
How to Construct Pseudorandom Permutations

from Single Pseudorandom Functions

Josef Pieprzyk l

Department of Computer Science
University College

University of New South Wales
Austarlian Defence Force Academy
Canberra, ACT 2600, AUSTRALIA

Abstract

The paper examines permutation generators which are designed using four rounds
of the Data Encryption Standard and a single pseudorandom function. We have
proved that such generators are pseudorandom only if the pseudorandom function is
used internally at least five times. The proof is given using two different approaches:
deterministic and probabilistic. Some cryptographic implications are also discussed.

1 Introduction

Random number generators are commonly used in many different areas of science. However
truly random generators create some problems. The most evident is the unreproducibifity
of generated numbers, so that it is impossible to repeat the same experiment. Another
problem is related to the assessment of randomness of generators.

Classical pseudorandom generators are deterministic algorithms that provide numbers
which “look” like random ones. As they have well-defined mathematical structures, they
can be analysed easily. The basic measurement of classical pseudorandom generators is
the similarity of generated numbers to truly random ones. Yao [8] redefined the notion of
pseudorandomness in terms of complesity theory. A generator is said to be pseudorandom
if it is “indistinguishable” from the truly random one, assuming polynomially bounded
computing resources.

Cryptographers have always been interested in how to extend truly random “seeds”
(n-bit long) into &-bit output strings in such a way that the output is indistinguishable
from a truly random string (k = 2,3,. - .). Blum and Micali [l] introduced the notion of
cryptographically strong pseudorandom bit generators (CSB). Levin [3] proved that such
generators exist if and only if one-way functions exist. There are several implementations
of CSB generators (for details see for esamplc [2]).

‘Support for this project was provided in part by TELECOM Australia under the contract number
7027 and by the Australian Research Council under the reference number A48830241.

I.B. Damgard (Ed.): Advances in Cryptology - EUROCRYPT ‘90, LNCS 473, pp. 140-150, 1991.
0 Springer-Verlag Berlin Heidelberg 1991

141

Goldreich, Goldwasser and Micali [2] showed that it is possible to construct pseudoran-
dom functions using CSB generators. The nest step in the theory of pseudorandomness is
due to Luby and Rackoff [4]. They used pseudorandom functions to generate pseudoran-
dom permutations using three rounds of the Data Encryption Standard (DES) and three
different pseudorandom functions.

Ohnishi [9] proved that pseudorandom permutations can be obtained using three
rounds of the DES and two different pseudorandom functions. During Eurocrypt'89 Zheng,
Matsumoto and Imai [9] presented some new results about pseudorandom permutations.
They gave a construction of distinguishing circuits for all permutation generators which use
three rounds of DES and a single pseudorandom function. They also posed the following
problem:

Proue or disprove that from one pseudorandom function, one can obtain in some way
a pseudorandom (invertible) permutation applying four rounds of DES.

In this paper we solve the problem.

2 Notations and definitions

Let I , = {0,1}" be the set of all 2" binary strings of length n. For a, b E I,, a EI b stands
for bit-by-bit esclusive-or of a and 6. The set of all functions from I, to I, is Fn, i.e.

F n = {f 1 f : In --* In}
It consists of 2n2n elements. If we have two functions f, g E F,,, their composition f 0 g is
defined as

f adz) = f t g t z))
for all z E In. The set of all perinutations from I , to I , is P,, i.e.

P n C Fn

Definition 2.1 A permutation generatorp with a key k of length l (n) (I(n) is a polynomial
in n) is a (poly) collection of permutations

1' = { ~ n I n E N,yn C Pn)

where for each key k of length l (n) and any value of (Y E I,, we can compute in polynomial
time in n the element P n , k (a) (jln,k E p,) and N is the set of all positive integers.

Definition 2.2 A distinguishing circuit C,, is an acyclic circuit which consists of Boolean
gates (AND, OR, NOT), constant gates ('"0" and "1") and oracle gates. The circuit has
one bit output only. Oracle gates accept inputs of length n and generate outputs of the
same length. Each omcle gate can be evaluated using some permutation from P,.

Definition 2.3 A family of distinguishing circuits for a permutation generator p is an
infinite sequence of circuits C,, , C,,, . . , (n1 < n2 < . - .) such that for two constants c1
and c2 and for each pammeter n , there exits a circuit C, which has the following properties:

The size of C, is smaller than ncl (the size is dejiired as the number of alL connections
between gates).

142

0 Let Pr[Cn(P,)] he the prolrability that the output bit of Cn is one when a permutation
is randomly selected f r o m Pn and used to evaluate the oracle gates. h t Pr[Cn(pn)]
be the probability that the output bit of C, is one when a key k of length Z(n) is mIZ-

domly selected and Pn,k E p , is used to evuluute the omcle gates. The distinguishing
probability for Cn:

1 I Pr[Cn(Pn)l- P r [C n (~ n) 1 1 2 7 1 ~ 1
Definition 2.4 A permutation generator p is pseudorandom i f there is no distinguishing
circuit furnily for p .

Definition 2.5 For a funct ion f 6 F,, we define the DES-like permutation associated
with f as

where R and L are n- bit strings (R, L E I,,) and D2n, J E P2n.

of their DES-like permutations 1c, and

&n,f(L, n) = (n @ f (L) , L)

Having a sequence of functions f i f2 , - - - , f; F,, we can determine the concatenation

3(fi i f 2 , * * 7 f i) = &n,fi 0 Gn,f,-I 0 . * 0 D2n,ji

Of course, + (f i i f 2 , . - * , f i) E P2n.
We can now rephrase the previous results. Luby and Rackoff [4] proved that $(g, h, f)

is a pseudorandom permutation generator if 9, h, f axe different pseudorandom functions.
Ohnishi [9] showed that both +(y,f , f) and $(f, f , g) are pseudorandom generators as
well, where g, f are diEerent pseudorandom functions. Note that t,b(f,g,f) is not pseudo-
random as it is symmetric. Zheng, Matsumto and Imai [O] considered permutations based
on a single function f E Fn and they gave the description of distinguishing circuits for
$(fi, f j , fk), wherc f is a composition f o fi-l and i , j , I; are arbitrary positive integers.

Definition 2.6 A funct ion f is said to be (truly) random (denote this as J ER Fn) if for
a f i e d argument x E {0 , - - - , 2, - l}, f(x) is a n independent and uniformly distributed
random variable.

Example 2.1 Assume that f En F 2 . Then we have four independent uniformly dis-
tributed random variables f (zi) (i = 0,1,2,3) and

1
Pr[f(xi) = j] = - jor j = 0,1,2,3

4
In this paper we are going to prove that $(f , f, f , f') is pseudorandom permutation

generator for i = 2 , 3 , - . - . To shorten our considerations, we axe going to use a refer-
ence permutation generator (instead of a truly random one). Its structure should be
as close as possible to the structure of + (f l f , f , f i) . As $ (f , f , g) is pseudorandom, we
take +(f , f , f , g) as the reference one. Obviously, it is pseudorandom (the proof is omit-
ted). Intuitively, taking out the first f from +(f , f , y) , we get $ (f , g) which is no longer
pseudorandom. Therefore, putting up an additional round for f to $(f,f,g), we ob-
tain $(f, f , f,g) which must bc pseudorandom (the additional round docs not introduce
symmetry).

The proof of pseudorandomness of +(f , f, f , f') for i = 2,3, -. - will be given in two dif-
ferent ways. In the next Section, it will be carried out using some dcterministic arguments.
Later on we show that the proof can also be based on some probabilistic ones.

143

3 Deterministic distinguishing circuits

To illustrate how deterministic distinguishing circuits (DDC) work, consider the following
example.

Example 3.1 Take a perniutation generator +(f, f , f2) . It is possible to show 191 that
it has a DDC family for all n. The structure of such a distinguishing circuit is given in
Figure 1.

* c co

t f

4 output

Figure 1. Deterministic distinguishing circuit for +(f, f, f2)

The generator produces the joliowing outputs:

If +(f, f , f 2, is used to evaluate the orucle gates, the comparator inputs can be described as
f8(0). It is interesting what happens if we apply I)(f , f ,g) for oracle gate evaluation. It can
be verified that the left hand side input to the comparator does not change i t s description
and is f8(0), while the right hand side one is represented as fgfg f2(0).

This example shows us some general properties of a DDC, namely:

PI As it must work for all possible selections of j, it can be seen as a network which
generates the same signal using two different paths. Each path can be expressed by
equivalent algebraic formulae.

144

P2 If there is a DDC, i t can always be designed using the oracle gate with input (0,o) as
the top one which initiates both paths.

P3 Modulo-2 operation @ used outside oracle gates, removes input expression from the
output.

Now we will prove the main lemma of the section. Without a loss of generality, we can
consider generator +(f, f , f, f2) instead of +(f, f , f, p) for i = 2,3,
Lemma 3.1 If $(f , f, f, g) is pseudorandom, then there is no deterministic distinguishing
circuit for a permutation generator

$(f 1 f, f , f *)

Proof (by contradiction): Assume that there is a DDC for $(f, f, f, f2). It may be
represented as shown in Figure 2.

BOOLEAN CIRCUIT

A B

COMPARATOR + output

Figure 2. A general diagram of a deterministic distinguishing circuit
(OC stands for oracle gate)

In general, for a given input (L , n), a oracle gate generates:

145

Take the last term of the second output of oracle gate for input (L ,R) and denote it as
6(L, R), i.e.

Note that:

-
b(L ,R) = f2 (f (R) a3 f (R a3 f (L @ f(R”

f 2 in b(L, R) does not commute with the function which is inside the brackets for
all L and R (in particular, it does not commute for L = 0 and R = 0),

0 it is impossible to separate a single expression b(L,R) from the right hand side
outputs of oracle gates so it always appears as a part of bigger expression which
consists of at least two terms. In other words f 2 in b(L, R) does not commute with
the function f when b(L,R) is a part of an expression placed inside the brackets of
the function f.

It means that inputs to the comparator A and B are equal and can be presented as

A(e1, ..., e,) = A (e , b l , ..., b,)

where bi is b(L ,R) for the i-th oracle gate (i = 1,. a .m) and e stands for the rest of oracle
gate outputs. f 2 in aU expressions 61, - - - , b, does not ‘‘mix’’ and stays in its original form.

Now if the DDC is used for $(f, f , f,g), the Boolean circuit is fed with the same vector
e and both A and B can be expressed as:

A = B = A(e ,g l , - . . ,gm)
where g; substitutes f 2 in bi . It means that $(f, f, f,g) has a DDC. This is the contra-
diction which proves the lemma.

0

Theorem 3.1 If $(f, f, f,g) is pseudorandom, then $(f, f, f , f2) is pseudomndom.

Proofi Luby and Rackoff iiotcd in [4] that any probabilistic distinguishing circuit can
be converted to deterministic one. So if a generator has no DDC (see the lemma), it has
no probabilistic distinguishing circuit and the generator is pseudorandom.

0

4 Probabilistic distinguishing circuits

In this section we are going to prove that $(f, f , f, f ’) is pseudorandom using probabilistic
arguments.

Lemma 4.1 Let Czn be un distinguishing circuit with m oracle gates. Then

91n3 I WCzn($(F))I- Pr[CZn($(F, G))] I I 4“
where Pr[C2,($(F))] = P r [C z n ($ (f , f, f , j 2))] is the probalility that the oracle circuit
generates ”1” when its oracle gates are evaluated using $(f, f, f, f 2) (the function f ER
F,) and Pr[C2n($(F,G))J = Pr[C2,,($(f, f, f,y))] is tlreprohbility that the oracle circuit
generates when its oracle gates are evaluated using $(f, f, f,g) (f,g E R Fn).

146

Proojfsketch): Note that both f and 9 can be considered as two sequences of 2''
independent and uniformly distributed random variables. For two different arguments
a,6 E I,, f(a) and f (b) are independent random variables. When the input to an oracle
gate is (L , R) (L , R E In), the gate produces the output:

f (R) @ f (R El f(L f(R))), f (L I(fi)) @ f 2 (L @ f(W @ f (R @ f (L 63 f (R)))))

f(R) @ f (R @ f(L @ f(W)), f (L @ f (R>> El d L @ f(W @ f (R @ f(L g3 f(R)))))

if it is evaluated using $(f, f, f, f3) or generates the output:

when it is evaluated according to $(f,f ,f ,g) (outputs of oracle gates are given after
removing the input L and R, respectively). Of course the first components (random
variables) of the outputs are the same.

Observe that if we have two oracle gates which are evaluated by $(f,f,f,f2) and
whose inputs are different (an input (L ,R) is different from (L',R') if either L # L' or
R # I?), their outputs yield four independent random variables.

A probabilistic distinguishing circuit generates 1 on its output with the same probabil-
ity for both $(f, f , f, f2) and $(f, f, f, g) if the random variables (the second part of the
right hand side output of oracle gates) fZ(a j) are independent from all internal random
variables :

f(Ri);
f (L i @ I(&));

ai = f(& @ f (L i El f(&)))
in all m oracle gates, where i is the number of the gate and (Lj,&) is the input t o the
i-th gate.

A probabilistic distinguishing circuit generates I on its output with different proba-
bilities if there is at least one oracle gate in which f 2 (L ; @ f(Rj) @ aj) is expressable by
a composition of two internal variables (there are 3772 such random variables). Denote
Prdijf as the probability that there exists f2(L.i @ f (R j) @ a;) that is expressable by two
internal variables. Therefore:

I PT[C2n($'(F))] - Pr[C2n($'(1;;G))] Ih Prdiff

For fixed i (1 5 i 5 m), the probability that a single variable f2(& @ f (R ;) @ ai) can be
constructed from two internal variables is:

Om2
4n
-

so:
9 in3

Prdijf = -
4"

and the final result follows. (A formal proof nceds definitions of suitable probabilistic
spaces to be introduced. Such spaces are the same as those in the paper by Luby and
Rackoff [4]).

0
Denote that PF = Pr[C2n($(F))], PF,G = Pr[Cz,,($(F, G))] (those probabilities are

defined above) and PR = Pr[C2,(F2,)] is the probability that the oracle circuit generates
"1" if the oracle gates are evaluated using a random function f E R Fzn.

147

Lemma 4.2 If $(f, f, f, g) is pseudorandom, then

Y (4 I P F - P R I< - 2n

where 7 (m) is a polynomial in m (m is the number of oracle gates in the distinguishing
circuit).

ProoJ The previous lemma stated that

and the assumption about pseudorandomness of $(f, f , f ,g) is equivalent to

Theorem 4.1 $(j, f , f, f2) is pseudorandom permutation generator.

Proof(by contradiction). Proof is similar to that given in [4]. Denote that p j =
P~[C2n($(f, f, f, !')>>I, where f E Fn is a pseudorandom function. Assume that there is
a distinguishing circuit family for $(f, f , f, f2) . Let it be C = (Cznl, Cz, , - -1, where
nl < 122 < - - .. It means that for large enough n, the folIowing sequence is true:

1 - I 1 PJ - P P R I=I ~f - P F + P F - P R 151 ~f - P F 1 + I P F - P R I nc

where c is a constant. As I p~ - p~ I is bounded by w, I PJ - p ~ 12 &. In other words
the family C defines a distinguishing circuit family for pseudorandom function f. This is
the contradiction and the theorem is proved.

U

All above considerations are valid for +(f, f, f, f') for fixed i = 2,3, - ..

5 Towards provably secure block cryptosystems

The results obtained in the theory of pseudorandomness may be interpreted differently.
As we know (see [4]), permutation generators q$(f,g, h) are pseudorandom if f , g , h are
different pseudorandom functions. In general, if we use random functions instead pseudo-
random ones then a permutation generator for which there is no distinguisher, is d e d a
randomizer. NOW we can rephrase thc previous theorems.

148

Theorem 5.1 (Luby and Rackoff [4]) Let f ,g, h E R F, and a distinguisher C2n have m
oracle gates (rn < 2"), then:

and the mndomizer II, extends binary strings of length 3 x n2" into strings of length 2n22n

To make the probability in (1) sufficiently small n should be larger than 64. For
n = 64 the randomizer $(f,g,hj extends 3.5 x 102'-bit random string into a random
string of length 4.4 x lo4* bits.

Theorem 5.2 (Ohnishi [O]) Let f , g ER F, and a distinguisher C2, have m oracle gates
(rn < 2"), then:

and the mndomizer $ extends binary strings of length 2 x 122" into strings of length

Theorem 5.3 Let f ER Fn and a distinguisher C2, have m oracle gates (m < 2")) then

and the randomizer + extends binary strings of length n2n into strings of length 2n22n

The last theorem gives the best known result and for n = 32, the randomizer +(f, f, f , ?)
=<ends 1.4 x 10" bits into binary string of length 3.5 x lo2'. Unfortunately the proba-
bility given by (3) can be too high even for relatively small m (for instance if m = lo5 the
probability is close to 1).

Zheng et al. [lo] studied the practicability of provable secure cryptosystems (PSC) and
they pointed out that there is still gap between the theory (which says that PSCs exist)
and the practice (any implementation needs exponential size memory to memorize random
functions).

Consider €ormula,e (1,2,3) and note that both memory requirements and probabilities
depend on the value of 2". Ideally, we would like to be able to select in some way memory
requirements (the size of random function) and probabilities independently, possibly by
introducing an additional parameter. In general, it is well known that increase of number
of rounds in any cryptosystem improves its quality. Therefore, such a parameter may be
the number of rounds.

There are three different approaches:

direct concatenation of basic randomizcrs $, i.e. we create an randomizer !Qj =
1c, 0 .# 0 .-
-'

construction of complex randomizers using a basic randomizer $, i.e. B = + (p , p , p , p 2)
where p = $(f, f , f, f2 j and f is a random function;

3

149

0 concatenation of complex randomizers, i.e. 0 . - I9 o I9 o . - . where 8 is given above. J - - '
3

The basic randomizer uses a random function f E F,. The resulting randomizer !Pj
generates a permutation from Fzn. Both randomizers I9 and O j are permutations in F4,,.
The most important question is: TVliut w e the corresponding probabilities bounds for the
first two approaches ? Ideally, we would expect that the probabilities axe expressable as:

Q(n) -
2"3

where j is the number of iterations. hi this case, it would be possible to select small
enough n so thc memory requirements could be met and at the same time, the probability
(3) could be adjusted by selecting the number of concatenations.

Of course, all above randomizers are based on the DES structure. I t is possible to
generalize this structure as is shown in [lo] . Maurer and Massey [5] considered codes as
randomizers.

6 Conclusions

The generation of binary sequences that resemble truly random ones, is widely used in
many different applications. Some of these applications impose especially strict require-
ments. One such application is cryptography. Most binary sequence generators turned to
be useless from a cryptographic point of view.

Yao [S] defined a class of generators which are not distinguishable from truly random
generators having polynomial size sample of output and polynomially-bounded computing
resources. He called them pseudorandom.

The existance of PBG has been proved by Levin [3] providing existence of a way-
one function. There several implementations of PBG using different one-way functions
(see [2]) . Goldreich et al. [2] showed that PBGs can be used to construct pseudorandom
function generators. Later, Luby and Rackoff [4] described pseudorandom permutation
generators using three DES rounds and three pseudorandom functions.

Ohnishi improved their result by proviiig that pseudorandom permutation generators
(PPGs) can be made up from three DES rounds and two pseudorandom functions. This
result is optimal in the sense that usiiig a single pseudorandom function and three DES
rounds, it is impossible to construct PPG (Zheng et al [O]).

Schnor [7] was the first to pose the problem of construction of pseudorandom permu-
tation generators using single pseudorandom functions. Zheng et al. [9] and Rueppel [S]
showed that Schnors generator +(f, f , f) is not pseudorandom. In this paper we have
proved that having a single pseudorandom function and four DES rounds it is possible to
construct PP Gs.

If we substitute pseudoraudom fuiictions by truly random ones in PPG, we obtain
generators which are called randomizers. Their quality is expressable by their probability
bound for distinguishing them from truly random permutations and does not rely on
unproved assumptions (as the existance of one-way functions).

Randomizers of structure +(f, f , f, f2) (j is a random function from F,,) stretch n x 2"
input bits into 2n X 22n output bits. Zheiig et al [lo] defined provable secure cryptosys-
terns as randomizers. There is howevcr, a gap between the practical implementation and

the theory. To make this idea implementable, more research is necessary. Especially,
it is interesting to examine the influence of the number of rounds on the distinguishing
probability. Also a search for new ”more” efficient randomizers could bring us closer to
a practical implementation of PSC. Maurer and Massey [5] pointed out codes as one of
possible randomizers.

A CKNO WLEDGMENT

I would like to thank Cathy Newberry, Dr Re; Safavi-iVaini and Xian-Mo Zhang for
their comments, discussions and assistunce during the prepamtion of this work.

References

[I] M. Blum and S. hlicali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing, 132350-864, November 1984.

[2] 0. Goldreich, S. Goldwasser, and S. Micali. Jlow to construct random functions.
Journal of the A C M , 33(4):792-807, October 1986.

[3] L. A. Levin. One-way function and pseudorandom generators. In Proceedings of the
17th ACM Symposium on Theory of Computing, pages 363-365, New York, 1985.
ACM.

[4] M. Luby and Ch. Rackoff. How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing, 17(2):373-386, April 1988.

[5] U.M. Maurer and J.L. Massey. Perfect local randomness in pseudorandom sequences.
Astracts of CRYPTO’89, Santa Barbara, CA, August 1OS9.

[GI R.A. Rueppel. On the security of Schnorr’s pseudo random generator. Astracts of
EUROCRYPT’89, Houthalen, Belgium, April 1989.

[7] C.P. Schnorr. On the construction of random number generators and random function
generators. In Proc. of Eurocrypt SS, Lecture Notes in Computer Science, New York,
1988. Springer Verlag.

[8] Andrew C. Yao. Theory and application of trapdoor functions. In Proceedings of the
23rd IEEE Sgmposiunr on Fundation of Computer Science, pages 80-91, New York,
1982. EEE.

[9] Y . Zheng, T. Matsumoto, and 11. Imai. Impossibility and optimality results on con-
structing pseudorandom permutations. Astracts of EUROCRYPT’89, Houthalen,
Belgium, April 1989.

[lo] Y. Zheng, T. Matsumoto, and 11. h a i . On the coiistruction of block ciphers provably
secure and not relying on any unproved hypotheses. Astracts of CRYPTO’89, Santa
Barbara, CA, JuIy 1989.

	How to Construct Pseudorandom Permutationsfrom Single Pseudorandom Functions
	1 Introduction
	2 Notations and definitions
	3 Deterministic distinguishing circuits
	4 Probabilistic distinguishing circuits
	5 Towards provably secure block cryptosystems
	6 Conclusions
	References

