced (the first read at cycle 0 is unavoidable even for a conventional

execution, see diagram 1). As for T,, this trace is only used during evaluation of T,, for

1,

I , ... I,t 1-1 1. * * P
EXECUTE *

* P'
READ To T, T2 T, ._. T. *

CYCLE 0 1 2 3 _.. n n+l n+2

DIAGRAM 1. Sequential Block. n+2 Usable Cycles for n*Instructions.

4. Run-Time Integrity

Theorem 2 (Run-Time Intepritv). If a program i,, ..., i. is stored as To, .-., T, and is

evaluated as described in section 3, any instruction substitution, deletion or insemon before

or during execution will be detected at run-time, thus causing the processor to stop

executing before the substituted, deleted or inserted instruction(s). Moreover, only the last

five read traces must be kept in the internal secure memory of the processor (they are kept

even in case of interrupt).

Proof (Sketch). Since the arithmetic link between two consecutively executed insrructions

in the sequential case (I t and I,,,) is essentially the same as in a forward unconditional

branching (Ik and I j) , both cases can be reduced to a single one. Thus five cases must be

considered for the proof: 1) sequential instruction blocks and forward unconditional

branchings, 2) forward conditional branchings, 3) subroutine branchings, 4) backward

unconditional branchings, and 5) backward conditional branchings. Because of space

reasons, we will only develop the proof for a sequential block, which uses only the last

read trace (no need for all five last ones); some additions to the main idea are used for

479

the other cases. First consider that an intruder attempts a substitution, by replacing It
with Ik*; it follows from (1) that he can then choose either to maintain T,, or to modify

it. If he mes the first thing, he must find a T,* s. t. F(T,*) @ I,* = T,,, but this is

unfeasible given the unidirectionality of F. Consequently T,, is changed to TLl*; now if
nothing more is done it will not be possible for the processor p' to remeve It , by

evaluation of Tt2 (the resulting garbage is not likely going to be a valid instruction because

of the redundance field). Thus a change in It causes p to stop after execution of I,,, which

is a good behaviour. On the other hand if we recompute T,,* = F(T,,*) CB Ik., then p' will

not be able to recover I,, and execution will stop earlier. Eventually if we proceed the

backward recomputation, we see by induction that T, will be replaced by TI*, and this will

be detected since To cannot be replaced (it is signed by the authority), and it will not be

possible to remeve a valid I , by evaluation of To at cycle 2. Thus a modification of I ,
enforces a modification of T,.,, due to the unidirectionality of F. For this change to remain

undetected, backward recomputation of traces should be made, but this is stopped by the

signature in To; in any case, a defective instruction is never executed. If a change of a
subset of instructions I,, ..., I , is attempted a similar argument can be used because this

also implies changing some traces. As for deletion of a bace T, from a sequential flow,

it also breaks the natural arithmetic link because it amounts to substituting T,,, for Th and
we have shown that substitutions are detected. Finally, insertion of a new trace T, between

T, and Ti+, is neither feasible: we can compute Tt. = F(T,+,) @ Ik. so as to link with Tk+,,
but this is useless for we cannot link T, and T,. without changing the former or having a
garbage I,,, in T,, which will be both detected, as shown ab0ve.m

5. Applications and Conclusion

Our system allows branches and guarantees full integrity while requiring secure storage

only for the last five read traces; also decoding and execution are pipe-lined. The work

performed by the authority in our scheme is rather small, so that a grear deal ofurers maY
share a single aurhoriry, which simplifies most of applications. For example, imagine a

large software company, where all programmers write and prepare their programs as
specified in sections 1 and 2 i n order to protect against computer viruses. Then a single
authority Can be used to endorse every program. Finally, our proposal requires that only

FV,) @ 1, be supplied to the authority for endorsement; the preparation phase can be

480

carried out by the user himself, so that the authority need not know what is being signed,

but just a user's valid identification (software privacy).

References

[Diff76] W. Diffie and M. E. Hellman, "New Directions in Cryptography", IEEE
Transactions on Information Theory, vol. IT-22, pp. 644-654, Nov. 1976.

[Ebe186] G. H. Ebel, "Hybrid Circuits: Thick and Thin Film", in Handbook of Modern
Microelectronics and Electrical Engineering, ed. C. Belove, Wiley, New York, 1986.

[Park891 G. Parkin and B. Wichmann, "Intelligent Modules", in The Protection of Computer
Software - Its Technology and Applications, ed. D. Grover, Cambridge University Press,
Cambridge, 1989.

[RiAD78] R. L. Rivest, L. Adlernan and M. L. Denoutos, "On Data Banks and Privacy
Homomorphisms", in Foundations of Secitre Computation, ed. R. A. DeMillo et. al.,
Academic Press, New York, 1978.

	Software Run-Time Protection: A Cryptographic Issue
	0. Introduction
	1. User Preparation Phase
	2. Authority Endorsement Phase
	3. Program Execution with Controlled Instruction Flow
	4. Run-Time Integrity
	5. Applications and Conclusion
	References

