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Abstract 

The paper examines permutation generators which are designed using four rounds 
of the Data Encryption Standard and a single pseudorandom function. We have 
proved that such generators are pseudorandom only if the pseudorandom function is 
used internally at least five times. The proof is given using two different approaches: 
deterministic and probabilistic. Some cryptographic implications are also discussed. 

1 Introduction 

Random number generators are commonly used in many different areas of science. However 
truly random generators create some problems. The most evident is the unreproducibifity 
of generated numbers, so that it is impossible to repeat the same experiment. Another 
problem is related to the assessment of randomness of generators. 

Classical pseudorandom generators are deterministic algorithms that provide numbers 
which “look” like random ones. As they have well-defined mathematical structures, they 
can be analysed easily. The basic measurement of classical pseudorandom generators is 
the similarity of generated numbers to truly random ones. Yao [8] redefined the notion of 
pseudorandomness in terms of complesity theory. A generator is said to be pseudorandom 
if it is “indistinguishable” from the truly random one, assuming polynomially bounded 
computing resources. 

Cryptographers have always been interested in how to extend truly random “seeds” 
(n-bit long) into &-bit output strings in such a way that the output is indistinguishable 
from a truly random string (k = 2,3,. - .). Blum and Micali [l] introduced the notion of 
cryptographically strong pseudorandom bit generators (CSB). Levin [3] proved that such 
generators exist if and only if one-way functions exist. There are several implementations 
of CSB generators (for details see for esamplc [2]). 
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Goldreich, Goldwasser and Micali [2] showed that it is possible to construct pseudoran- 
dom functions using CSB generators. The nest step in the theory of pseudorandomness is 
due to Luby and Rackoff [4]. They used pseudorandom functions to generate pseudoran- 
dom permutations using three rounds of the Data Encryption Standard (DES) and three 
different pseudorandom functions. 

Ohnishi [9] proved that pseudorandom permutations can be obtained using three 
rounds of the DES and two different pseudorandom functions. During Eurocrypt'89 Zheng, 
Matsumoto and Imai [9] presented some new results about pseudorandom permutations. 
They gave a construction of distinguishing circuits for all permutation generators which use 
three rounds of DES and a single pseudorandom function. They also posed the following 
problem: 

Proue or disprove that from one pseudorandom function, one can obtain in some way 
a pseudorandom (invertible) permutation applying four rounds of DES. 

In this paper we solve the problem. 

2 Notations and definitions 

Let I ,  = {0,1}" be the set of all 2" binary strings of length n. For a,  b E I,, a EI b stands 
for bit-by-bit esclusive-or of a and 6. The set of all functions from I, to I, is Fn, i.e. 

F n  = {f 1 f : In --* In} 
It consists of 2n2n elements. If we have two functions f, g E F,,, their composition f 0 g is 
defined as 

f adz) = f t g t z ) )  
for all z E In. The set of all perinutations from I ,  to I ,  is P,, i.e. 

P n  C Fn 

Definition 2.1 A permutation generatorp with a key k of length l (n)  (I(n) is a polynomial 
in n) is a (poly) collection of permutations 

1' = { ~ n  I n E N,yn C Pn) 

where for each key k of length l (n)  and any value of (Y E I,, we can compute in polynomial 
time in n the element P n , k ( a )  (jln,k E p,) and N is the set of all positive integers. 

Definition 2.2 A distinguishing circuit C,, is an acyclic circuit which consists of Boolean 
gates (AND, OR, NOT), constant gates ('"0" and "1") and oracle gates. The circuit has 
one bit output only. Oracle gates accept inputs of length n and generate outputs of the 
same length. Each omcle gate can be evaluated using some permutation from P,. 

Definition 2.3 A family of distinguishing circuits for a permutation generator p is an 
infinite sequence of circuits C,, , C,,, . . , (n1 < n2 < . - .) such that for two constants c1 
and c2 and for each pammeter n ,  there exits a circuit C, which has the following properties: 

The size of C, is smaller than ncl (the size is dejiired as the number of alL connections 
between gates). 
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0 Let Pr[Cn(P,)] he the prolrability that the output bit of Cn is one when a permutation 
is randomly selected f r o m  Pn and used to evaluate the oracle gates. h t  Pr[Cn(pn)] 
be the probability that the output bit of C, is one when a key k of length Z(n) is mIZ- 

domly selected and Pn,k E p ,  is used to  evuluute the omcle gates. The distinguishing 
probability for Cn: 

1 I Pr[Cn(Pn)l- P r [ C n ( ~ n ) 1 1 2  7 1 ~ 1  
Definition 2.4 A permutation generator p is pseudorandom i f  there is no distinguishing 
circuit furnily for p .  

Definition 2.5 For a funct ion f 6 F,, we define the DES-like permutation associated 
with f as 

where R and L are n- bit strings (R, L E I,,) and D2n, J E P2n. 

of  their DES-like permutations 1c, and 

&n,f(L, n) = (n @ f ( L ) ,  L )  

Having a sequence of functions f i  f2 ,  - - - , f; F,, we can determine the concatenation 

3( fi i f 2  , * * 7 f i )  = &n,fi 0 Gn,f,-I 0 . * 0 D2n,ji 

Of course, + ( f i i f 2 , . - * , f i )  E P2n. 
We can now rephrase the previous results. Luby and Rackoff [4] proved that $(g,  h, f )  

is a pseudorandom permutation generator if 9,  h, f axe different pseudorandom functions. 
Ohnishi [9] showed that both +(y,f , f )  and $(f, f , g )  are pseudorandom generators as 
well, where g, f are diEerent pseudorandom functions. Note that t,b( f,g,f) is not pseudo- 
random as it is symmetric. Zheng, Matsumto and Imai [O] considered permutations based 
on a single function f E Fn and they gave the description of distinguishing circuits for 
$(fi, f j ,  fk), wherc f is a composition f o fi-l and i , j ,  I; are arbitrary positive integers. 

Definition 2.6 A funct ion f is said to  be (truly) random (denote this as J ER Fn) if for 
a f i e d  argument x E {0 ,  - - - , 2, - l}, f(x) is a n  independent and uniformly distributed 
random variable. 

Example 2.1 Assume  that f En F 2 .  Then we have four independent uniformly dis- 
tributed random variables f (zi) (i = 0,1,2,3) and 

1 
Pr[f(xi) = j ]  = - jor j = 0,1,2,3 

4 
In this paper we are going to prove that $( f ,  f,  f ,  f') is pseudorandom permutation 

generator for i = 2 , 3 , - . - .  To shorten our considerations, we axe going to use a refer- 
ence permutation generator (instead of a truly random one). Its structure should be 
as close as possible to the structure of + ( f l  f ,  f , f i ) .  As $ ( f , f , g )  is pseudorandom, we 
take +( f ,  f ,  f , g )  as the reference one. Obviously, it is pseudorandom (the proof is omit- 
ted). Intuitively, taking out the first f from +( f , f , y ) ,  we get $ ( f , g )  which is no longer 
pseudorandom. Therefore, putting up an additional round for f to $(f,f,g), we ob- 
tain $( f, f ,  f,g) which must bc pseudorandom (the additional round docs not introduce 
symmetry). 

The proof of pseudorandomness of +( f ,  f,  f ,  f') for i = 2,3, -. - will be given in two dif- 
ferent ways. In the next Section, it will be carried out using some dcterministic arguments. 
Later on we show that the proof can also be based on some probabilistic ones. 
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3 Deterministic distinguishing circuits 

To illustrate how deterministic distinguishing circuits (DDC) work, consider the following 
example. 

Example 3.1 Take a perniutation generator +( f, f ,  f2) .  It is possible to show 191 that 
it has a DDC family for all n. The structure of such a distinguishing circuit is given in 
Figure 1. 

* c  co 

t f  

4 output 

Figure 1. Deterministic distinguishing circuit for +( f, f, f2) 

The generator produces the joliowing outputs: 

If +( f, f ,  f 2, is used to evaluate the orucle gates, the comparator inputs can be described as 
f8(0). It is interesting what happens if we apply I)( f ,  f ,g )  for oracle gate evaluation. It can 
be verified that the left hand side input to the comparator does not change i t s  description 
and is f8(0), while the right hand side one is represented as fgfg f2(0). 

This example shows us some general properties of a DDC, namely: 

PI As it must work for all possible selections of j, it can be seen as a network which 
generates the same signal using two different paths. Each path can be expressed by 
equivalent algebraic formulae. 
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P2 If there is a DDC, i t  can always be designed using the oracle gate with input (0,o) as 
the top one which initiates both paths. 

P3 Modulo-2 operation @ used outside oracle gates, removes input expression from the 
output. 

Now we will prove the main lemma of the section. Without a loss of generality, we can 
consider generator +(f, f ,  f, f2) instead of +(f, f ,  f,  p )  for i = 2,3, .  . .. 
Lemma 3.1 If $( f ,  f, f, g )  is pseudorandom, then there is no deterministic distinguishing 
circuit for a permutation generator 

$(f 1 f, f , f *) 

Proof (by contradiction): Assume that there is a DDC for $(f, f, f,  f2). It may be 
represented as shown in Figure 2. 

BOOLEAN CIRCUIT 

A B 

COMPARATOR + output 

Figure 2. A general diagram of a deterministic distinguishing circuit 
(OC stands for oracle gate) 

In general, for a given input ( L ,  n), a oracle gate generates: 
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Take the last term of the second output of oracle gate for input (L ,R)  and denote it as 
6(L,  R), i.e. 

Note that: 

- 
b(L ,R)  = f2 ( f (R)  a3 f (R a3 f ( L  @ f(R” 

f 2  in b(L, R )  does not commute with the function which is inside the brackets for 
all L and R (in particular, it does not commute for L = 0 and R = 0), 

0 it is impossible to separate a single expression b(L,R) from the right hand side 
outputs of oracle gates so it always appears as a part of bigger expression which 
consists of at least two terms. In other words f 2  in b(L, R) does not commute with 
the function f when b(L,R) is a part of an expression placed inside the brackets of 
the function f. 

It means that inputs to the comparator A and B are equal and can be presented as 

A(e1, ..., e,) = A ( e ,  b l ,  ..., b,) 

where bi is b(L ,R)  for the i-th oracle gate (i = 1,. a .m) and e stands for the rest of oracle 
gate outputs. f 2  in aU expressions 61, - - - , b,  does not ‘‘mix’’ and stays in its original form. 

Now if the DDC is used for $(f, f ,  f,g), the Boolean circuit is fed with the same vector 
e and both A and B can be expressed as: 

A = B = A(e ,g l ,  - .  . ,gm) 
where g; substitutes f 2  in bi .  It means that $(f, f, f,g) has a DDC. This is the contra- 
diction which proves the lemma. 

0 

Theorem 3.1 If $( f, f, f,g) is pseudorandom, then $( f, f, f ,  f2 )  is pseudomndom. 

Proofi Luby and Rackoff iiotcd in [4] that any probabilistic distinguishing circuit can 
be converted to deterministic one. So if a generator has no DDC (see the lemma), it has 
no probabilistic distinguishing circuit and the generator is pseudorandom. 

0 

4 Probabilistic distinguishing circuits 

In this section we are going to prove that $(f, f ,  f, f ’) is pseudorandom using probabilistic 
arguments. 

Lemma 4.1 Let Czn be un distinguishing circuit with m oracle gates. Then 

91n3 I WCzn($(F))I- Pr[CZn($(F, G))] I I  4“ 
where Pr[C2,($(F))] = P r [ C z n ( $ ( f ,  f, f , j 2 ) ) ]  is the probalility that the oracle circuit 
generates ”1” when its  oracle gates are evaluated using $( f, f, f, f 2 )  (the function f ER 
F,) and Pr[C2n($(F,G))J = Pr[C2,,($( f, f, f,y))] is tlreprohbility that the oracle circuit 
generates when its oracle gates are evaluated using $(f, f, f,g) (f,g E R  Fn). 
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Proojfsketch): Note that both f and 9 can be considered as two sequences of 2'' 
independent and uniformly distributed random variables. For two different arguments 
a,6 E I,, f(a) and f ( b )  are independent random variables. When the input to an oracle 
gate is ( L ,  R)  ( L ,  R E In), the gate produces the output: 

f ( R )  @ f ( R  El f(L f(R))), f (L I(fi)) @ f 2 ( L  @ f(W @ f ( R  @ f ( L  63 f ( R ) ) ) ) )  

f(R) @ f (R @ f(L @ f(W)), f ( L  @ f (R>> El d L  @ f(W @ f (R @ f(L g3 f(R))))) 

if it is evaluated using $(f, f, f, f3) or generates the output: 

when it is evaluated according to $(f,f ,f ,g) (outputs of oracle gates are given after 
removing the input L and R, respectively). Of course the first components (random 
variables) of the outputs are the same. 

Observe that if we have two oracle gates which are evaluated by $(f,f,f,f2) and 
whose inputs are different (an input (L ,R)  is different from (L',R') if either L # L' or 
R # I?), their outputs yield four independent random variables. 

A probabilistic distinguishing circuit generates 1 on its output with the same probabil- 
ity for both $(f, f ,  f, f2) and $(f, f, f, g )  if the random variables (the second part of the 
right hand side output of oracle gates) fZ(a j )  are independent from all internal random 
variables : 

f(Ri); 
f ( L i  @ I(&)); 

ai = f(& @ f ( L i  El f(&))) 
in all m oracle gates, where i is the number of the gate and (Lj,&) is the input t o  the 
i-th gate. 

A probabilistic distinguishing circuit generates I on its output with different proba- 
bilities if there is at least one oracle gate in which f 2 ( L ;  @ f(Rj) @ aj) is expressable by 
a composition of two internal variables (there are 3772 such random variables). Denote 
Prdijf as the probability that there exists f2(L.i @ f (R j )  @ a;) that is expressable by two 
internal variables. Therefore: 

I PT[C2n($'(F))] - Pr[C2n($'(1;;G))] Ih Prdiff 

For fixed i (1 5 i 5 m), the probability that a single variable f2(& @ f ( R ; )  @ ai) can be 
constructed from two internal variables is: 

Om2 
4n 
- 

so: 
9 in3 

Prdijf = - 
4" 

and the final result follows. (A formal proof nceds definitions of suitable probabilistic 
spaces to be introduced. Such spaces are the same as those in the paper by Luby and 
Rackoff [4]). 

0 
Denote that PF = Pr[C2n($(F))], PF,G = Pr[Cz,,($(F, G))] (those probabilities are 

defined above) and PR = Pr[C2,(F2,)] is the probability that the oracle circuit generates 
"1" if the oracle gates are  evaluated using a random function f E R  Fzn. 
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Lemma 4.2 If $(f, f, f, g )  is pseudorandom, then 

Y ( 4  I P F - P R  I< - 2n 

where 7 ( m )  is a polynomial in m (m is the number of oracle gates in the distinguishing 
circuit). 

ProoJ The previous lemma stated that 

and the assumption about pseudorandomness of $(f, f , f ,g)  is equivalent to 

Theorem 4.1 $(j, f , f, f2) is pseudorandom permutation generator. 

Proof(by contradiction). Proof is similar to that given in [4]. Denote that p j  = 
P~[C2n($(f, f, f, !')>>I, where f E Fn is a pseudorandom function. Assume that there is 
a distinguishing circuit family for $(f, f ,  f, f2) .  Let it be C = (Cznl, Cz, , - -1, where 
nl < 122 < - - .. It means that for large enough n, the folIowing sequence is true: 

1 - I 1  PJ - P P R  I=I ~f - P F + P F  - P R  151 ~f - P F  1 + I P F - P R  I nc 

where c is a constant. As I p~ - p~ I is bounded by w, I PJ - p ~  12 &. In other words 
the family C defines a distinguishing circuit family for pseudorandom function f. This is 
the contradiction and the theorem is proved. 

U 

All above considerations are valid for +(f, f, f, f') for fixed i = 2,3, - .. 

5 Towards provably secure block cryptosystems 

The results obtained in the theory of pseudorandomness may be interpreted differently. 
As we know (see [4]), permutation generators q$( f,g, h) are pseudorandom if f , g ,  h are 
different pseudorandom functions. In general, if we use random functions instead pseudo- 
random ones then a permutation generator for which there is no distinguisher, is d e d  a 
randomizer. NOW we can rephrase thc previous theorems. 
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Theorem 5.1 (Luby and Rackoff [4]) Let f ,g,  h E R  F, and a distinguisher C2n have m 
oracle gates (rn < 2"), then: 

and the mndomizer II, extends binary strings of length 3 x n2" into strings of length 2n22n 

To make the probability in (1) sufficiently small n should be larger than 64. For 
n = 64 the randomizer $(f,g,hj extends 3.5 x 102'-bit random string into a random 
string of length 4.4 x lo4* bits. 

Theorem 5.2 (Ohnishi [O]) Let f , g  ER F, and a distinguisher C2, have m oracle gates 
(rn < 2"), then: 

and the mndomizer $ extends binary strings of length 2 x 122" into strings of length 

Theorem 5.3 Let f ER Fn and a distinguisher C2, have m oracle gates ( m  < 2")) then 

and the randomizer + extends binary strings of length n2n into strings of length 2n22n 

The last theorem gives the best known result and for n = 32, the randomizer +(f, f, f ,  ?) 
=<ends 1.4 x 10" bits into binary string of length 3.5 x lo2'. Unfortunately the proba- 
bility given by (3) can be too high even for relatively small m (for instance if m = lo5 the 
probability is close to 1). 

Zheng et al. [lo] studied the practicability of provable secure cryptosystems (PSC) and 
they pointed out that there is still gap between the theory (which says that PSCs exist) 
and the practice (any implementation needs exponential size memory to memorize random 
functions). 

Consider €ormula,e (1,2,3) and note that both memory requirements and probabilities 
depend on the value of 2". Ideally, we would like to be able to select in some way memory 
requirements (the size of random function) and probabilities independently, possibly by 
introducing an additional parameter. In general, it is well known that increase of number 
of rounds in any cryptosystem improves its quality. Therefore, such a parameter may be 
the number of rounds. 

There are three different approaches: 

direct concatenation of basic randomizcrs $, i.e. we create an randomizer !Qj = 
1c, 0 .# 0 .- 
-' 

construction of complex randomizers using a basic randomizer $, i.e. B = + ( p , p , p , p 2 )  
where p = $( f, f ,  f, f2 j and f is a random function; 

3 
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0 concatenation of complex randomizers, i.e. 0 .  - I9 o I9 o . - .  where 8 is given above. J - - '  
3 

The basic randomizer uses a random function f E F,. The resulting randomizer !Pj 
generates a permutation from Fzn. Both randomizers I9 and O j  are permutations in F4,,. 
The most important question is: TVliut w e  the corresponding probabilities bounds for the 
first two approaches ? Ideally, we would expect that the probabilities axe expressable as: 

Q(n)  - 
2"3 

where j is the number of iterations. hi this case, it would be possible to select small 
enough n so thc memory requirements could be met and at the same time, the probability 
( 3 )  could be adjusted by selecting the number of concatenations. 

Of course, all above randomizers are based on the DES structure. I t  is possible to 
generalize this structure as is shown in [ lo ] .  Maurer and Massey [5] considered codes as 
randomizers. 

6 Conclusions 

The generation of binary sequences that resemble truly random ones, is widely used in 
many different applications. Some of these applications impose especially strict require- 
ments. One such application is cryptography. Most binary sequence generators turned to 
be useless from a cryptographic point of view. 

Yao [S] defined a class of generators which are not distinguishable from truly random 
generators having polynomial size sample of output and polynomially-bounded computing 
resources. He called them pseudorandom. 

The existance of PBG has been proved by Levin [3] providing existence of a way- 
one function. There several implementations of PBG using different one-way functions 
(see [2 ] ) .  Goldreich et  al. [2] showed that PBGs can be used to construct pseudorandom 
function generators. Later, Luby and Rackoff [4] described pseudorandom permutation 
generators using three DES rounds and three pseudorandom functions. 

Ohnishi improved their result by proviiig that pseudorandom permutation generators 
(PPGs) can be made up from three DES rounds and two pseudorandom functions. This 
result is optimal in the sense that usiiig a single pseudorandom function and three DES 
rounds, it is impossible to construct PPG (Zheng et al [O]). 

Schnor [7] was the first to pose the problem of construction of pseudorandom permu- 
tation generators using single pseudorandom functions. Zheng et al. [9] and Rueppel [S] 
showed that Schnors generator +(f, f ,  f )  is not pseudorandom. In this paper we have 
proved that having a single pseudorandom function and four DES rounds it is possible to 
construct PP Gs. 

If we substitute pseudoraudom fuiictions by truly random ones in PPG, we obtain 
generators which are called randomizers. Their quality is expressable by their probability 
bound for distinguishing them from truly random permutations and does not rely on 
unproved assumptions (as the existance of one-way functions). 

Randomizers of structure +( f, f ,  f, f2) ( j  is a random function from F,,) stretch n x 2" 
input bits into 2n X 22n output bits. Zheiig et al [lo] defined provable secure cryptosys- 
terns as randomizers. There is howevcr, a gap between the practical implementation and 



the theory. To make this idea implementable, more research is necessary. Especially, 
it is interesting to examine the influence of the number of rounds on the distinguishing 
probability. Also a search for new ”more” efficient randomizers could bring us closer to 
a practical implementation of PSC. Maurer and Massey [5] pointed out codes as one of 
possible randomizers. 
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